Upload 2 files
Browse files- app.py +260 -0
- results.json +186 -0
app.py
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import pandas as pd
|
4 |
+
from typing import Dict, List, Any
|
5 |
+
|
6 |
+
|
7 |
+
# Sample data
|
8 |
+
BENCHMARK_DATA_FORMAT_EXAMPLE = [
|
9 |
+
{
|
10 |
+
"name": "jinaai/jina-embeddings-v3",
|
11 |
+
"url": "https://huggingface.co/jinaai/jina-embeddings-v3",
|
12 |
+
"context_length": "8192",
|
13 |
+
"num_parameters": "572M",
|
14 |
+
"emb_dim": 1024,
|
15 |
+
"retrieval": {
|
16 |
+
"KazQADRetrieval": 0.63206,
|
17 |
+
"average_score": 0.63206
|
18 |
+
},
|
19 |
+
"classification": {
|
20 |
+
"KazSandraPolarityClassification": 0.75332,
|
21 |
+
"KazSandraScoreClassification": 0.519385,
|
22 |
+
"average_score": 0.6363525
|
23 |
+
},
|
24 |
+
"bitext_mining": {
|
25 |
+
"KazParcBitextMining_kaz-to-eng": 0.919131,
|
26 |
+
"KazParcBitextMining_eng-to-kaz": 0.912916,
|
27 |
+
"KazParcBitextMining_kaz-to-rus": 0.929359,
|
28 |
+
"KazParcBitextMining_rus-to-kaz": 0.921656,
|
29 |
+
"average_score": 0.9207655
|
30 |
+
}
|
31 |
+
}
|
32 |
+
]
|
33 |
+
|
34 |
+
|
35 |
+
class KazTEBLeaderboard:
|
36 |
+
def __init__(self, data: List[Dict[str, Any]]):
|
37 |
+
self.data = data
|
38 |
+
self.tasks = self._extract_tasks()
|
39 |
+
|
40 |
+
def _extract_tasks(self) -> Dict[str, List[str]]:
|
41 |
+
tasks = {}
|
42 |
+
if self.data:
|
43 |
+
sample_model = self.data[0]
|
44 |
+
for task_name in ['retrieval', 'classification', 'bitext_mining']:
|
45 |
+
if task_name in sample_model:
|
46 |
+
datasets = [k for k in sample_model[task_name].keys() if k != 'average_score']
|
47 |
+
tasks[task_name] = datasets
|
48 |
+
return tasks
|
49 |
+
|
50 |
+
def _format_score(self, score: float) -> str:
|
51 |
+
return f"{score:.4f}"
|
52 |
+
|
53 |
+
def _create_model_link(self, name: str, url: str) -> str:
|
54 |
+
return f'<a href="{url}" target="_blank" style="color: #1976d2; text-decoration: none;">{name}</a>'
|
55 |
+
|
56 |
+
def get_task_dataframe(self, task_name: str) -> pd.DataFrame:
|
57 |
+
rows = []
|
58 |
+
|
59 |
+
for model in self.data:
|
60 |
+
if task_name not in model:
|
61 |
+
continue
|
62 |
+
|
63 |
+
row = {
|
64 |
+
'Model': self._create_model_link(model['name'], model['url']),
|
65 |
+
'Average': self._format_score(model[task_name]['average_score']),
|
66 |
+
'Context Length': model['context_length'],
|
67 |
+
'Parameters': model.get('num_parameters', 'N/A'),
|
68 |
+
'Embedding Dimmension': model.get('emb_dim', 'N/A')
|
69 |
+
}
|
70 |
+
|
71 |
+
# Addition of dataset-specific scores
|
72 |
+
for dataset in self.tasks[task_name]:
|
73 |
+
if dataset in model[task_name]:
|
74 |
+
row[dataset] = self._format_score(model[task_name][dataset])
|
75 |
+
|
76 |
+
rows.append(row)
|
77 |
+
|
78 |
+
df = pd.DataFrame(rows)
|
79 |
+
df['_sort_key'] = df['Average'].astype(float)
|
80 |
+
df = df.sort_values('_sort_key', ascending=False).drop('_sort_key', axis=1)
|
81 |
+
df.insert(0, 'Rank', range(1, len(df) + 1))
|
82 |
+
|
83 |
+
return df
|
84 |
+
|
85 |
+
def create_interface(self):
|
86 |
+
|
87 |
+
# we will force the light theme for now :)
|
88 |
+
js_func = """
|
89 |
+
function refresh() {
|
90 |
+
const url = new URL(window.location);
|
91 |
+
|
92 |
+
if (url.searchParams.get('__theme') !== 'light') {
