fixed html formatting
Browse files
app.py
CHANGED
@@ -36,7 +36,7 @@ class KazTEBLeaderboard:
|
|
36 |
def __init__(self, data: List[Dict[str, Any]]):
|
37 |
self.data = data
|
38 |
self.tasks = self._extract_tasks()
|
39 |
-
|
40 |
def _extract_tasks(self) -> Dict[str, List[str]]:
|
41 |
tasks = {}
|
42 |
if self.data:
|
@@ -46,20 +46,20 @@ class KazTEBLeaderboard:
|
|
46 |
datasets = [k for k in sample_model[task_name].keys() if k != 'average_score']
|
47 |
tasks[task_name] = datasets
|
48 |
return tasks
|
49 |
-
|
50 |
def _format_score(self, score: float) -> str:
|
51 |
return f"{score:.4f}"
|
52 |
-
|
53 |
def _create_model_link(self, name: str, url: str) -> str:
|
54 |
return f'<a href="{url}" target="_blank" style="color: #1976d2; text-decoration: none;">{name}</a>'
|
55 |
-
|
56 |
def get_task_dataframe(self, task_name: str) -> pd.DataFrame:
|
57 |
rows = []
|
58 |
-
|
59 |
for model in self.data:
|
60 |
if task_name not in model:
|
61 |
continue
|
62 |
-
|
63 |
row = {
|
64 |
'Model': self._create_model_link(model['name'], model['url']),
|
65 |
'Average': self._format_score(model[task_name]['average_score']),
|
@@ -67,21 +67,21 @@ class KazTEBLeaderboard:
|
|
67 |
'Parameters': model.get('num_parameters', 'N/A'),
|
68 |
'Embedding Dimmension': model.get('emb_dim', 'N/A')
|
69 |
}
|
70 |
-
|
71 |
# Addition of dataset-specific scores
|
72 |
for dataset in self.tasks[task_name]:
|
73 |
if dataset in model[task_name]:
|
74 |
row[dataset] = self._format_score(model[task_name][dataset])
|
75 |
-
|
76 |
rows.append(row)
|
77 |
-
|
78 |
df = pd.DataFrame(rows)
|
79 |
df['_sort_key'] = df['Average'].astype(float)
|
80 |
df = df.sort_values('_sort_key', ascending=False).drop('_sort_key', axis=1)
|
81 |
df.insert(0, 'Rank', range(1, len(df) + 1))
|
82 |
-
|
83 |
return df
|
84 |
-
|
85 |
def create_interface(self):
|
86 |
|
87 |
# we will force the light theme for now :)
|
@@ -98,7 +98,7 @@ class KazTEBLeaderboard:
|
|
98 |
|
99 |
with gr.Blocks(js=js_func) as demo:
|
100 |
# Header
|
101 |
-
gr.
|
102 |
"""
|
103 |
<div style="text-align: center; margin-bottom: 20px;">
|
104 |
<h1 style="font-size: 36px; margin-bottom: 10px;">KazTEB Leaderboard π</h1>
|
@@ -106,9 +106,9 @@ class KazTEBLeaderboard:
|
|
106 |
</div>
|
107 |
"""
|
108 |
)
|
109 |
-
|
110 |
# Subheader -- Project description
|
111 |
-
gr.
|
112 |
"""
|
113 |
<div style="margin-bottom: 30px; padding: 20px; background-color: #f8f9fa; border-radius: 8px; border-left: 4px solid #1976d2;">
|
114 |
<p style="font-size: 16px; line-height: 1.6; margin: 0; color: #333;">
|
@@ -117,10 +117,10 @@ class KazTEBLeaderboard:
|
|
117 |
</div>
|
118 |
"""
|
119 |
)
|
120 |
-
|
121 |
with gr.Tabs() as main_tabs:
|
122 |
with gr.Tab("π Task Results"):
|
123 |
-
|
124 |
with gr.Tabs() as task_tabs:
|
125 |
with gr.Tab("Retrieval"):
|
126 |
retrieval_df = self.get_task_dataframe('retrieval')
|
@@ -129,9 +129,10 @@ class KazTEBLeaderboard:
|
|
129 |
headers=list(retrieval_df.columns),
|
130 |
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(retrieval_df.columns) - 5),
|
131 |
col_count=(len(retrieval_df.columns), "fixed"),
|
132 |
-
interactive=False
|
|
|
133 |
)
|
134 |
-
|
135 |
with gr.Tab("Classification"):
|
136 |
classification_df = self.get_task_dataframe('classification')
|
137 |
gr.DataFrame(
|
@@ -139,9 +140,10 @@ class KazTEBLeaderboard:
|
|
139 |
headers=list(classification_df.columns),
|
140 |
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(classification_df.columns) - 5),
|
141 |
col_count=(len(classification_df.columns), "fixed"),
|
142 |
-
interactive=False
|
|
|
143 |
)
|
144 |
-
|
145 |
with gr.Tab("Bitext Mining"):
|
146 |
bitext_df = self.get_task_dataframe('bitext_mining')
|
147 |
gr.DataFrame(
|
@@ -149,19 +151,20 @@ class KazTEBLeaderboard:
|
|
149 |
headers=list(bitext_df.columns),
|
150 |
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(bitext_df.columns) - 5),
|
151 |
col_count=(len(bitext_df.columns), "fixed"),
|
152 |
-
interactive=False
|
|
|
153 |
)
|
154 |
-
|
155 |
with gr.Tab("π Metrics"):
|
156 |
gr.Markdown("## Evaluation Metrics Overview")
|
157 |
gr.Markdown("Although the evaluation generates multiple metric values for each task, we retain only a single metric for reference.")
