File size: 11,133 Bytes
098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d 9a814cd 098125d c9192c4 098125d c9192c4 098125d 9a814cd 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d c9192c4 098125d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import gradio as gr
import json
import pandas as pd
from typing import Dict, List, Any
# Sample data
BENCHMARK_DATA_FORMAT_EXAMPLE = [
{
"name": "jinaai/jina-embeddings-v3",
"url": "https://huggingface.co/jinaai/jina-embeddings-v3",
"context_length": "8192",
"num_parameters": "572M",
"emb_dim": 1024,
"retrieval": {
"KazQADRetrieval": 0.63206,
"average_score": 0.63206
},
"classification": {
"KazSandraPolarityClassification": 0.75332,
"KazSandraScoreClassification": 0.519385,
"average_score": 0.6363525
},
"bitext_mining": {
"KazParcBitextMining_kaz-to-eng": 0.919131,
"KazParcBitextMining_eng-to-kaz": 0.912916,
"KazParcBitextMining_kaz-to-rus": 0.929359,
"KazParcBitextMining_rus-to-kaz": 0.921656,
"average_score": 0.9207655
}
}
]
class KazTEBLeaderboard:
def __init__(self, data: List[Dict[str, Any]]):
self.data = data
self.tasks = self._extract_tasks()
def _extract_tasks(self) -> Dict[str, List[str]]:
tasks = {}
if self.data:
sample_model = self.data[0]
for task_name in ['retrieval', 'classification', 'bitext_mining']:
if task_name in sample_model:
datasets = [k for k in sample_model[task_name].keys() if k != 'average_score']
tasks[task_name] = datasets
return tasks
def _format_score(self, score: float) -> str:
return f"{score:.4f}"
def _create_model_link(self, name: str, url: str) -> str:
return f'<a href="{url}" target="_blank" style="color: #1976d2; text-decoration: none;">{name}</a>'
def get_task_dataframe(self, task_name: str) -> pd.DataFrame:
rows = []
for model in self.data:
if task_name not in model:
continue
row = {
'Model': self._create_model_link(model['name'], model['url']),
'Average': self._format_score(model[task_name]['average_score']),
'Context Length': model['context_length'],
'Parameters': model.get('num_parameters', 'N/A'),
'Embedding Dimmension': model.get('emb_dim', 'N/A')
}
# Addition of dataset-specific scores
for dataset in self.tasks[task_name]:
if dataset in model[task_name]:
row[dataset] = self._format_score(model[task_name][dataset])
rows.append(row)
df = pd.DataFrame(rows)
df['_sort_key'] = df['Average'].astype(float)
df = df.sort_values('_sort_key', ascending=False).drop('_sort_key', axis=1)
df.insert(0, 'Rank', range(1, len(df) + 1))
return df
def create_interface(self):
# we will force the light theme for now :)
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
with gr.Blocks(js=js_func) as demo:
# Header
gr.HTML(
"""
<div style="text-align: center; margin-bottom: 20px;">
<h1 style="font-size: 36px; margin-bottom: 10px;">KazTEB Leaderboard π</h1>
<p style="font-size: 22px; color: #666;">Kazakh language extension for the <a href="https://github.com/embeddings-benchmark/mteb" target="_blank" style="color: #1976d2; text-decoration: none;">Massive Text Embedding Benchmark</a></p>
</div>
"""
)
# Subheader -- Project description
gr.HTML(
"""
<div style="margin-bottom: 30px; padding: 20px; background-color: #f8f9fa; border-radius: 8px; border-left: 4px solid #1976d2;">
<p style="font-size: 16px; line-height: 1.6; margin: 0; color: #333;">
This is a new and ongoing project dedicated to a comprehensive evaluation of existing text embedding models on datasets designed for Kazakh language tasks. <a href="https://github.com/Batyr1203/kazteb">Link</a> to the project code. <br><br>Currently, the leaderboard supports only 3 tasks: <b>retrieval</b>, <b>classification</b>, and <b>bitext mining</b>, based on existing human-annotated datasets. The aim of this project is to extend the list to 8 tasks proposed in MTEB and cover multiple domains within each task. The test datasets are planned to be acquired from real data sources, without using synthetic samples.