|
93 |
+
url.searchParams.set('__theme', 'light');
|
94 |
+
window.location.href = url.href;
|
95 |
+
}
|
96 |
+
}
|
97 |
+
"""
|
98 |
+
|
99 |
+
with gr.Blocks(js=js_func) as demo:
|
100 |
+
# Header
|
101 |
+
gr.Markdown(
|
102 |
+
"""
|
103 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
104 |
+
<h1 style="font-size: 36px; margin-bottom: 10px;">KazTEB Leaderboard 🏆</h1>
|
105 |
+
<p style="font-size: 22px; color: #666;">Kazakh language extension for the <a href="https://github.com/embeddings-benchmark/mteb" target="_blank" style="color: #1976d2; text-decoration: none;">Massive Text Embedding Benchmark</a></p>
|
106 |
+
</div>
|
107 |
+
"""
|
108 |
+
)
|
109 |
+
|
110 |
+
# Subheader -- Project description
|
111 |
+
gr.Markdown(
|
112 |
+
"""
|
113 |
+
<div style="margin-bottom: 30px; padding: 20px; background-color: #f8f9fa; border-radius: 8px; border-left: 4px solid #1976d2;">
|
114 |
+
<p style="font-size: 16px; line-height: 1.6; margin: 0; color: #333;">
|
115 |
+
This is a new and ongoing project dedicated to a comprehensive evaluation of existing text embedding models on datasets designed for Kazakh language tasks. <a href="https://github.com/Batyr1203/kazteb">Link</a> to the project code. <br><br>Currently, the leaderboard supports only 3 tasks: <b>retrieval</b>, <b>classification</b>, and <b>bitext mining</b>, based on existing human-annotated datasets. The aim of this project is to extend the list to 8 tasks proposed in MTEB and cover multiple domains within each task. The test datasets are planned to be acquired from real data sources, without using synthetic samples.
|
116 |
+
</p>
|
117 |
+
</div>
|
118 |
+
"""
|
119 |
+
)
|
120 |
+
|
121 |
+
with gr.Tabs() as main_tabs:
|
122 |
+
with gr.Tab("📊 Task Results"):
|
123 |
+
|
124 |
+
with gr.Tabs() as task_tabs:
|
125 |
+
with gr.Tab("Retrieval"):
|
126 |
+
retrieval_df = self.get_task_dataframe('retrieval')
|
127 |
+
gr.DataFrame(
|
128 |
+
value=retrieval_df,
|
129 |
+
headers=list(retrieval_df.columns),
|
130 |
+
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(retrieval_df.columns) - 5),
|
131 |
+
col_count=(len(retrieval_df.columns), "fixed"),
|
132 |
+
interactive=False
|
133 |
+
)
|
134 |
+
|
135 |
+
with gr.Tab("Classification"):
|
136 |
+
classification_df = self.get_task_dataframe('classification')
|
137 |
+
gr.DataFrame(
|
138 |
+
value=classification_df,
|
139 |
+
headers=list(classification_df.columns),
|
140 |
+
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(classification_df.columns) - 5),
|
141 |
+
col_count=(len(classification_df.columns), "fixed"),
|
142 |
+
interactive=False
|
143 |
+
)
|
144 |
+
|
145 |
+
with gr.Tab("Bitext Mining"):
|
146 |
+
bitext_df = self.get_task_dataframe('bitext_mining')
|
147 |
+
gr.DataFrame(
|
148 |
+
value=bitext_df,
|
149 |
+
headers=list(bitext_df.columns),
|
150 |
+
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(bitext_df.columns) - 5),
|
151 |
+
col_count=(len(bitext_df.columns), "fixed"),
|
152 |
+
interactive=False
|
153 |
+
)
|
154 |
+
|
155 |
+
with gr.Tab("📈 Metrics"):
|
156 |
+
gr.Markdown("## Evaluation Metrics Overview")
|
157 |
+
gr.Markdown("Although the evaluation generates multiple metric values for each task, we retain only a single metric for reference.")
