llava-chat / README.md
Prashant26am's picture
docs: Update README with comprehensive About section and project details
fe25f9c
|
raw
history blame
6.78 kB

LLaVA Implementation

License: MIT Python 3.8+ Gradio Hugging Face

๐Ÿ“ About

This project is an implementation of LLaVA (Large Language and Vision Assistant), a powerful multimodal AI model that combines vision and language understanding. Here's what makes this implementation special:

๐ŸŽฏ Key Features

  • Multimodal Understanding

    • Seamless integration of vision and language models
    • Real-time image analysis and description
    • Natural language interaction about visual content
    • Support for various image types and formats
  • Model Architecture

    • CLIP ViT vision encoder for robust image understanding
    • TinyLlama language model for efficient text generation
    • Custom projection layer for vision-language alignment
    • Memory-optimized for deployment on various platforms
  • User Interface

    • Modern Gradio-based web interface
    • Real-time image processing
    • Interactive chat experience
    • Customizable generation parameters
    • Responsive design for all devices
  • Technical Highlights

    • CPU-optimized implementation
    • Memory-efficient model loading
    • Fast inference with optimized settings
    • Robust error handling and logging
    • Easy deployment on Hugging Face Spaces

๐Ÿ› ๏ธ Technology Stack

  • Core Technologies

    • PyTorch for deep learning
    • Transformers for model architecture
    • Gradio for web interface
    • FastAPI for backend services
    • Hugging Face for model hosting
  • Development Tools

    • Pre-commit hooks for code quality
    • GitHub Actions for CI/CD
    • Comprehensive testing suite
    • Detailed documentation
    • Development guidelines

๐ŸŒŸ Use Cases

  • Image Understanding

    • Scene description and analysis
    • Object detection and recognition
    • Visual question answering
    • Image-based conversations
  • Applications

    • Educational tools
    • Content moderation
    • Visual assistance
    • Research and development
    • Creative content generation

๐Ÿ”„ Project Status

  • Current Version: 1.0.0
  • Active Development: Yes
  • Production Ready: Yes
  • Community Support: Open for contributions

๐Ÿ“Š Performance

  • Model Size: Optimized for CPU deployment
  • Response Time: Real-time processing
  • Memory Usage: Efficient resource utilization
  • Scalability: Ready for production deployment

๐Ÿค Community

  • Contributions: Open for pull requests
  • Issues: Active issue tracking
  • Documentation: Comprehensive guides
  • Support: Community-driven help

๐Ÿ”ฎ Future Roadmap

  • Support for video processing
  • Additional model variants
  • Enhanced memory optimization
  • Extended API capabilities
  • More interactive features

๐Ÿ“š Resources

๐ŸŒŸ Features

  • Modern Web Interface

    • Beautiful Gradio-based UI
    • Real-time image analysis
    • Interactive chat experience
    • Responsive design
  • Advanced AI Capabilities

    • CLIP ViT-L/14 vision encoder
    • Vicuna-7B language model
    • Multimodal understanding
    • Natural conversation flow
  • Developer Friendly

    • Clean, modular codebase
    • Comprehensive documentation
    • Easy deployment options
    • Extensible architecture

๐Ÿ“‹ Project Structure

llava_implementation/
โ”œโ”€โ”€ src/                    # Source code
โ”‚   โ”œโ”€โ”€ api/               # API endpoints and FastAPI app
โ”‚   โ”œโ”€โ”€ models/            # Model implementations
โ”‚   โ”œโ”€โ”€ utils/             # Utility functions
โ”‚   โ””โ”€โ”€ configs/           # Configuration files
โ”œโ”€โ”€ tests/                 # Test suite
โ”œโ”€โ”€ docs/                  # Documentation
โ”‚   โ”œโ”€โ”€ api/              # API documentation
โ”‚   โ”œโ”€โ”€ examples/         # Usage examples
โ”‚   โ””โ”€โ”€ guides/           # User and developer guides
โ”œโ”€โ”€ assets/               # Static assets
โ”‚   โ”œโ”€โ”€ images/          # Example images
โ”‚   โ””โ”€โ”€ icons/           # UI icons
โ”œโ”€โ”€ scripts/              # Utility scripts
โ””โ”€โ”€ examples/             # Example images for the web interface

๐Ÿš€ Quick Start

Prerequisites

  • Python 3.8+
  • CUDA-capable GPU (recommended)
  • Git

Installation

  1. Clone the repository:
git clone https://github.com/Prashant-ambati/llava-implementation.git
cd llava-implementation
  1. Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt

Running Locally

  1. Start the development server:
python src/api/app.py
  1. Open your browser and navigate to:
http://localhost:7860

๐ŸŒ Web Deployment

Hugging Face Spaces

The application is deployed on Hugging Face Spaces:

  • Live Demo
  • Automatic deployment from main branch
  • Free GPU resources
  • Public API access

Local Deployment

For local deployment:

# Build the application
python -m build

# Run with production settings
python src/api/app.py --production

๐Ÿ“š Documentation

๐Ÿ› ๏ธ Development

Running Tests

pytest tests/

Code Style

This project follows PEP 8 guidelines. To check your code:

flake8 src/
black src/

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

๐Ÿ“ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ™ Acknowledgments

๐Ÿ“ž Contact

  • GitHub Issues: Report a bug
  • Email: [Your Email]
  • Twitter: [@YourTwitter]