File size: 12,876 Bytes
59df45a c9ad6fd 59df45a c9ad6fd 620e8cf 59df45a dd0d861 a2af520 5c74e62 dd0d861 59df45a e50e780 a2af520 59df45a dd0d861 d6fd324 59df45a dd0d861 59df45a dd0d861 d6fd324 dd0d861 d6fd324 e06b939 5c74e62 1dd454d a2af520 5c74e62 e06b939 5c74e62 e06b939 c9ad6fd a2af520 c9ad6fd a2af520 c9ad6fd a2af520 c9ad6fd a2af520 c9ad6fd e06b939 dd0d861 59df45a dd0d861 59df45a d6fd324 59df45a b351198 59df45a 620e8cf 3cd55ca f4c3d3d 620e8cf 59df45a 3889a5e e8003cf dfd9028 6457d2d bba8f18 dfd9028 59df45a 01c19ee 59df45a 01c19ee 59df45a 620e8cf 59df45a 0755940 59df45a 5c74e62 59df45a e06b939 59df45a e06b939 59df45a e06b939 59df45a e06b939 59df45a e06b939 59df45a e06b939 59df45a e06b939 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
from langchain_openai import ChatOpenAI
from langchain.tools import Tool
from code_interpreter import CodeInterpreter
#from langchain_chroma import Chroma
from langchain_core.messages import AIMessage
interpreter_instance = CodeInterpreter()
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
SUPABASE_URL = os.environ.get("SUPABASE_URL")
SUPABASE_SERVICE_KEY = os.environ.get("SUPABASE_SERVICE_KEY")
### ======================================== MATHEMATICAL TOOLS ======================================== ###
def multiply(a: int, b: int) -> int:
return a * b
multiply_tool = Tool(
name="multiply",
func=multiply,
description="Multiply two numbers. Args (a: first int, b: second int)"
)
def add(a: int, b: int) -> int:
return a + b
add_tool = Tool(
name="add",
func=add,
description="Add two numbers. Args (a: first int, b: second int)"
)
def substract(a: int, b: int) -> int:
return a - b
substract_tool = Tool(
name="substract",
func=substract,
description="Substract two numbers. Args (a: first int, b: second int)"
)
def divide(a: int, b: int) -> int:
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
divide_tool = Tool(
name="divide",
func=divide,
description="Divide two numbers. Args (a: first int, b: second int)"
)
def modulus(a: int, b: int) -> int:
return a % b
modulus_tool = Tool(
name="modulus",
func=modulus,
description="Modulus two numbers. Args (a: first int, b: second int)"
)
def power(a: float, b: float) -> float:
return a**b
power_tool = Tool(
name="power",
func=power,
description="Power two numbers. Args (a: first float, b: second float)"
)
def square_root(a: float) -> float | complex:
if a >= 0:
return a**0.5
return cmath.sqrt(a)
square_root_power = Tool(
name="square_root",
func=square_root,
description="Square two numbers. Args (a: float)"
)
### ======================================== BROWSER TOOLS ======================================== ###
def wiki_search(query: str) -> str:
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
wiki_search_tool = Tool(
name="wiki_search",
func=wiki_search,
description="Search Wikipedia for a query and return maximum 2 results. Args (query: the search query)"
)
def web_search(query: str) -> str:
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
web_search_tool = Tool(
name="web_search",
func=web_search,
description="Search Tavily for a query and return maximum 3 results. Args (query: the search query)"
)
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
arvix_search_tool = Tool(
name="arvix_search",
func=arvix_search,
description="Search Arxiv for a query and return maximum 3 result. Args (query: the search query)"
)
### ======================================== CODE INTERPRETER TOOLS ======================================== ###
def execute_code_multilang(code: str, language: str = "python") -> str:
"""Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results.
Args:
code (str): The source code to execute.
language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java".
Returns:
A string summarizing the execution results (stdout, stderr, errors, plots, dataframes if any).
