added daily_api_pollution.py and data_loading files to the repo; data_loading needs to be modified for inference
Browse files- daily_api__pollution.py +161 -0
- data_loading.py +276 -0
daily_api__pollution.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import http.client
|
2 |
+
from datetime import date, timedelta
|
3 |
+
import pandas as pd
|
4 |
+
from io import StringIO
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
import csv
|
8 |
+
|
9 |
+
def api_call():
|
10 |
+
particles = ["NO2", "O3"]
|
11 |
+
stations = ["NL10636", "NL10639", "NL10643"]
|
12 |
+
all_dataframes = []
|
13 |
+
today = date.today().isoformat() + "T09:00:00Z"
|
14 |
+
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
|
15 |
+
latest_date = (date.today() - timedelta(7)).isoformat() + "T09:00:00Z"
|
16 |
+
days_today = 0
|
17 |
+
days_yesterday = 1
|
18 |
+
while(today != latest_date):
|
19 |
+
days_today += 1
|
20 |
+
days_yesterday += 1
|
21 |
+
for particle in particles:
|
22 |
+
for station in stations:
|
23 |
+
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
|
24 |
+
payload = ''
|
25 |
+
headers = {}
|
26 |
+
conn.request("GET", f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}", payload, headers)
|
27 |
+
res = conn.getresponse()
|
28 |
+
data = res.read()
|
29 |
+
decoded_data = data.decode("utf-8")
|
30 |
+
df = pd.read_csv(StringIO(decoded_data))
|
31 |
+
df = df.filter(like='value')
|
32 |
+
all_dataframes.append(df)
|
33 |
+
combined_data = pd.concat(all_dataframes, ignore_index=True)
|
34 |
+
combined_data.to_csv(f'{particle}_{today}.csv', index=False)
|
35 |
+
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
|
36 |
+
yesterday = (date.today() - timedelta(days_yesterday)).isoformat() + "T09:00:00Z"
|
37 |
+
|
38 |
+
def delete_csv(csvs):
|
39 |
+
for csv in csvs:
|
40 |
+
if(os.path.exists(csv) and os.path.isfile(csv)):
|
41 |
+
os.remove(csv)
|
42 |
+
|
43 |
+
def clean_values():
|
44 |
+
particles = ["NO2", "O3"]
|
45 |
+
csvs = []
|
46 |
+
NO2 = []
|
47 |
+
O3 = []
|
48 |
+
today = date.today().isoformat() + "T09:00:00Z"
|
49 |
+
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
|
50 |
+
latest_date = (date.today() - timedelta(7)).isoformat() + "T09:00:00Z"
|
51 |
+
days_today = 0
|
52 |
+
while(today != latest_date):
|
53 |
+
for particle in particles:
|
54 |
+
name = f'{particle}_{today}.csv'
|
55 |
+
csvs.append(name)
|
56 |
+
days_today += 1
|
57 |
+
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
|
58 |
+
for csv_file in csvs:
|
59 |
+
values = [] # Reset values for each CSV file
|
60 |
+
# Open the CSV file and read the values
|
61 |
+
with open(csv_file, 'r') as file:
|
62 |
+
reader = csv.reader(file)
|
63 |
+
for row in reader:
|
64 |
+
for value in row:
|
65 |
+
# Use regular expressions to extract numeric part
|
66 |
+
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", value)
|
67 |
+
if cleaned_value: # If we successfully extract a number
|
68 |
+
values.append(float(cleaned_value[0])) # Convert the first match to float
|
69 |
+
|
70 |
+
# Compute the average if the values list is not empty
|
71 |
+
if values:
|
72 |
+
avg = sum(values) / len(values)
|
73 |
+
if "NO2" in csv_file:
|
74 |
+
NO2.append(avg)
|
75 |
+
else:
|
76 |
+
O3.append(avg)
|
77 |
+
|
78 |
+
delete_csv(csvs)
|
79 |
+
|
80 |
+
return NO2, O3
|
81 |
+
|
82 |
+
|
83 |
+
def add_columns():
|
84 |
+
file_path = 'weather_data.csv'
|
85 |
+
df = pd.read_csv(file_path)
|
86 |
+
|
87 |
+
