utrecht-pollution-prediction / data_loading.py
Mihkelmj's picture
added daily_api_pollution.py and data_loading files to the repo; data_loading needs to be modified for inference
6a440fc
raw
history blame
9.89 kB
import numpy as np
import pandas as pd
def create_lag_features_for_single_day(data, random_index, lag_days):
lag_features = [
column
for column in data.columns
if column
in [
"O3",
"NO2",
"wind_speed",
"mean_temp",
"global_radiation",
"percipitation",
"pressure",
"minimum_visibility",
"humidity",
]
]
lagged_data = {}
for feature in lag_features:
for lag in range(1, lag_days + 1):
try:
lagged_value = data.loc[random_index - lag, feature]
lagged_data[f"{feature}_lag_{lag}"] = lagged_value
except IndexError:
print(
f"Value not found for feature {feature} lagged by {lag} from day {random_index}"
)
continue
# Add together lagged features, non-lagged features and date
current_data = data.iloc[random_index].to_dict()
current_data.update(lagged_data)
return pd.DataFrame([current_data])
def create_targets_for_single_day(data, random_index, target_column, days_ahead):
targets = {}
for day in range(1, days_ahead + 1):
future_index = random_index + day
try:
targets[f"{target_column}_{day}_days_ahead"] = data.loc[
future_index, target_column
]
except IndexError:
print(
f"Value not found for particle {target_column} forwarded by {day} day"
)
return pd.DataFrame([targets])
def load_data_batch(data, target_particle, lag_days):
data["date"] = pd.to_datetime(data["date"])
# Exclude period with missing O3 data + buffer before and after for targets and lag features
start_exclusion = pd.to_datetime("2022-01-01") - pd.Timedelta(days=3)
end_exclusion = pd.to_datetime("2022-04-27") + pd.Timedelta(days=lag_days)
valid_data = data[
~((data["date"] >= start_exclusion) & (data["date"] <= end_exclusion))
]
valid_data = valid_data[
lag_days:-3
] # also exclude first seven and last three days of the dataset
# Get random day in the valid data
random_index = np.random.choice(valid_data.index, 1)[0]
# Create lag features for the selected day
train_data = create_lag_features_for_single_day(data, random_index, lag_days)
targets = create_targets_for_single_day(
data, random_index, target_particle, days_ahead=3
)
return train_data, targets
def create_features_and_targets(
data,
target_particle, # Added this parameter
lag_days=7,
sma_days=7,
days_ahead=3,
):
"""
Creates lagged features, SMA features, last year's particle data (NO2 and O3) for specific days,
sine and cosine transformations for 'weekday' and 'month', and target variables for the specified
particle ('O3' or 'NO2') for the next 'days_ahead' days. Scales features and targets without
disregarding outliers and saves the scalers for inverse scaling. Splits the data into train,
validation, and test sets using the most recent dates. Prints the number of rows with missing
values dropped from the dataset.
Parameters:
- data (pd.DataFrame): The input time-series dataset.
- target_particle (str): The target particle ('O3' or 'NO2') for which targets are created.
- lag_days (int): Number of lag days to create features for (default 7).
- sma_days (int): Window size for Simple Moving Average (default 7).
- days_ahead (int): Number of days ahead to create target variables for (default 3).
Returns:
- X_train_scaled (pd.DataFrame): Scaled training features.
- y_train_scaled (pd.DataFrame): Scaled training targets.
- X_val_scaled (pd.DataFrame): Scaled validation features (365 days).
- y_val_scaled (pd.DataFrame): Scaled validation targets (365 days).
- X_test_scaled (pd.DataFrame): Scaled test features (365 days).
- y_test_scaled (pd.DataFrame): Scaled test targets (365 days).
