File size: 9,888 Bytes
6a440fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import numpy as np
import pandas as pd


def create_lag_features_for_single_day(data, random_index, lag_days):
    lag_features = [
        column
        for column in data.columns
        if column
        in [
            "O3",
            "NO2",
            "wind_speed",
            "mean_temp",
            "global_radiation",
            "percipitation",
            "pressure",
            "minimum_visibility",
            "humidity",
        ]
    ]
    lagged_data = {}
    for feature in lag_features:
        for lag in range(1, lag_days + 1):
            try:
                lagged_value = data.loc[random_index - lag, feature]
                lagged_data[f"{feature}_lag_{lag}"] = lagged_value
            except IndexError:
                print(
                    f"Value not found for feature {feature} lagged by {lag} from day {random_index}"
                )
                continue

    # Add together lagged features, non-lagged features and date
    current_data = data.iloc[random_index].to_dict()
    current_data.update(lagged_data)
    return pd.DataFrame([current_data])


def create_targets_for_single_day(data, random_index, target_column, days_ahead):
    targets = {}
    for day in range(1, days_ahead + 1):
        future_index = random_index + day
        try:
            targets[f"{target_column}_{day}_days_ahead"] = data.loc[
                future_index, target_column
            ]
        except IndexError:
            print(
                f"Value not found for particle {target_column} forwarded by {day} day"
            )

    return pd.DataFrame([targets])


def load_data_batch(data, target_particle, lag_days):
    data["date"] = pd.to_datetime(data["date"])

    # Exclude period with missing O3 data + buffer before and after for targets and lag features
    start_exclusion = pd.to_datetime("2022-01-01") - pd.Timedelta(days=3)
    end_exclusion = pd.to_datetime("2022-04-27") + pd.Timedelta(days=lag_days)
    valid_data = data[
        ~((data["date"] >= start_exclusion) & (data["date"] <= end_exclusion))
    ]
    valid_data = valid_data[
        lag_days:-3
    ]  # also exclude first seven and last three days of the dataset

    # Get random day in the valid data
    random_index = np.random.choice(valid_data.index, 1)[0]

    # Create lag features for the selected day
    train_data = create_lag_features_for_single_day(data, random_index, lag_days)
    targets = create_targets_for_single_day(
        data, random_index, target_particle, days_ahead=3
    )

    return train_data, targets


def create_features_and_targets(
    data,
    target_particle,  # Added this parameter
    lag_days=7,
    sma_days=7,
    days_ahead=3,
):
    """
    Creates lagged features, SMA features, last year's particle data (NO2 and O3) for specific days,
    sine and cosine transformations for 'weekday' and 'month', and target variables for the specified
    particle ('O3' or 'NO2') for the next 'days_ahead' days. Scales features and targets without
    disregarding outliers and saves the scalers for inverse scaling. Splits the data into train,
    validation, and test sets using the most recent dates. Prints the number of rows with missing
    values dropped from the dataset.

    Parameters:
    - data (pd.DataFrame): The input time-series dataset.
    - target_particle (str): The target particle ('O3' or 'NO2') for which targets are created.
    - lag_days (int): Number of lag days to create features for (default 7).
    - sma_days (int): Window size for Simple Moving Average (default 7).
    - days_ahead (int): Number of days ahead to create target variables for (default 3).

    Returns:
    - X_train_scaled (pd.DataFrame): Scaled training features.
    - y_train_scaled (pd.DataFrame): Scaled training targets.
    - X_val_scaled (pd.DataFrame): Scaled validation features (365 days).
    - y_val_scaled (pd.DataFrame): Scaled validation targets (365 days).
    - X_test_scaled (pd.DataFrame): Scaled test features (365 days).
    - y_test_scaled (pd.DataFrame): Scaled test targets (365 days).
    """
    import warnings

    import joblib
    import numpy as np
    import pandas as pd
    from sklearn.preprocessing import StandardScaler

    warnings.filterwarnings("ignore")

    lag_features = [
        "NO2",
        "O3",
        "wind_speed",
        "mean_temp",
        "global_radiation",
        "minimum_visibility",
        "humidity",
    ]
    if target_particle == "NO2":
        lag_features = lag_features + ["percipitation", "pressure"]

    if target_particle not in ["O3", "NO2"]:
        raise ValueError("target_particle must be 'O3' or 'NO2'")

    data = data.copy()
    data["date"] = pd.to_datetime(data["date"])
    data = data.sort_values("date").reset_index(drop=True)

    # Extract 'weekday' and 'month' from 'date' if not present
    if "weekday" not in data.columns or data["weekday"].dtype == object:
        data["weekday"] = data["date"].dt.weekday  # Monday=0, Sunday=6
    if "month" not in data.columns:
        data["month"] = data["date"].dt.month  # 1 to 12