|
158 |
-
|
159 |
with gr.Row():
|
160 |
|
161 |
with gr.Column():
|
162 |
gr.Markdown(
|
163 |
"""### π Retrieval
|
164 |
-
|
165 |
**Metric:** nDCG@10 (Normalized Discounted Cumulative Gain)
|
166 |
- Measures ranking quality of retrieved documents
|
167 |
- Considers both relevance and position
|
@@ -172,26 +175,26 @@ class KazTEBLeaderboard:
|
|
172 |
- Human-annotated question-document pairs""",
|
173 |
elem_classes=["retrieval-card"]
|
174 |
)
|
175 |
-
|
176 |
with gr.Column():
|
177 |
gr.Markdown(
|
178 |
"""### π Classification
|
179 |
-
|
180 |
**Metric:** Accuracy
|
181 |
- Percentage of correctly classified instances
|
182 |
- Standard classification metric
|
183 |
- **Range:** 0.0 - 1.0 (higher is better)
|
184 |
|
185 |
**Datasets:**
|
186 |
-
- [KazSandraPolarityClassification](https://huggingface.co/datasets/issai/kazsandra)
|
187 |
-
- [KazSandraScoreClassification](https://huggingface.co/datasets/issai/kazsandra)
|
188 |
elem_classes=["classification-card"]
|
189 |
)
|
190 |
-
|
191 |
with gr.Column():
|
192 |
gr.Markdown(
|
193 |
"""### π Bitext Mining
|
194 |
-
|
195 |
**Metric:** F1-Score
|
196 |
- Harmonic mean of precision and recall
|
197 |
- Balances correctness and completeness
|
@@ -202,10 +205,10 @@ class KazTEBLeaderboard:
|
|
202 |
- Bidirectional evaluation""",
|
203 |
elem_classes=["bitext-card"]
|
204 |
)
|
205 |
-
|
206 |
gr.Markdown("---")
|
207 |
gr.Markdown("### π Scoring & Ranking")
|
208 |
-
|
209 |
with gr.Row():
|
210 |
with gr.Column():
|
211 |
gr.Markdown("**Task Averaging:** Equal weight per dataset within each task")
|
@@ -214,10 +217,9 @@ class KazTEBLeaderboard:
|
|
214 |
with gr.Column():
|
215 |
#gr.Markdown("**Future Plans:** Overall cross-task scoring implementation")
|
216 |
pass
|
217 |
-
|
218 |
-
# Todo section at the bottom
|
219 |
gr.Markdown("---")
|
220 |
-
gr.
|
221 |
"""
|
222 |
<div style="margin-top: 30px; padding: 20px; background-color: #f0f8ff; border-radius: 8px; border-left: 4px solid #4a90e2;">
|
223 |
<h3 style="margin-top: 0; color: #2c3e50; display: flex; align-items: center;">
|
@@ -230,16 +232,16 @@ class KazTEBLeaderboard:
|
|
230 |
</div>
|
231 |
"""
|
232 |
)
|
233 |
-
|
234 |
# Contact information
|
235 |
-
gr.
