File size: 12,876 Bytes
59df45a
 
 
 
 
 
 
 
 
 
 
 
c9ad6fd
59df45a
 
 
c9ad6fd
620e8cf
59df45a
 
dd0d861
a2af520
5c74e62
dd0d861
 
59df45a
 
 
e50e780
a2af520
 
59df45a
dd0d861
d6fd324
59df45a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd0d861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59df45a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd0d861
d6fd324
dd0d861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6fd324
 
 
e06b939
 
5c74e62
1dd454d
a2af520
 
 
5c74e62
 
 
 
e06b939
5c74e62
e06b939
 
 
 
c9ad6fd
 
a2af520
 
c9ad6fd
a2af520
c9ad6fd
a2af520
c9ad6fd
a2af520
 
c9ad6fd
 
 
 
 
e06b939
 
dd0d861
59df45a
 
 
 
 
 
 
 
 
 
 
 
 
dd0d861
 
59df45a
 
 
d6fd324
 
59df45a
 
 
b351198
59df45a
 
 
 
 
 
 
 
620e8cf
3cd55ca
f4c3d3d
620e8cf
 
 
 
 
59df45a
3889a5e
e8003cf
dfd9028
6457d2d
bba8f18
dfd9028
59df45a
01c19ee
 
 
 
59df45a
01c19ee
 
 
59df45a
 
620e8cf
59df45a
 
 
 
 
 
0755940
59df45a
 
 
 
 
 
 
 
 
 
 
5c74e62
59df45a
e06b939
 
 
 
 
 
 
 
 
 
 
 
 
59df45a
e06b939
59df45a
e06b939
 
59df45a
e06b939
 
59df45a
e06b939
59df45a
 
e06b939
 
 
59df45a
 
 
 
 
 
 
 
 
 
 
 
 
 
e06b939
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
from langchain_openai import ChatOpenAI

from langchain.tools import Tool
from code_interpreter import CodeInterpreter
#from langchain_chroma import Chroma
from langchain_core.messages import AIMessage

interpreter_instance = CodeInterpreter()


load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
SUPABASE_URL = os.environ.get("SUPABASE_URL")
SUPABASE_SERVICE_KEY = os.environ.get("SUPABASE_SERVICE_KEY")

### ======================================== MATHEMATICAL TOOLS ======================================== ###

def multiply(a: int, b: int) -> int:
    return a * b

multiply_tool = Tool(
    name="multiply",
    func=multiply,
    description="Multiply two numbers. Args (a: first int, b: second int)"
)

def add(a: int, b: int) -> int:
    return a + b

add_tool = Tool(
    name="add",
    func=add,
    description="Add two numbers. Args (a: first int, b: second int)"
)

def substract(a: int, b: int) -> int:
    return a - b

substract_tool = Tool(
    name="substract",
    func=substract,
    description="Substract two numbers. Args (a: first int, b: second int)"
)

def divide(a: int, b: int) -> int:
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

divide_tool = Tool(
    name="divide",
    func=divide,
    description="Divide two numbers. Args (a: first int, b: second int)"
)

def modulus(a: int, b: int) -> int:
    return a % b
    
modulus_tool = Tool(
    name="modulus",
    func=modulus,
    description="Modulus two numbers. Args (a: first int, b: second int)"
)

def power(a: float, b: float) -> float:
    return a**b

power_tool = Tool(
    name="power",
    func=power,
    description="Power two numbers. Args (a: first float, b: second float)"
)

def square_root(a: float) -> float | complex:
    if a >= 0:
        return a**0.5
    return cmath.sqrt(a)

square_root_power = Tool(
    name="square_root",
    func=square_root,
    description="Square two numbers. Args (a: float)"
)


### ======================================== BROWSER TOOLS ======================================== ###

def wiki_search(query: str) -> str:
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"wiki_results": formatted_search_docs}

wiki_search_tool = Tool(
    name="wiki_search",
    func=wiki_search,
    description="Search Wikipedia for a query and return maximum 2 results. Args (query: the search query)"
)

def web_search(query: str) -> str:
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"web_results": formatted_search_docs}
    
web_search_tool = Tool(
    name="web_search",
    func=web_search,
    description="Search Tavily for a query and return maximum 3 results. Args (query: the search query)"
)

def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}

arvix_search_tool = Tool(
    name="arvix_search",
    func=arvix_search,
    description="Search Arxiv for a query and return maximum 3 result. Args (query: the search query)"
)


### ======================================== CODE INTERPRETER TOOLS ======================================== ###

def execute_code_multilang(code: str, language: str = "python") -> str:
    """Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results.
    Args:
        code (str): The source code to execute.
        language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java".
    Returns:
        A string summarizing the execution results (stdout, stderr, errors, plots, dataframes if any).
    """
    supported_languages = ["python", "bash", "sql", "c", "java"]
    language = language.lower()

    if language not in supported_languages:
        return f"❌ Unsupported language: {language}. Supported languages are: {', '.join(supported_languages)}"

    result = interpreter_instance.execute_code(code, language=language)

    response = []

    if result["status"] == "success":
        response.append(f"✅ Code executed successfully in **{language.upper()}**")

        if result.get("stdout"):
            response.append(
                "\n**Standard Output:**\n```\n" + result["stdout"].strip() + "\n```"
            )