</p>
</div>
"""
)
with gr.Tabs() as main_tabs:
with gr.Tab("π Task Results"):
with gr.Tabs() as task_tabs:
with gr.Tab("Retrieval"):
retrieval_df = self.get_task_dataframe('retrieval')
gr.DataFrame(
value=retrieval_df,
headers=list(retrieval_df.columns),
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(retrieval_df.columns) - 5),
col_count=(len(retrieval_df.columns), "fixed"),
interactive=False,
column_widths=[50, 400] + [200] * (len(retrieval_df.columns)-2)
)
with gr.Tab("Classification"):
classification_df = self.get_task_dataframe('classification')
gr.DataFrame(
value=classification_df,
headers=list(classification_df.columns),
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(classification_df.columns) - 5),
col_count=(len(classification_df.columns), "fixed"),
interactive=False,
column_widths=[50, 400] + [200] * (len(classification_df.columns)-2)
)
with gr.Tab("Bitext Mining"):
bitext_df = self.get_task_dataframe('bitext_mining')
gr.DataFrame(
value=bitext_df,
headers=list(bitext_df.columns),
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(bitext_df.columns) - 5),
col_count=(len(bitext_df.columns), "fixed"),
interactive=False,
column_widths=[50, 400] + [200] * (len(bitext_df.columns)-2)
)
with gr.Tab("π Metrics"):
gr.Markdown("## Evaluation Metrics Overview")
gr.Markdown("Although the evaluation generates multiple metric values for each task, we retain only a single metric for reference.")
with gr.Row():
with gr.Column():
gr.Markdown(
"""### π Retrieval
**Metric:** nDCG@10 (Normalized Discounted Cumulative Gain)
- Measures ranking quality of retrieved documents
- Considers both relevance and position
- **Range:** 0.0 - 1.0 (higher is better)
**Dataset:** [KazQADRetrieval](https://huggingface.co/datasets/issai/kazqad)
- Question-answer retrieval for Kazakh language
- Human-annotated question-document pairs""",
elem_classes=["retrieval-card"]
)
with gr.Column():
gr.Markdown(
"""### π Classification
**Metric:** Accuracy
- Percentage of correctly classified instances
- Standard classification metric
- **Range:** 0.0 - 1.0 (higher is better)
**Datasets:**
- [KazSandraPolarityClassification](https://huggingface.co/datasets/issai/kazsandra): Sentiment polarity
- [KazSandraScoreClassification](https://huggingface.co/datasets/issai/kazsandra): Sentiment scoring""",
elem_classes=["classification-card"]
)
with gr.Column():
gr.Markdown(
"""### π Bitext Mining
**Metric:** F1-Score
- Harmonic mean of precision and recall
- Balances correctness and completeness
- **Range:** 0.0 - 1.0 (higher is better)
**Dataset:** [KazParcBitextMining](https://huggingface.co/datasets/issai/kazparc)
- Parallel sentence mining (kk β en, kk β ru)
- Bidirectional evaluation""",
elem_classes=["bitext-card"]
)
gr.Markdown("---")
gr.Markdown("### π Scoring & Ranking")
with gr.Row():
with gr.Column():
gr.Markdown("**Task Averaging:** Equal weight per dataset within each task")
with gr.Column():
gr.Markdown("**Model Ranking:** Based on individual task performance")
with gr.Column():
#gr.Markdown("**Future Plans:** Overall cross-task scoring implementation")
pass
gr.Markdown("---")
gr.HTML(
"""
<div style="margin-top: 30px; padding: 20px; background-color: #f0f8ff; border-radius: 8px; border-left: 4px solid #4a90e2;">
<h3 style="margin-top: 0; color: #2c3e50; display: flex; align-items: center;">
π TODO:
</h3>
<ul style="color: #333; line-height: 1.6; margin-bottom: 0;">
<li><strong>Dynamic Data Loading:</strong> Switching to API-based result fetching for real-time updates without manual JSON uploads.</li>
</ul>
</div>
"""
)
# Contact information
gr.HTML(
"""
<div style="text-align: center; margin-top: 20px; padding: 15px; color: #666; font-size: 14px;">
π§ Contact: <a href="mailto:arysbatyr@gmail.com" style="color: #1976d2; text-decoration: none;">arysbatyr@gmail.com</a>
</div>
"""
)
return demo
def load_benchmark_data(filepath: str = None) -> List[Dict[str, Any]]:
if filepath:
with open(filepath, 'r') as f:
return json.load(f)
return BENCHMARK_DATA_FORMAT_EXAMPLE
if __name__ == "__main__":
data = load_benchmark_data("./results.json")
leaderboard = KazTEBLeaderboard(data)
demo = leaderboard.create_interface()
demo.launch()
|