|
236 |
"""
|
237 |
<div style="text-align: center; margin-top: 20px; padding: 15px; color: #666; font-size: 14px;">
|
238 |
π§ Contact: <a href="mailto:arysbatyr@gmail.com" style="color: #1976d2; text-decoration: none;">arysbatyr@gmail.com</a>
|
239 |
</div>
|
240 |
"""
|
241 |
)
|
242 |
-
|
243 |
return demo
|
244 |
|
245 |
|
@@ -252,9 +254,9 @@ def load_benchmark_data(filepath: str = None) -> List[Dict[str, Any]]:
|
|
252 |
|
253 |
if __name__ == "__main__":
|
254 |
data = load_benchmark_data("./results.json")
|
255 |
-
|
256 |
leaderboard = KazTEBLeaderboard(data)
|
257 |
-
|
258 |
demo = leaderboard.create_interface()
|
259 |
demo.launch()
|
260 |
|
|
|
36 |
def __init__(self, data: List[Dict[str, Any]]):
|
37 |
self.data = data
|
38 |
self.tasks = self._extract_tasks()
|
39 |
+
|
40 |
def _extract_tasks(self) -> Dict[str, List[str]]:
|
41 |
tasks = {}
|
42 |
if self.data:
|
|
|
46 |
datasets = [k for k in sample_model[task_name].keys() if k != 'average_score']
|
47 |
tasks[task_name] = datasets
|
48 |
return tasks
|
49 |
+
|
50 |
def _format_score(self, score: float) -> str:
|
51 |
return f"{score:.4f}"
|
52 |
+
|
53 |
def _create_model_link(self, name: str, url: str) -> str:
|
54 |
return f'<a href="{url}" target="_blank" style="color: #1976d2; text-decoration: none;">{name}</a>'
|
55 |
+
|
56 |
def get_task_dataframe(self, task_name: str) -> pd.DataFrame:
|
57 |
rows = []
|
58 |
+
|
59 |
for model in self.data:
|
60 |
if task_name not in model:
|
61 |
continue
|
62 |
+
|
63 |
row = {
|
64 |
'Model': self._create_model_link(model['name'], model['url']),
|
65 |
'Average': self._format_score(model[task_name]['average_score']),
|
|
|
67 |
'Parameters': model.get('num_parameters', 'N/A'),
|
68 |
'Embedding Dimmension': model.get('emb_dim', 'N/A')
|
69 |
}
|
70 |
+
|
71 |
# Addition of dataset-specific scores
|
72 |
for dataset in self.tasks[task_name]:
|
73 |
if dataset in model[task_name]:
|
74 |
row[dataset] = self._format_score(model[task_name][dataset])
|
75 |
+
|
76 |
rows.append(row)
|
77 |
+
|
78 |
df = pd.DataFrame(rows)
|
79 |
df['_sort_key'] = df['Average'].astype(float)
|
80 |
df = df.sort_values('_sort_key', ascending=False).drop('_sort_key', axis=1)
|
81 |
df.insert(0, 'Rank', range(1, len(df) + 1))
|
82 |
+
|
83 |
return df
|
84 |
+
|
85 |
def create_interface(self):
|
86 |
|
87 |
# we will force the light theme for now :)
|
|
|
98 |
|
99 |
with gr.Blocks(js=js_func) as demo:
|
100 |
# Header
|
101 |
+
gr.HTML(
|
102 |
"""
|
103 |
<div style="text-align: center; margin-bottom: 20px;">
|
104 |
<h1 style="font-size: 36px; margin-bottom: 10px;">KazTEB Leaderboard π</h1>
|
|
|
106 |
</div>
|
107 |
"""
|
108 |
)
|
109 |
+
|
110 |
# Subheader -- Project description
|
111 |
+
gr.HTML(
|
112 |
"""
|
113 |
<div style="margin-bottom: 30px; padding: 20px; background-color: #f8f9fa; border-radius: 8px; border-left: 4px solid #1976d2;">
|
114 |
<p style="font-size: 16px; line-height: 1.6; margin: 0; color: #333;">
|
|
|
117 |
</div>
|
118 |
"""
|
119 |
)
|
120 |
+
|
121 |
with gr.Tabs() as main_tabs:
|
122 |
with gr.Tab("π Task Results"):
|
123 |
+
|
124 |
with gr.Tabs() as task_tabs:
|
125 |
with gr.Tab("Retrieval"):
|
126 |
retrieval_df = self.get_task_dataframe('retrieval')
|
|
|
129 |
headers=list(retrieval_df.columns),
|
130 |
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(retrieval_df.columns) - 5),
|
131 |
col_count=(len(retrieval_df.columns), "fixed"),
|
132 |
+
interactive=False,
|
133 |
+
column_widths=[50, 400] + [200] * (len(retrieval_df.columns)-2)
|
134 |
)
|
135 |
+
|
136 |
with gr.Tab("Classification"):
|
137 |
classification_df = self.get_task_dataframe('classification')
|
138 |
gr.DataFrame(
|
|
|
140 |
headers=list(classification_df.columns),
|
141 |
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(classification_df.columns) - 5),
|
142 |
col_count=(len(classification_df.columns), "fixed"),
|
143 |
+
interactive=False,
|
144 |
+
column_widths=[50, 400] + [200] * (len(classification_df.columns)-2)
|
145 |
)
|
146 |
+
|
147 |
with gr.Tab("Bitext Mining"):
|
148 |
bitext_df = self.get_task_dataframe('bitext_mining')
|
149 |
gr.DataFrame(
|
|
|
151 |
headers=list(bitext_df.columns),
|
152 |
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(bitext_df.columns) - 5),
|
153 |
col_count=(len(bitext_df.columns), "fixed"),
|
154 |
+
interactive=False,
|
155 |
+
column_widths=[50, 400] + [200] * (len(bitext_df.columns)-2)
|
156 |
)
|
157 |
+
|
158 |
with gr.Tab("π Metrics"):
|
159 |
gr.Markdown("## Evaluation Metrics Overview")
|
160 |
gr.Markdown("Although the evaluation generates multiple metric values for each task, we retain only a single metric for reference.")