        if result.get("stderr"):
            response.append(
                "\n**Standard Error (if any):**\n```\n"
                + result["stderr"].strip()
                + "\n```"
            )

        if result.get("result") is not None:
            response.append(
                "\n**Execution Result:**\n```\n"
                + str(result["result"]).strip()
                + "\n```"
            )

        if result.get("dataframes"):
            for df_info in result["dataframes"]:
                response.append(
                    f"\n**DataFrame `{df_info['name']}` (Shape: {df_info['shape']})**"
                )
                df_preview = pd.DataFrame(df_info["head"])
                response.append("First 5 rows:\n```\n" + str(df_preview) + "\n```")

        if result.get("plots"):
            response.append(
                f"\n**Generated {len(result['plots'])} plot(s)** (Image data returned separately)"
            )

    else:
        response.append(f"❌ Code execution failed in **{language.upper()}**")
        if result.get("stderr"):
            response.append(
                "\n**Error Log:**\n```\n" + result["stderr"].strip() + "\n```"
            )

    return "\n".join(response)

execute_code_multilang_tool = Tool(
    name="execute_code_multilang",
    func=execute_code_multilang,
    description="""Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results.
        Args:
            code (str): The source code to execute.
            language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java".
    """
)


### ======================================== DOCUMENT PROCESSING TOOLS ======================================== ###


### ======================================== RETRIEVER TOOLS ======================================== ###

embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

"""
Using chroma database

vector_store = Chroma(
    collection_name="gaia_dataset",
    embedding_function=embeddings,
    persist_directory="./data/chroma_langchain_db",  # Where to save data locally, remove if not necessary
)
# It's not going to be used later
create_retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="Question Search",
    description="A tool to retrieve similar questions from a vector store.",
)
"""

# Using supabase database
# build a retriever
supabase: Client = create_client(SUPABASE_URL, SUPABASE_SERVICE_KEY)
vector_store = SupabaseVectorStore(
    embedding=embeddings,
    client=supabase,
    table_name="gaia_dataset",
    query_name="match_documents",
)
create_retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="Question Search",
    description="A tool to retrieve similar questions from a vector store.",
)


# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# System message
sys_msg = SystemMessage(content=system_prompt)

tools = [
    multiply_tool,
    add_tool,
    substract_tool,
    divide_tool,
    modulus_tool,
    power_tool,
    square_root,
    wiki_search_tool,
    web_search_tool,
    arvix_search_tool,
    execute_code_multilang_tool,
    
]

# Build graph function
def build_graph(provider: str = "huggingface"):
    """Build the graph"""
    # Load environment variables from .env file
    if provider == "google":
        # Google Gemini
        chat = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "groq":
        # Groq https://console.groq.com/docs/models
        chat = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
    elif provider == "openai":
        # Set the model from openai here
        model_openai = "gpt-4o"
        chat = ChatOpenAI(
            model=model_openai,
            temperature=0,
            api_key=OPENAI_API_KEY
        )
    elif provider == "huggingface":
        # Add huggingface endpoint
        #repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
        #repo_id = "Qwen/Qwen2.5-Coder-32B-Instruct" # -> it doesn't reply well
        #repo_id = "deepseek-ai/DeepSeek-Coder-V2-Instruct" -> it doesn't work (error on StopIteration)
        #repo_id = "meta-llama/CodeLlama-34b-Instruct-hf" -> it doesn't work (error on StopIteration)
        repo_id = "WizardLMTeam/WizardCoder-15B-V1.0"
        chat = ChatHuggingFace(
            #llm=HuggingFaceEndpoint(
            #    endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
            #    temperature=0,
            #),
            llm=HuggingFaceEndpoint(
                repo_id=repo_id,
                temperature=0.1
            )
        )
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq', 'openai' or 'huggingface'.")
    # Bind tools to LLM
    chat_with_tools = chat.bind_tools(tools)

    # Node
    def assistant(state: MessagesState):
        """Assistant node"""
        return {"messages": [chat_with_tools.invoke(state["messages"])]}

    def retriever(state: MessagesState):
        query = state["messages"][-1].content
        similar_doc = vector_store.similarity_search(query, k=1)[0]

        content = similar_doc.page_content
        if "Final answer :" in content:
            answer = content.split("Final answer :")[-1].strip()
        else:
            answer = content.strip()

        return {"messages": [AIMessage(content=answer)]}    

    """
    Graph with retriever and tools
    
    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges(
        "assistant",
        tools_condition,
    )
    #builder.add_edge("tools", "assistant")
    """

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    # Retriever ist Start und Endpunkt
    builder.set_entry_point("retriever")
    builder.set_finish_point("retriever")
    # Compile graph
    return builder.compile()


    """
    Graph with tools conditions
    
    builder = StateGraph(MessagesState)
    # Define nodes: these do the work
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    # Define edges: these determine how the control flow moves
    builder.add_edge(START, "assistant")
    builder.add_conditional_edges(
        "assistant",
        # If the latest message requires a tool, route to tools
        # Otherwise, provide a direct response
        tools_condition,
    )
    builder.add_edge("tools", "assistant")
    # Compile graph
    return builder.compile()
    """