|
158 |
+
|
159 |
+
with gr.Row():
|
160 |
+
|
161 |
+
with gr.Column():
|
162 |
+
gr.Markdown(
|
163 |
+
"""### 🔍 Retrieval
|
164 |
+
|
165 |
+
**Metric:** nDCG@10 (Normalized Discounted Cumulative Gain)
|
166 |
+
- Measures ranking quality of retrieved documents
|
167 |
+
- Considers both relevance and position
|
168 |
+
- **Range:** 0.0 - 1.0 (higher is better)
|
169 |
+
|
170 |
+
**Dataset:** [KazQADRetrieval](https://huggingface.co/datasets/issai/kazqad)
|
171 |
+
- Question-answer retrieval for Kazakh language
|
172 |
+
- Human-annotated question-document pairs""",
|
173 |
+
elem_classes=["retrieval-card"]
|
174 |
+
)
|
175 |
+
|
176 |
+
with gr.Column():
|
177 |
+
gr.Markdown(
|
178 |
+
"""### 📝 Classification
|
179 |
+
|
180 |
+
**Metric:** Accuracy
|
181 |
+
- Percentage of correctly classified instances
|
182 |
+
- Standard classification metric
|
183 |
+
- **Range:** 0.0 - 1.0 (higher is better)
|
184 |
+
|
185 |
+
**Datasets:**
|
186 |
+
- **[KazSandraPolarityClassification](https://huggingface.co/datasets/issai/kazsandra):** Sentiment polarity
|
187 |
+
- **[KazSandraScoreClassification](https://huggingface.co/datasets/issai/kazsandra):** Sentiment scoring""",
|
188 |
+
elem_classes=["classification-card"]
|
189 |
+
)
|
190 |
+
|
191 |
+
with gr.Column():
|
192 |
+
gr.Markdown(
|
193 |
+
"""### 🔗 Bitext Mining
|
194 |
+
|
195 |
+
**Metric:** F1-Score
|
196 |
+
- Harmonic mean of precision and recall
|
197 |
+
- Balances correctness and completeness
|
198 |
+
- **Range:** 0.0 - 1.0 (higher is better)
|
199 |
+
|
200 |
+
**Dataset:** [KazParcBitextMining](https://huggingface.co/datasets/issai/kazparc)
|
201 |
+
- Parallel sentence mining (Kazakh ↔ English)
|
202 |
+
- Bidirectional evaluation""",
|
203 |
+
elem_classes=["bitext-card"]
|
204 |
+
)
|
205 |
+
|
206 |
+
gr.Markdown("---")
|
207 |
+
gr.Markdown("### 📊 Scoring & Ranking")
|
208 |
+
|
209 |
+
with gr.Row():
|
210 |
+
with gr.Column():
|
211 |
+
gr.Markdown("**Task Averaging:** Equal weight per dataset within each task")
|
212 |
+
with gr.Column():
|
213 |
+
gr.Markdown("**Model Ranking:** Based on individual task performance")
|
214 |
+
with gr.Column():
|
215 |
+
#gr.Markdown("**Future Plans:** Overall cross-task scoring implementation")
|
216 |
+
pass
|
217 |
+
|
218 |
+
# Todo section at the bottom
|
219 |
+
gr.Markdown("---")
|
220 |
+
gr.Markdown(
|
221 |
+
"""
|
222 |
+
<div style="margin-top: 30px; padding: 20px; background-color: #f0f8ff; border-radius: 8px; border-left: 4px solid #4a90e2;">
|
223 |
+
<h3 style="margin-top: 0; color: #2c3e50; display: flex; align-items: center;">
|
224 |
+
📋 TODO:
|
225 |
+
</h3>
|
226 |
+
<ul style="color: #333; line-height: 1.6; margin-bottom: 0;">
