ama2aifusion commited on
Commit
5c74e62
·
verified ·
1 Parent(s): 97d7241

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +9 -12
agent.py CHANGED
@@ -19,6 +19,8 @@ from langchain_openai import ChatOpenAI
19
 
20
  from langchain.tools import Tool
21
  from code_interpreter import CodeInterpreter
 
 
22
 
23
  interpreter_instance = CodeInterpreter()
24
 
@@ -228,16 +230,13 @@ execute_code_multilang_tool = Tool(
228
 
229
  ### ======================================== RETRIEVER TOOLS ======================================== ###
230
 
231
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
232
- supabase: Client = create_client(
233
- os.environ.get("SUPABASE_URL"),
234
- os.environ.get("SUPABASE_SERVICE_KEY"))
235
- vector_store = SupabaseVectorStore(
236
- client=supabase,
237
- embedding= embeddings,
238
- table_name="documents",
239
- query_name="match_documents_langchain",
240
  )
 
241
  create_retriever_tool = create_retriever_tool(
242
  retriever=vector_store.as_retriever(),
243
  name="Question Search",
@@ -312,8 +311,6 @@ def build_graph(provider: str = "huggingface"):
312
  """Assistant node"""
313
  return {"messages": [chat_with_tools.invoke(state["messages"])]}
314
 
315
- from langchain_core.messages import AIMessage
316
-
317
  def retriever(state: MessagesState):
318
  query = state["messages"][-1].content
319
  similar_doc = vector_store.similarity_search(query, k=1)[0]
@@ -324,7 +321,7 @@ def build_graph(provider: str = "huggingface"):
324
  else:
325
  answer = content.strip()
326
 
327
- return {"messages": [AIMessage(content=answer)]}
328
 
329
  """
330
  Graph with retriever and tools
 
19
 
20
  from langchain.tools import Tool
21
  from code_interpreter import CodeInterpreter
22
+ from langchain_chroma import Chroma
23
+ from langchain_core.messages import AIMessage
24
 
25
  interpreter_instance = CodeInterpreter()
26
 
 
230
 
231
  ### ======================================== RETRIEVER TOOLS ======================================== ###
232
 
233
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
234
+ vector_store = Chroma(
235
+ collection_name="gaia_dataset",
236
+ embedding_function=embeddings,
237
+ persist_directory="./data/chroma_langchain_db", # Where to save data locally, remove if not necessary
 
 
 
 
238
  )
239
+ # It's not going to be used later
240
  create_retriever_tool = create_retriever_tool(
241
  retriever=vector_store.as_retriever(),
242
  name="Question Search",
 
311
  """Assistant node"""
312
  return {"messages": [chat_with_tools.invoke(state["messages"])]}
313
 
 
 
314
  def retriever(state: MessagesState):
315
  query = state["messages"][-1].content
316
  similar_doc = vector_store.similarity_search(query, k=1)[0]
 
321
  else:
322
  answer = content.strip()
323
 
324
+ return {"messages": [AIMessage(content=answer)]}
325
 
326
  """
327
  Graph with retriever and tools