# LLaVA Implementation [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/) [![Gradio](https://img.shields.io/badge/Gradio-4.44.1-orange.svg)](https://gradio.app/) [![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Prashant26am/llava-chat) ## 📝 About This project is an implementation of LLaVA (Large Language and Vision Assistant), a powerful multimodal AI model that combines vision and language understanding. Here's what makes this implementation special: ### 🎯 Key Features - **Multimodal Understanding** - Seamless integration of vision and language models - Real-time image analysis and description - Natural language interaction about visual content - Support for various image types and formats - **Model Architecture** - CLIP ViT vision encoder for robust image understanding - TinyLlama language model for efficient text generation - Custom projection layer for vision-language alignment - Memory-optimized for deployment on various platforms - **User Interface** - Modern Gradio-based web interface - Real-time image processing - Interactive chat experience - Customizable generation parameters - Responsive design for all devices - **Technical Highlights** - CPU-optimized implementation - Memory-efficient model loading - Fast inference with optimized settings - Robust error handling and logging - Easy deployment on Hugging Face Spaces ### 🛠️ Technology Stack - **Core Technologies** - PyTorch for deep learning - Transformers for model architecture - Gradio for web interface - FastAPI for backend services - Hugging Face for model hosting - **Development Tools** - Pre-commit hooks for code quality - GitHub Actions for CI/CD - Comprehensive testing suite - Detailed documentation - Development guidelines ### 🌟 Use Cases - **Image Understanding** - Scene description and analysis - Object detection and recognition - Visual question answering - Image-based conversations - **Applications** - Educational tools - Content moderation - Visual assistance - Research and development - Creative content generation ### 🔄 Project Status - **Current Version**: 1.0.0 - **Active Development**: Yes - **Production Ready**: Yes - **Community Support**: Open for contributions ### 📊 Performance - **Model Size**: Optimized for CPU deployment - **Response Time**: Real-time processing - **Memory Usage**: Efficient resource utilization - **Scalability**: Ready for production deployment ### 🤝 Community - **Contributions**: Open for pull requests - **Issues**: Active issue tracking - **Documentation**: Comprehensive guides - **Support**: Community-driven help ### 🔮 Future Roadmap - [ ] Support for video processing - [ ] Additional model variants - [ ] Enhanced memory optimization - [ ] Extended API capabilities - [ ] More interactive features ### 📚 Resources - [Paper](https://arxiv.org/abs/2304.08485) - [Documentation](docs/) - [API Reference](docs/api/) - [Examples](examples/) - [Contributing Guide](CONTRIBUTING.md) ## 🌟 Features - **Modern Web Interface** - Beautiful Gradio-based UI - Real-time image analysis - Interactive chat experience - Responsive design - **Advanced AI Capabilities** - CLIP ViT-L/14 vision encoder - Vicuna-7B language model - Multimodal understanding - Natural conversation flow - **Developer Friendly** - Clean, modular codebase - Comprehensive documentation - Easy deployment options - Extensible architecture ## 📋 Project Structure ``` llava_implementation/ ├── src/ # Source code │ ├── api/ # API endpoints and FastAPI app │ ├── models/ # Model implementations │ ├── utils/ # Utility functions │ └── configs/ # Configuration files ├── tests/ # Test suite ├── docs/ # Documentation │ ├── api/ # API documentation │ ├── examples/ # Usage examples │ └── guides/ # User and developer guides ├── assets/ # Static assets │ ├── images/ # Example images │ └── icons/ # UI icons ├── scripts/ # Utility scripts └── examples/ # Example images for the web interface ``` ## 🚀 Quick Start ### Prerequisites - Python 3.8+ - CUDA-capable GPU (recommended) - Git ### Installation 1. Clone the repository: ```bash git clone https://github.com/Prashant-ambati/llava-implementation.git cd llava-implementation ``` 2. Create and activate a virtual environment: ```bash python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate ``` 3. Install dependencies: ```bash pip install -r requirements.txt ``` ### Running Locally 1. Start the development server: ```bash python src/api/app.py ``` 2. Open your browser and navigate to: ``` http://localhost:7860 ``` ## 🌐 Web Deployment ### Hugging Face Spaces The application is deployed on Hugging Face Spaces: - [Live Demo](https://huggingface.co/spaces/Prashant26am/llava-chat) - Automatic deployment from main branch - Free GPU resources - Public API access ### Local Deployment For local deployment: ```bash # Build the application python -m build # Run with production settings python src/api/app.py --production ``` ## 📚 Documentation - [API Documentation](docs/api/README.md) - [User Guide](docs/guides/user_guide.md) - [Developer Guide](docs/guides/developer_guide.md) - [Examples](docs/examples/README.md) ## 🛠️ Development ### Running Tests ```bash pytest tests/ ``` ### Code Style This project follows PEP 8 guidelines. To check your code: ```bash flake8 src/ black src/ ``` ### Contributing 1. Fork the repository 2. Create a feature branch 3. Commit your changes 4. Push to the branch 5. Create a Pull Request ## 📝 License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## 🙏 Acknowledgments - [LLaVA Paper](https://arxiv.org/abs/2304.08485) by Microsoft Research - [Gradio](https://gradio.app/) for the web interface - [Hugging Face](https://huggingface.co/) for model hosting - [Vicuna](https://lmsys.org/blog/2023-03-30-vicuna/) for the language model - [CLIP](https://openai.com/research/clip) for the vision model ## 📞 Contact - GitHub Issues: [Report a bug](https://github.com/Prashant-ambati/llava-implementation/issues) - Email: [Your Email] - Twitter: [@YourTwitter]