|
227 |
+
<li><strong>API-based Model Evaluation:</strong> Adding results of closed-source models such as Google's Gemini embeddings.</li>
|
228 |
+
<li><strong>Dynamic Data Loading:</strong> Switching to API-based result fetching for real-time updates without manual JSON uploads.</li>
|
229 |
+
</ul>
|
230 |
+
</div>
|
231 |
+
"""
|
232 |
+
)
|
233 |
+
|
234 |
+
# Contact information
|
235 |
+
gr.Markdown(
|
236 |
+
"""
|
237 |
+
<div style="text-align: center; margin-top: 20px; padding: 15px; color: #666; font-size: 14px;">
|
238 |
+
📧 Contact: <a href="mailto:arysbatyr@gmail.com" style="color: #1976d2; text-decoration: none;">arysbatyr@gmail.com</a>
|
239 |
+
</div>
|
240 |
+
"""
|
241 |
+
)
|
242 |
+
|
243 |
+
return demo
|
244 |
+
|
245 |
+
|
246 |
+
def load_benchmark_data(filepath: str = None) -> List[Dict[str, Any]]:
|
247 |
+
if filepath:
|
248 |
+
with open(filepath, 'r') as f:
|
249 |
+
return json.load(f)
|
250 |
+
return BENCHMARK_DATA_FORMAT_EXAMPLE
|
251 |
+
|
252 |
+
|
253 |
+
if __name__ == "__main__":
|
254 |
+
data = load_benchmark_data("./results.json")
|
255 |
+
|
256 |
+
leaderboard = KazTEBLeaderboard(data)
|
257 |
+
|
258 |
+
demo = leaderboard.create_interface()
|
259 |
+
demo.launch()
|
260 |
+
|
results.json
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"name": "jinaai/jina-embeddings-v3",
|
4 |
+
"url": "https://huggingface.co/jinaai/jina-embeddings-v3",
|
5 |
+
"context_length": "8192",
|
6 |
+
"num_parameters": "572M",
|
7 |
+
"emb_dim": 1024,
|
8 |
+
"retrieval": {
|
9 |
+
"KazQADRetrieval": 0.63206,
|
10 |
+
"average_score": 0.63206
|
11 |
+
},
|
12 |
+
"classification": {
|
13 |
+
"KazSandraPolarityClassification": 0.75332,
|
14 |
+
"KazSandraScoreClassification": 0.519385,
|
15 |
+
"average_score": 0.6363525
|
16 |
+
},
|
17 |
+
"bitext_mining": {
|
18 |
+
"KazParcBitextMining_kaz-to-eng": 0.919131,
|
19 |
+
"KazParcBitextMining_eng-to-kaz": 0.912916,
|
20 |
+
"KazParcBitextMining_kaz-to-rus": 0.929359,
|
21 |
+
"KazParcBitextMining_rus-to-kaz": 0.921656,
|
22 |
+
"average_score": 0.9207655
|
23 |
+
}
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"name": "Qwen/Qwen3-Embedding-0.6B",
|
27 |
+
"url": "https://huggingface.co/Qwen/Qwen3-Embedding-0.6B",
|
28 |
+
"context_length": "32K",
|
29 |
+
"num_parameters": "595M",
|
30 |
+
"emb_dim": 1024,
|
31 |
+
"retrieval": {
|
32 |
+
"KazQADRetrieval": 0.50446,
|
33 |
+
"average_score": 0.50446
|
34 |
+
},
|
35 |
+
"classification": {
|
36 |
+
"KazSandraScoreClassification": 0.370898,
|
37 |
+
"KazSandraPolarityClassification": 0.66377,
|
38 |
+
"average_score": 0.517334
|
39 |
+
},
|
40 |
+
"bitext_mining": {
|
41 |
+