"""
import warnings
import joblib
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
warnings.filterwarnings("ignore")
lag_features = [
"NO2",
"O3",
"wind_speed",
"mean_temp",
"global_radiation",
"minimum_visibility",
"humidity",
]
if target_particle == "NO2":
lag_features = lag_features + ["percipitation", "pressure"]
if target_particle not in ["O3", "NO2"]:
raise ValueError("target_particle must be 'O3' or 'NO2'")
data = data.copy()
data["date"] = pd.to_datetime(data["date"])
data = data.sort_values("date").reset_index(drop=True)
# Extract 'weekday' and 'month' from 'date' if not present
if "weekday" not in data.columns or data["weekday"].dtype == object:
data["weekday"] = data["date"].dt.weekday # Monday=0, Sunday=6
if "month" not in data.columns:
data["month"] = data["date"].dt.month # 1 to 12
# Create sine and cosine transformations for 'weekday' and 'month'
data["weekday_sin"] = np.sin(2 * np.pi * data["weekday"] / 7)
data["weekday_cos"] = np.cos(2 * np.pi * data["weekday"] / 7)
data["month_sin"] = np.sin(
2 * np.pi * (data["month"] - 1) / 12
) # Adjust month to 0-11
data["month_cos"] = np.cos(2 * np.pi * (data["month"] - 1) / 12)
# Create lagged features for the specified lag days
for feature in lag_features:
for lag in range(1, lag_days + 1):
data[f"{feature}_lag_{lag}"] = data[feature].shift(lag)
# Create SMA features
for feature in lag_features:
data[f"{feature}_sma_{sma_days}"] = (
data[feature].rolling(window=sma_days).mean()
)
# Create particle data (NO2 and O3) from the same time last year
# Today last year
data["O3_last_year"] = data["O3"].shift(365)
data["NO2_last_year"] = data["NO2"].shift(365)
# 7 days before today last year
for i in range(1, lag_days + 1):
data[f"O3_last_year_{i}_days_before"] = data["O3"].shift(365 + i)
data[f"NO2_last_year_{i}_days_before"] = data["NO2"].shift(365 + i)
# 3 days after today last year
data["O3_last_year_3_days_after"] = data["O3"].shift(365 - 3)
data["NO2_last_year_3_days_after"] = data["NO2"].shift(365 - 3)
# Create targets only for the specified particle for the next 'days_ahead' days
for day in range(1, days_ahead + 1):
data[f"{target_particle}_plus_{day}_day"] = data[target_particle].shift(-day)
# Calculate the number of rows before dropping missing values
rows_before = data.shape[0]
# Drop missing values
data = data.dropna().reset_index(drop=True)
# Calculate the number of rows after dropping missing values
rows_after = data.shape[0]
# Calculate and print the number of rows dropped
rows_dropped = rows_before - rows_after
print(f"Number of rows with missing values dropped: {rows_dropped}")
# Now, split data into train, validation, and test sets using the most recent dates
total_days = data.shape[0]
test_size = 365
val_size = 365
if total_days < test_size + val_size:
raise ValueError(
"Not enough data to create validation and test sets of 365 days each."
)
# Ensure the data is sorted by date in ascending order
data = data.sort_values("date").reset_index(drop=True)
# Split data
train_data = data.iloc[: -(val_size + test_size)]
val_data = data.iloc[-(val_size + test_size) : -test_size]
test_data = data.iloc[-test_size:]
# Define target columns for the specified particle
target_cols = [
f"{target_particle}_plus_{day}_day" for day in range(1, days_ahead + 1)
]
# Define feature columns
exclude_cols = ["date", "weekday", "month"] + target_cols
feature_cols = [col for col in data.columns if col not in exclude_cols]
# Split features and targets
X_train = train_data[feature_cols]
y_train = train_data[target_cols]
X_val = val_data[feature_cols]
y_val = val_data[target_cols]
X_test = test_data[feature_cols]
y_test = test_data[target_cols]
# Initialize scalers
feature_scaler = StandardScaler()
target_scaler = StandardScaler()
# Fit the scalers on the training data
X_train_scaled = feature_scaler.fit_transform(X_train)
y_train_scaled = target_scaler.fit_transform(y_train)
# Apply the scalers to validation and test data
X_val_scaled = feature_scaler.transform(X_val)
y_val_scaled = target_scaler.transform(y_val)
X_test_scaled = feature_scaler.transform(X_test)
y_test_scaled = target_scaler.transform(y_test)
# Convert scaled data back to DataFrame for consistency
X_train_scaled = pd.DataFrame(
X_train_scaled, columns=feature_cols, index=X_train.index
)
y_train_scaled = pd.DataFrame(
y_train_scaled, columns=target_cols, index=y_train.index
)
X_val_scaled = pd.DataFrame(X_val_scaled, columns=feature_cols, index=X_val.index)
y_val_scaled = pd.DataFrame(y_val_scaled, columns=target_cols, index=y_val.index)
X_test_scaled = pd.DataFrame(
X_test_scaled, columns=feature_cols, index=X_test.index
)
y_test_scaled = pd.DataFrame(y_test_scaled, columns=target_cols, index=y_test.index)
# Save the scalers to files
joblib.dump(feature_scaler, "feature_scaler.joblib")
# Save the target scaler with the particle name to distinguish
target_scaler_filename = f"target_scaler_{target_particle}.joblib"
joblib.dump(target_scaler, target_scaler_filename)
return (
X_train_scaled,
y_train_scaled,
X_val_scaled,
y_val_scaled,
X_test_scaled,
y_test_scaled,
)