    # Create sine and cosine transformations for 'weekday' and 'month'
    data["weekday_sin"] = np.sin(2 * np.pi * data["weekday"] / 7)
    data["weekday_cos"] = np.cos(2 * np.pi * data["weekday"] / 7)
    data["month_sin"] = np.sin(
        2 * np.pi * (data["month"] - 1) / 12
    )  # Adjust month to 0-11
    data["month_cos"] = np.cos(2 * np.pi * (data["month"] - 1) / 12)

    # Create lagged features for the specified lag days
    for feature in lag_features:
        for lag in range(1, lag_days + 1):
            data[f"{feature}_lag_{lag}"] = data[feature].shift(lag)

    # Create SMA features
    for feature in lag_features:
        data[f"{feature}_sma_{sma_days}"] = (
            data[feature].rolling(window=sma_days).mean()
        )

    # Create particle data (NO2 and O3) from the same time last year
    # Today last year
    data["O3_last_year"] = data["O3"].shift(365)
    data["NO2_last_year"] = data["NO2"].shift(365)

    # 7 days before today last year
    for i in range(1, lag_days + 1):
        data[f"O3_last_year_{i}_days_before"] = data["O3"].shift(365 + i)
        data[f"NO2_last_year_{i}_days_before"] = data["NO2"].shift(365 + i)

    # 3 days after today last year
    data["O3_last_year_3_days_after"] = data["O3"].shift(365 - 3)
    data["NO2_last_year_3_days_after"] = data["NO2"].shift(365 - 3)

    # Create targets only for the specified particle for the next 'days_ahead' days
    for day in range(1, days_ahead + 1):
        data[f"{target_particle}_plus_{day}_day"] = data[target_particle].shift(-day)

    # Calculate the number of rows before dropping missing values
    rows_before = data.shape[0]

    # Drop missing values
    data = data.dropna().reset_index(drop=True)

    # Calculate the number of rows after dropping missing values
    rows_after = data.shape[0]

    # Calculate and print the number of rows dropped
    rows_dropped = rows_before - rows_after
    print(f"Number of rows with missing values dropped: {rows_dropped}")

    # Now, split data into train, validation, and test sets using the most recent dates
    total_days = data.shape[0]
    test_size = 365
    val_size = 365

    if total_days < test_size + val_size:
        raise ValueError(
            "Not enough data to create validation and test sets of 365 days each."
        )

    # Ensure the data is sorted by date in ascending order
    data = data.sort_values("date").reset_index(drop=True)

    # Split data
    train_data = data.iloc[: -(val_size + test_size)]
    val_data = data.iloc[-(val_size + test_size) : -test_size]
    test_data = data.iloc[-test_size:]

    # Define target columns for the specified particle
    target_cols = [
        f"{target_particle}_plus_{day}_day" for day in range(1, days_ahead + 1)
    ]

    # Define feature columns
    exclude_cols = ["date", "weekday", "month"] + target_cols
    feature_cols = [col for col in data.columns if col not in exclude_cols]

    # Split features and targets
    X_train = train_data[feature_cols]
    y_train = train_data[target_cols]

    X_val = val_data[feature_cols]
    y_val = val_data[target_cols]

    X_test = test_data[feature_cols]
    y_test = test_data[target_cols]

    # Initialize scalers
    feature_scaler = StandardScaler()
    target_scaler = StandardScaler()

    # Fit the scalers on the training data
    X_train_scaled = feature_scaler.fit_transform(X_train)
    y_train_scaled = target_scaler.fit_transform(y_train)

    # Apply the scalers to validation and test data
    X_val_scaled = feature_scaler.transform(X_val)
    y_val_scaled = target_scaler.transform(y_val)

    X_test_scaled = feature_scaler.transform(X_test)
    y_test_scaled = target_scaler.transform(y_test)

    # Convert scaled data back to DataFrame for consistency
    X_train_scaled = pd.DataFrame(
        X_train_scaled, columns=feature_cols, index=X_train.index
    )
    y_train_scaled = pd.DataFrame(
        y_train_scaled, columns=target_cols, index=y_train.index
    )

    X_val_scaled = pd.DataFrame(X_val_scaled, columns=feature_cols, index=X_val.index)
    y_val_scaled = pd.DataFrame(y_val_scaled, columns=target_cols, index=y_val.index)

    X_test_scaled = pd.DataFrame(
        X_test_scaled, columns=feature_cols, index=X_test.index
    )
    y_test_scaled = pd.DataFrame(y_test_scaled, columns=target_cols, index=y_test.index)

    # Save the scalers to files
    joblib.dump(feature_scaler, "feature_scaler.joblib")
    # Save the target scaler with the particle name to distinguish
    target_scaler_filename = f"target_scaler_{target_particle}.joblib"
    joblib.dump(target_scaler, target_scaler_filename)

    return (
        X_train_scaled,
        y_train_scaled,
        X_val_scaled,
        y_val_scaled,
        X_test_scaled,
        y_test_scaled,
    )