"KazParcBitextMining_kaz-to-eng": 0.731777,
|
42 |
+
"KazParcBitextMining_eng-to-kaz": 0.742017,
|
43 |
+
"KazParcBitextMining_kaz-to-rus": 0.760971,
|
44 |
+
"KazParcBitextMining_rus-to-kaz": 0.766429,
|
45 |
+
"average_score": 0.7502985
|
46 |
+
}
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"name": "Qwen/Qwen3-Embedding-4B",
|
50 |
+
"url": "https://huggingface.co/Qwen/Qwen3-Embedding-4B",
|
51 |
+
"context_length": "32K",
|
52 |
+
"num_parameters": "4B",
|
53 |
+
"emb_dim": 2560,
|
54 |
+
"retrieval": {
|
55 |
+
"KazQADRetrieval": 0.6153,
|
56 |
+
"average_score": 0.6153
|
57 |
+
},
|
58 |
+
"classification": {
|
59 |
+
"KazSandraScoreClassification": 0.394189,
|
60 |
+
"KazSandraPolarityClassification": 0.687012,
|
61 |
+
"average_score": 0.5406005
|
62 |
+
},
|
63 |
+
"bitext_mining": {
|
64 |
+
"KazParcBitextMining_kaz-to-eng": 0.943184,
|
65 |
+
"KazParcBitextMining_eng-to-kaz": 0.939993,
|
66 |
+
"KazParcBitextMining_kaz-to-rus": 0.945092,
|
67 |
+
"KazParcBitextMining_rus-to-kaz": 0.947474,
|
68 |
+
"average_score": 0.9439357500000001
|
69 |
+
}
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"name": "Qwen/Qwen3-Embedding-8B",
|
73 |
+
"url": "https://huggingface.co/Qwen/Qwen3-Embedding-8B",
|
74 |
+
"context_length": "32K",
|
75 |
+
"num_parameters": "7B",
|
76 |
+
"emb_dim": 4096,
|
77 |
+
"retrieval": {
|
78 |
+
"KazQADRetrieval": 0.64347,
|
79 |
+
"average_score": 0.64347
|
80 |
+
},
|
81 |
+
"classification": {
|
82 |
+
"KazSandraScoreClassification": 0.471484,
|
83 |
+
"KazSandraPolarityClassification": 0.735547,
|
84 |
+
"average_score": 0.6035155
|
85 |
+
},
|
86 |
+
"bitext_mining": {
|
87 |
+
"KazParcBitextMining_kaz-to-eng": 0.958446,
|
88 |
+
"KazParcBitextMining_eng-to-kaz": 0.956327,
|
89 |
+
"KazParcBitextMining_kaz-to-rus": 0.957558,
|
90 |
+
"KazParcBitextMining_rus-to-kaz": 0.960846,
|
91 |
+
"average_score": 0.95829425
|
92 |
+
}
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"name": "intfloat/multilingual-e5-small",
|
96 |
+
"url": "https://huggingface.co/intfloat/multilingual-e5-small",
|
97 |
+
"context_length": "512",
|
98 |
+
"num_parameters": "118M",
|
99 |
+
"emb_dim": 384,
|
100 |
+
"retrieval": {
|
101 |
+
"KazQADRetrieval": 0.53556,
|
102 |
+
"average_score": 0.53556
|
103 |
+
},
|
104 |
+
"classification": {
|
105 |
+
"KazSandraScoreClassification": 0.479639,
|
106 |
+
"KazSandraPolarityClassification": 0.74165,
|
107 |
+
"average_score": 0.6106445
|
108 |
+
},
|
109 |
+
"bitext_mining": {
|
110 |
+
"KazParcBitextMining_kaz-to-eng": 0.868082,
|
111 |
+
"KazParcBitextMining_eng-to-kaz": 0.873415,
|
112 |
+
"KazParcBitextMining_kaz-to-rus": 0.88751,
|
113 |
+
"KazParcBitextMining_rus-to-kaz": 0.904797,
