ama2aifusion commited on
Commit
a2af520
·
verified ·
1 Parent(s): 8368270

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +12 -10
agent.py CHANGED
@@ -19,7 +19,7 @@ from langchain_openai import ChatOpenAI
19
 
20
  from langchain.tools import Tool
21
  from code_interpreter import CodeInterpreter
22
- from langchain_chroma import Chroma
23
  from langchain_core.messages import AIMessage
24
 
25
  interpreter_instance = CodeInterpreter()
@@ -27,6 +27,8 @@ interpreter_instance = CodeInterpreter()
27
 
28
  load_dotenv()
29
  OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
 
 
30
 
31
  ### ======================================== MATHEMATICAL TOOLS ======================================== ###
32
 
@@ -232,6 +234,9 @@ execute_code_multilang_tool = Tool(
232
 
233
  embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
234
 
 
 
 
235
  vector_store = Chroma(
236
  collection_name="gaia_dataset",
237
  embedding_function=embeddings,
@@ -243,25 +248,22 @@ create_retriever_tool = create_retriever_tool(
243
  name="Question Search",
244
  description="A tool to retrieve similar questions from a vector store.",
245
  )
246
-
247
  """
 
 
248
  # build a retriever
249
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
250
- supabase: Client = create_client(
251
- os.environ.get("SUPABASE_URL"),
252
- os.environ.get("SUPABASE_SERVICE_KEY"))
253
  vector_store = SupabaseVectorStore(
 
254
  client=supabase,
255
- embedding= embeddings,
256
- table_name="documents",
257
- query_name="match_documents_langchain",
258
  )
259
  create_retriever_tool = create_retriever_tool(
260
  retriever=vector_store.as_retriever(),
261
  name="Question Search",
262
  description="A tool to retrieve similar questions from a vector store.",
263
  )
264
- """
265
 
266
 
267
  # load the system prompt from the file
 
19
 
20
  from langchain.tools import Tool
21
  from code_interpreter import CodeInterpreter
22
+ #from langchain_chroma import Chroma
23
  from langchain_core.messages import AIMessage
24
 
25
  interpreter_instance = CodeInterpreter()
 
27
 
28
  load_dotenv()
29
  OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
30
+ SUPABASE_URL = os.environ.get("SUPABASE_URL")
31
+ SUPABASE_SERVICE_KEY = os.environ.get("SUPABASE_SERVICE_KEY")
32
 
33
  ### ======================================== MATHEMATICAL TOOLS ======================================== ###
34
 
 
234
 
235
  embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
236
 
237
+ """
238
+ Using chroma database
239
+
240
  vector_store = Chroma(
241
  collection_name="gaia_dataset",
242
  embedding_function=embeddings,
 
248
  name="Question Search",
249
  description="A tool to retrieve similar questions from a vector store.",
250
  )
 
251
  """
252
+
253
+ # Using supabase database
254
  # build a retriever
255
+ supabase: Client = create_client(SUPABASE_URL, SUPABASE_SERVICE_KEY)
 
 
 
256
  vector_store = SupabaseVectorStore(
257
+ embedding=embeddings,
258
  client=supabase,
259
+ table_name="gaia_dataset",
260
+ query_name="match_documents",
 
261
  )
262
  create_retriever_tool = create_retriever_tool(
263
  retriever=vector_store.as_retriever(),
264
  name="Question Search",
265
  description="A tool to retrieve similar questions from a vector store.",
266
  )
 
267
 
268
 
269
  # load the system prompt from the file