Update agent.py
Browse files
agent.py
CHANGED
@@ -19,6 +19,8 @@ from langchain_openai import ChatOpenAI
|
|
19 |
|
20 |
from langchain.tools import Tool
|
21 |
from code_interpreter import CodeInterpreter
|
|
|
|
|
22 |
|
23 |
interpreter_instance = CodeInterpreter()
|
24 |
|
@@ -228,16 +230,13 @@ execute_code_multilang_tool = Tool(
|
|
228 |
|
229 |
### ======================================== RETRIEVER TOOLS ======================================== ###
|
230 |
|
231 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
client=supabase,
|
237 |
-
embedding= embeddings,
|
238 |
-
table_name="documents",
|
239 |
-
query_name="match_documents_langchain",
|
240 |
)
|
|
|
241 |
create_retriever_tool = create_retriever_tool(
|
242 |
retriever=vector_store.as_retriever(),
|
243 |
name="Question Search",
|
@@ -312,8 +311,6 @@ def build_graph(provider: str = "huggingface"):
|
|
312 |
"""Assistant node"""
|
313 |
return {"messages": [chat_with_tools.invoke(state["messages"])]}
|
314 |
|
315 |
-
from langchain_core.messages import AIMessage
|
316 |
-
|
317 |
def retriever(state: MessagesState):
|
318 |
query = state["messages"][-1].content
|
319 |
similar_doc = vector_store.similarity_search(query, k=1)[0]
|
@@ -324,7 +321,7 @@ def build_graph(provider: str = "huggingface"):
|
|
324 |
else:
|
325 |
answer = content.strip()
|
326 |
|
327 |
-
return {"messages": [AIMessage(content=answer)]}
|
328 |
|
329 |
"""
|
330 |
Graph with retriever and tools
|
|
|
19 |
|
20 |
from langchain.tools import Tool
|
21 |
from code_interpreter import CodeInterpreter
|
22 |
+
from langchain_chroma import Chroma
|
23 |
+
from langchain_core.messages import AIMessage
|
24 |
|
25 |
interpreter_instance = CodeInterpreter()
|
26 |
|
|
|
230 |
|
231 |
### ======================================== RETRIEVER TOOLS ======================================== ###
|
232 |
|
233 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
234 |
+
vector_store = Chroma(
|
235 |
+
collection_name="gaia_dataset",
|
236 |
+
embedding_function=embeddings,
|
237 |
+
persist_directory="./data/chroma_langchain_db", # Where to save data locally, remove if not necessary
|
|
|
|
|
|
|
|
|
238 |
)
|
239 |
+
# It's not going to be used later
|
240 |
create_retriever_tool = create_retriever_tool(
|
241 |
retriever=vector_store.as_retriever(),
|
242 |
name="Question Search",
|
|
|
311 |
"""Assistant node"""
|
312 |
return {"messages": [chat_with_tools.invoke(state["messages"])]}
|
313 |
|
|
|
|
|
314 |
def retriever(state: MessagesState):
|
315 |
query = state["messages"][-1].content
|
316 |
similar_doc = vector_store.similarity_search(query, k=1)[0]
|
|
|
321 |
else:
|
322 |
answer = content.strip()
|
323 |
|
324 |
+
return {"messages": [AIMessage(content=answer)]}
|
325 |
|
326 |
"""
|
327 |
Graph with retriever and tools
|