df.insert(1, 'NO2', None)
|
88 |
+
df.insert(2, 'O3', None)
|
89 |
+
df.insert(10, 'weekday', None)
|
90 |
+
|
91 |
+
df.to_csv('combined_data.csv', index=False)
|
92 |
+
|
93 |
+
|
94 |
+
def scale():
|
95 |
+
file_path = 'combined_data.csv'
|
96 |
+
df = pd.read_csv(file_path)
|
97 |
+
columns = list(df.columns)
|
98 |
+
|
99 |
+
|
100 |
+
columns.insert(3, columns.pop(6))
|
101 |
+
|
102 |
+
df = df[columns]
|
103 |
+
|
104 |
+
columns.insert(5, columns.pop(9))
|
105 |
+
|
106 |
+
df = df[columns]
|
107 |
+
|
108 |
+
columns.insert(9, columns.pop(6))
|
109 |
+
|
110 |
+
df = df[columns]
|
111 |
+
|
112 |
+
df = df.rename(columns={
|
113 |
+
'datetime':'date',
|
114 |
+
'windspeed': 'wind_speed',
|
115 |
+
'temp': 'mean_temp',
|
116 |
+
'solarradiation':'global_radiation',
|
117 |
+
'precip':'percipitation',
|
118 |
+
'sealevelpressure':'pressure',
|
119 |
+
'visibility':'minimum_visibility'
|
120 |
+
})
|
121 |
+
|
122 |
+
df['date'] = pd.to_datetime(df['date'])
|
123 |
+
df['weekday'] = df['date'].dt.day_name()
|
124 |
+
|
125 |
+
|
126 |
+
df['wind_speed'] = (df['wind_speed'] / 3.6) * 10
|
127 |
+
df['mean_temp'] = df['mean_temp'] * 10
|
128 |
+
df['minimum_visibility'] = df['minimum_visibility'] * 10
|
129 |
+
df['percipitation'] = df['percipitation'] * 10
|
130 |
+
df['pressure'] = df['pressure'] * 10
|
131 |
+
|
132 |
+
df['wind_speed'] = df['wind_speed'].astype(int)
|
133 |
+
df['mean_temp'] = df['mean_temp'].astype(int)
|
134 |
+
df['minimum_visibility'] = df['minimum_visibility'].astype(int)
|
135 |
+
df['percipitation'] = df['percipitation'].astype(int)
|
136 |
+
df['pressure'] = df['pressure'].astype(int)
|
137 |
+
df['humidity'] = df['humidity'].astype(int)
|
138 |
+
df['global_radiation'] = df['global_radiation'].astype(int)
|
139 |
+
|
140 |
+
df.to_csv('recorded_data.csv', index=False)
|
141 |
+
|
142 |
+
def insert_pollution(NO2, O3):
|
143 |
+
file_path = 'recorded_data.csv'
|
144 |
+
df = pd.read_csv(file_path)
|
145 |
+
start_index = 0
|
146 |
+
while NO2:
|
147 |
+
df.loc[start_index, 'NO2'] = NO2.pop()
|
148 |
+
start_index += 1
|
149 |
+
start_index = 0
|
150 |
+
while O3:
|
151 |
+
df.loc[start_index, 'O3'] = O3.pop()
|
152 |
+
start_index += 1
|
153 |
+
df.to_csv('recorded_data.csv', index=False)
|
154 |
+
|
155 |
+
api_call()
|
156 |
+
NO2, O3 = clean_values()
|
157 |
+
add_columns()
|
158 |
+
scale()
|
159 |
+
insert_pollution(NO2, O3)
|
160 |
+
os.remove('combined_data.csv')
|
161 |
+
os.remove('weather_data.csv')
|
data_loading.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
|
5 |
+
def create_lag_features_for_single_day(data, random_index, lag_days):
|
6 |
+
lag_features = [
|
7 |
+
column
|
8 |
+
for column in data.columns
|
9 |
+
if column
|
10 |
+
in [
|
11 |
+
"O3",
|
12 |
+
"NO2",
|
13 |
+
"wind_speed",
|
14 |
+
"mean_temp",
|
15 |
+
"global_radiation",
|
16 |
+
"percipitation",
|
17 |
+
"pressure",
|
18 |
+
"minimum_visibility",
|
19 |
+
"humidity",
|
20 |
+
]
|
21 |
+
]
|
22 |
+
lagged_data = {}
|
23 |
+
for feature in lag_features:
|
24 |
+
for lag in range(1, lag_days + 1):
|
25 |
+
try:
|
26 |
+
lagged_value = data.loc[random_index - lag, feature]
|
27 |
+
lagged_data[f"{feature}_lag_{lag}"] = lagged_value
|
28 |
+
except IndexError:
|
29 |
+
print(
|
30 |
+
f"Value not found for feature {feature} lagged by {lag} from day {random_index}"
|
31 |
+
)
|
32 |
+
continue
|
33 |
+
|
34 |
+
# Add together lagged features, non-lagged features and date
|
35 |
+