"""
supported_languages = ["python", "bash", "sql", "c", "java"]
language = language.lower()
if language not in supported_languages:
return f"❌ Unsupported language: {language}. Supported languages are: {', '.join(supported_languages)}"
result = interpreter_instance.execute_code(code, language=language)
response = []
if result["status"] == "success":
response.append(f"✅ Code executed successfully in **{language.upper()}**")
if result.get("stdout"):
response.append(
"\n**Standard Output:**\n```\n" + result["stdout"].strip() + "\n```"
)
if result.get("stderr"):
response.append(
"\n**Standard Error (if any):**\n```\n"
+ result["stderr"].strip()
+ "\n```"
)
if result.get("result") is not None:
response.append(
"\n**Execution Result:**\n```\n"
+ str(result["result"]).strip()
+ "\n```"
)
if result.get("dataframes"):
for df_info in result["dataframes"]:
response.append(
f"\n**DataFrame `{df_info['name']}` (Shape: {df_info['shape']})**"
)
df_preview = pd.DataFrame(df_info["head"])
response.append("First 5 rows:\n```\n" + str(df_preview) + "\n```")
if result.get("plots"):
response.append(
f"\n**Generated {len(result['plots'])} plot(s)** (Image data returned separately)"
)
else:
response.append(f"❌ Code execution failed in **{language.upper()}**")
if result.get("stderr"):
response.append(
"\n**Error Log:**\n```\n" + result["stderr"].strip() + "\n```"
)
return "\n".join(response)
execute_code_multilang_tool = Tool(
name="execute_code_multilang",
func=execute_code_multilang,
description="""Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results.
Args:
code (str): The source code to execute.
language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java".
"""
)
### ======================================== DOCUMENT PROCESSING TOOLS ======================================== ###
### ======================================== RETRIEVER TOOLS ======================================== ###
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
"""
Using chroma database
vector_store = Chroma(
collection_name="gaia_dataset",
embedding_function=embeddings,
persist_directory="./data/chroma_langchain_db", # Where to save data locally, remove if not necessary
)
# It's not going to be used later
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
"""
# Using supabase database
# build a retriever
supabase: Client = create_client(SUPABASE_URL, SUPABASE_SERVICE_KEY)
vector_store = SupabaseVectorStore(
embedding=embeddings,
client=supabase,
table_name="gaia_dataset",
query_name="match_documents",
)
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
tools = [
multiply_tool,
add_tool,
substract_tool,
divide_tool,
modulus_tool,
power_tool,
square_root,
wiki_search_tool,
web_search_tool,
arvix_search_tool,
execute_code_multilang_tool,
]
# Build graph function
def build_graph(provider: str = "huggingface"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "google":
# Google Gemini
chat = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
# Groq https://console.groq.com/docs/models
chat = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
elif provider == "openai":
# Set the model from openai here
model_openai = "gpt-4o"
chat = ChatOpenAI(
model=model_openai,
temperature=0,
api_key=OPENAI_API_KEY
)
elif provider == "huggingface":
# Add huggingface endpoint
#repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
#repo_id = "Qwen/Qwen2.5-Coder-32B-Instruct" # -> it doesn't reply well
#repo_id = "deepseek-ai/DeepSeek-Coder-V2-Instruct" -> it doesn't work (error on StopIteration)
#repo_id = "meta-llama/CodeLlama-34b-Instruct-hf" -> it doesn't work (error on StopIteration)
repo_id = "WizardLMTeam/WizardCoder-15B-V1.0"
chat = ChatHuggingFace(
#llm=HuggingFaceEndpoint(
# endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
# temperature=0,
#),
llm=HuggingFaceEndpoint(
repo_id=repo_id,
temperature=0.1
)
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq', 'openai' or 'huggingface'.")
# Bind tools to LLM
chat_with_tools = chat.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [chat_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
query = state["messages"][-1].content
similar_doc = vector_store.similarity_search(query, k=1)[0]
content = similar_doc.page_content
if "Final answer :" in content:
answer = content.split("Final answer :")[-1].strip()
else:
answer = content.strip()
return {"messages": [AIMessage(content=answer)]}
"""
Graph with retriever and tools
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
#builder.add_edge("tools", "assistant")
"""
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
# Retriever ist Start und Endpunkt
builder.set_entry_point("retriever")
builder.set_finish_point("retriever")
# Compile graph
return builder.compile()
"""
Graph with tools conditions
builder = StateGraph(MessagesState)
# Define nodes: these do the work
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
# Define edges: these determine how the control flow moves
builder.add_edge(START, "assistant")
builder.add_conditional_edges(
"assistant",
# If the latest message requires a tool, route to tools
# Otherwise, provide a direct response
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
"""
|