|
161 |
+
|
162 |
with gr.Row():
|
163 |
|
164 |
with gr.Column():
|
165 |
gr.Markdown(
|
166 |
"""### π Retrieval
|
167 |
+
|
168 |
**Metric:** nDCG@10 (Normalized Discounted Cumulative Gain)
|
169 |
- Measures ranking quality of retrieved documents
|
170 |
- Considers both relevance and position
|
|
|
175 |
- Human-annotated question-document pairs""",
|
176 |
elem_classes=["retrieval-card"]
|
177 |
)
|
178 |
+
|
179 |
with gr.Column():
|
180 |
gr.Markdown(
|
181 |
"""### π Classification
|
182 |
+
|
183 |
**Metric:** Accuracy
|
184 |
- Percentage of correctly classified instances
|
185 |
- Standard classification metric
|
186 |
- **Range:** 0.0 - 1.0 (higher is better)
|
187 |
|
188 |
**Datasets:**
|
189 |
+
- **[KazSandraPolarityClassification](https://huggingface.co/datasets/issai/kazsandra):** Sentiment polarity
|
190 |
+
- **[KazSandraScoreClassification](https://huggingface.co/datasets/issai/kazsandra):** Sentiment scoring""",
|
191 |
elem_classes=["classification-card"]
|
192 |
)
|
193 |
+
|
194 |
with gr.Column():
|
195 |
gr.Markdown(
|
196 |
"""### π Bitext Mining
|
197 |
+
|
198 |
**Metric:** F1-Score
|
199 |
- Harmonic mean of precision and recall
|
200 |
- Balances correctness and completeness
|
|
|
205 |
- Bidirectional evaluation""",
|
206 |
elem_classes=["bitext-card"]
|
207 |
)
|
208 |
+
|
209 |
gr.Markdown("---")
|
210 |
gr.Markdown("### π Scoring & Ranking")
|
211 |
+
|
212 |
with gr.Row():
|
213 |
with gr.Column():
|
214 |
gr.Markdown("**Task Averaging:** Equal weight per dataset within each task")
|
|
|
217 |
with gr.Column():
|
218 |
#gr.Markdown("**Future Plans:** Overall cross-task scoring implementation")
|
219 |
pass
|
220 |
+
|
|
|
221 |
gr.Markdown("---")
|
222 |
+
gr.HTML(
|
223 |
"""
|
224 |
<div style="margin-top: 30px; padding: 20px; background-color: #f0f8ff; border-radius: 8px; border-left: 4px solid #4a90e2;">
|
225 |
<h3 style="margin-top: 0; color: #2c3e50; display: flex; align-items: center;">
|
|
|
232 |
</div>
|
233 |
"""
|
234 |
)
|
235 |
+
|
236 |
# Contact information
|
237 |
+
gr.HTML(
|
238 |
"""
|
239 |
<div style="text-align: center; margin-top: 20px; padding: 15px; color: #666; font-size: 14px;">
|
240 |
π§ Contact: <a href="mailto:arysbatyr@gmail.com" style="color: #1976d2; text-decoration: none;">arysbatyr@gmail.com</a>
|
241 |
</div>
|
242 |
"""
|
243 |
)
|
244 |
+
|
245 |
return demo
|
246 |
|
247 |
|
|
|
254 |
|
255 |
if __name__ == "__main__":
|
256 |
data = load_benchmark_data("./results.json")
|
257 |
+
|
258 |
leaderboard = KazTEBLeaderboard(data)
|
259 |
+
|
260 |
demo = leaderboard.create_interface()
|
261 |
demo.launch()
|
262 |
|