current_data = data.iloc[random_index].to_dict()
|
36 |
+
current_data.update(lagged_data)
|
37 |
+
return pd.DataFrame([current_data])
|
38 |
+
|
39 |
+
|
40 |
+
def create_targets_for_single_day(data, random_index, target_column, days_ahead):
|
41 |
+
targets = {}
|
42 |
+
for day in range(1, days_ahead + 1):
|
43 |
+
future_index = random_index + day
|
44 |
+
try:
|
45 |
+
targets[f"{target_column}_{day}_days_ahead"] = data.loc[
|
46 |
+
future_index, target_column
|
47 |
+
]
|
48 |
+
except IndexError:
|
49 |
+
print(
|
50 |
+
f"Value not found for particle {target_column} forwarded by {day} day"
|
51 |
+
)
|
52 |
+
|
53 |
+
return pd.DataFrame([targets])
|
54 |
+
|
55 |
+
|
56 |
+
def load_data_batch(data, target_particle, lag_days):
|
57 |
+
data["date"] = pd.to_datetime(data["date"])
|
58 |
+
|
59 |
+
# Exclude period with missing O3 data + buffer before and after for targets and lag features
|
60 |
+
start_exclusion = pd.to_datetime("2022-01-01") - pd.Timedelta(days=3)
|
61 |
+
end_exclusion = pd.to_datetime("2022-04-27") + pd.Timedelta(days=lag_days)
|
62 |
+
valid_data = data[
|
63 |
+
~((data["date"] >= start_exclusion) & (data["date"] <= end_exclusion))
|
64 |
+
]
|
65 |
+
valid_data = valid_data[
|
66 |
+
lag_days:-3
|
67 |
+
] # also exclude first seven and last three days of the dataset
|
68 |
+
|
69 |
+
# Get random day in the valid data
|
70 |
+
random_index = np.random.choice(valid_data.index, 1)[0]
|
71 |
+
|
72 |
+
# Create lag features for the selected day
|
73 |
+
train_data = create_lag_features_for_single_day(data, random_index, lag_days)
|
74 |
+
targets = create_targets_for_single_day(
|
75 |
+
data, random_index, target_particle, days_ahead=3
|
76 |
+
)
|
77 |
+
|
78 |
+
return train_data, targets
|
79 |
+
|
80 |
+
|
81 |
+
def create_features_and_targets(
|
82 |
+
data,
|
83 |
+
target_particle, # Added this parameter
|
84 |
+
lag_days=7,
|
85 |
+
sma_days=7,
|
86 |
+
days_ahead=3,
|
87 |
+
):
|
88 |
+
"""
|
89 |
+
Creates lagged features, SMA features, last year's particle data (NO2 and O3) for specific days,
|
90 |
+
sine and cosine transformations for 'weekday' and 'month', and target variables for the specified
|
91 |
+
particle ('O3' or 'NO2') for the next 'days_ahead' days. Scales features and targets without
|
92 |
+
disregarding outliers and saves the scalers for inverse scaling. Splits the data into train,
|
93 |
+
validation, and test sets using the most recent dates. Prints the number of rows with missing
|
94 |
+
values dropped from the dataset.
|
95 |
+
|
96 |
+
Parameters:
|
97 |
+
- data (pd.DataFrame): The input time-series dataset.
|
98 |
+
- target_particle (str): The target particle ('O3' or 'NO2') for which targets are created.
|
99 |
+
- lag_days (int): Number of lag days to create features for (default 7).
|
100 |
+
- sma_days (int): Window size for Simple Moving Average (default 7).
|
101 |
+
- days_ahead (int): Number of days ahead to create target variables for (default 3).
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
- X_train_scaled (pd.DataFrame): Scaled training features.
|
105 |
+
- y_train_scaled (pd.DataFrame): Scaled training targets.
|
106 |
+
- X_val_scaled (pd.DataFrame): Scaled validation features (365 days).
|
107 |
+
- y_val_scaled (pd.DataFrame): Scaled validation targets (365 days).
|
108 |
+
- X_test_scaled (pd.DataFrame): Scaled test features (365 days).
|
109 |
+
- y_test_scaled (pd.DataFrame): Scaled test targets (365 days).