|
114 |
+
"average_score": 0.883451
|
115 |
+
}
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"name": "intfloat/multilingual-e5-large-instruct",
|
119 |
+
"url": "https://huggingface.co/intfloat/multilingual-e5-large-instruct",
|
120 |
+
"context_length": "512",
|
121 |
+
"num_parameters": "560M",
|
122 |
+
"emb_dim": 1024,
|
123 |
+
"retrieval": {
|
124 |
+
"KazQADRetrieval": 0.64164,
|
125 |
+
"average_score": 0.64164
|
126 |
+
},
|
127 |
+
"classification": {
|
128 |
+
"KazSandraPolarityClassification": 0.778467,
|
129 |
+
"KazSandraScoreClassification": 0.562012,
|
130 |
+
"average_score": 0.6702395
|
131 |
+
},
|
132 |
+
"bitext_mining": {
|
133 |
+
"KazParcBitextMining_kaz-to-eng": 0.961832,
|
134 |
+
"KazParcBitextMining_eng-to-kaz": 0.958423,
|
135 |
+
"KazParcBitextMining_kaz-to-rus": 0.958846,
|
136 |
+
"KazParcBitextMining_rus-to-kaz": 0.953091,
|
137 |
+
"average_score": 0.958048
|
138 |
+
}
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"name": "intfloat/multilingual-e5-large",
|
142 |
+
"url": "https://huggingface.co/intfloat/multilingual-e5-large",
|
143 |
+
"context_length": "512",
|
144 |
+
"num_parameters": "560M",
|
145 |
+
"emb_dim": 1024,
|
146 |
+
"retrieval": {
|
147 |
+
"KazQADRetrieval": 0.61387,
|
148 |
+
"average_score": 0.61387
|
149 |
+
},
|
150 |
+
"classification": {
|
151 |
+
"KazSandraScoreClassification": 0.506543,
|
152 |
+
"KazSandraPolarityClassification": 0.75332,
|
153 |
+
"average_score": 0.6299315
|
154 |
+
},
|
155 |
+
"bitext_mining": {
|
156 |
+
"KazParcBitextMining_kaz-to-eng": 0.938867,
|
157 |
+
"KazParcBitextMining_eng-to-kaz": 0.941032,
|
158 |
+
"KazParcBitextMining_kaz-to-rus": 0.942812,
|
159 |
+
"KazParcBitextMining_rus-to-kaz": 0.945944,
|
160 |
+
"average_score": 0.94216375
|
161 |
+
}
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"name": "intfloat/multilingual-e5-base",
|
165 |
+
"url": "https://huggingface.co/intfloat/multilingual-e5-base",
|
166 |
+
"context_length": "512",
|
167 |
+
"num_parameters": "278M",
|
168 |
+
"emb_dim": 768,
|
169 |
+
"retrieval": {
|
170 |
+
"KazQADRetrieval": 0.56312,
|
171 |
+
"average_score": 0.56312
|
172 |
+
},
|
173 |
+
"classification": {
|
174 |
+
"KazSandraPolarityClassification": 0.747656,
|
175 |
+
"KazSandraScoreClassification": 0.482275,
|
176 |
+
"average_score": 0.6149655
|
177 |
+
},
|
178 |
+
"bitext_mining": {
|
179 |
+
"KazParcBitextMining_kaz-to-eng": 0.902851,
|
180 |
+
"KazParcBitextMining_eng-to-kaz": 0.910523,
|
181 |
+
"KazParcBitextMining_kaz-to-rus": 0.918989,
|
182 |
+
"KazParcBitextMining_rus-to-kaz": 0.924031,
|
183 |
+
"average_score": 0.9140984999999999
|
184 |
+
}
|
185 |
+
}
|
186 |
+
]
|