|
110 |
+
"""
|
111 |
+
import warnings
|
112 |
+
|
113 |
+
import joblib
|
114 |
+
import numpy as np
|
115 |
+
import pandas as pd
|
116 |
+
from sklearn.preprocessing import StandardScaler
|
117 |
+
|
118 |
+
warnings.filterwarnings("ignore")
|
119 |
+
|
120 |
+
lag_features = [
|
121 |
+
"NO2",
|
122 |
+
"O3",
|
123 |
+
"wind_speed",
|
124 |
+
"mean_temp",
|
125 |
+
"global_radiation",
|
126 |
+
"minimum_visibility",
|
127 |
+
"humidity",
|
128 |
+
]
|
129 |
+
if target_particle == "NO2":
|
130 |
+
lag_features = lag_features + ["percipitation", "pressure"]
|
131 |
+
|
132 |
+
if target_particle not in ["O3", "NO2"]:
|
133 |
+
raise ValueError("target_particle must be 'O3' or 'NO2'")
|
134 |
+
|
135 |
+
data = data.copy()
|
136 |
+
data["date"] = pd.to_datetime(data["date"])
|
137 |
+
data = data.sort_values("date").reset_index(drop=True)
|
138 |
+
|
139 |
+
# Extract 'weekday' and 'month' from 'date' if not present
|
140 |
+
if "weekday" not in data.columns or data["weekday"].dtype == object:
|
141 |
+
data["weekday"] = data["date"].dt.weekday # Monday=0, Sunday=6
|
142 |
+
if "month" not in data.columns:
|
143 |
+
data["month"] = data["date"].dt.month # 1 to 12
|
144 |
+
|
145 |
+
# Create sine and cosine transformations for 'weekday' and 'month'
|
146 |
+
data["weekday_sin"] = np.sin(2 * np.pi * data["weekday"] / 7)
|
147 |
+
data["weekday_cos"] = np.cos(2 * np.pi * data["weekday"] / 7)
|
148 |
+
data["month_sin"] = np.sin(
|
149 |
+
2 * np.pi * (data["month"] - 1) / 12
|
150 |
+
) # Adjust month to 0-11
|
151 |
+
data["month_cos"] = np.cos(2 * np.pi * (data["month"] - 1) / 12)
|
152 |
+
|
153 |
+
# Create lagged features for the specified lag days
|
154 |
+
for feature in lag_features:
|
155 |
+
for lag in range(1, lag_days + 1):
|
156 |
+
data[f"{feature}_lag_{lag}"] = data[feature].shift(lag)
|
157 |
+
|
158 |
+
# Create SMA features
|
159 |
+
for feature in lag_features:
|
160 |
+
data[f"{feature}_sma_{sma_days}"] = (
|
161 |
+
data[feature].rolling(window=sma_days).mean()
|
162 |
+
)
|
163 |
+
|
164 |
+
# Create particle data (NO2 and O3) from the same time last year
|
165 |
+
# Today last year
|
166 |
+
data["O3_last_year"] = data["O3"].shift(365)
|
167 |
+
data["NO2_last_year"] = data["NO2"].shift(365)
|
168 |
+
|
169 |
+
# 7 days before today last year
|
170 |
+
for i in range(1, lag_days + 1):
|
171 |
+
data[f"O3_last_year_{i}_days_before"] = data["O3"].shift(365 + i)
|
172 |
+
data[f"NO2_last_year_{i}_days_before"] = data["NO2"].shift(365 + i)
|
173 |
+
|
174 |
+
# 3 days after today last year
|
175 |
+
data["O3_last_year_3_days_after"] = data["O3"].shift(365 - 3)
|
176 |
+
data["NO2_last_year_3_days_after"] = data["NO2"].shift(365 - 3)
|
177 |
+
|
178 |
+
# Create targets only for the specified particle for the next 'days_ahead' days
|
179 |
+
for day in range(1, days_ahead + 1):
|
180 |
+
data[f"{target_particle}_plus_{day}_day"] = data[target_particle].shift(-day)
|
181 |
+
|
182 |
+
# Calculate the number of rows before dropping missing values
|
183 |
+
rows_before = data.shape[0]
|
184 |
+
|
185 |
+
# Drop missing values
|
186 |
+
data = data.dropna().reset_index(drop=True)
|
187 |
+
|
188 |
+
# Calculate the number of rows after dropping missing values
|
189 |
+
rows_after = data.shape[0]
|
190 |
+
|
191 |
+
# Calculate and print the number of rows dropped
|
192 |
+
rows_dropped = rows_before - rows_after
|
193 |
+
print(f"Number of rows with missing values dropped: {rows_dropped}")
|
194 |
+
|
195 |
+
# Now, split data into train, validation, and test sets using the most recent dates
|
196 |
+
total_days = data.shape[0]
|
197 |
+
test_size = 365
|
198 |
+
val_size = 365
|
199 |
+
|
200 |
+
if total_days < test_size + val_size:
|
201 |
+
raise ValueError(
|
202 |
+
"Not enough data to create validation and test sets of 365 days each."
|
203 |
+
)
|
204 |
+
|
205 |
+
# Ensure the data is sorted by date in ascending order
|
206 |
+
data = data.sort_values("date").reset_index(drop=True)
|
207 |
+
|
208 |
+
# Split data
|
209 |
+
train_data = data.iloc[: -(val_size + test_size)]
|
210 |
+
val_data = data.iloc[-(val_size + test_size) : -test_size]
|
211 |
+
test_data = data.iloc[-test_size:]
|
212 |
+
|
213 |
+
# Define target columns for the specified particle
|
214 |
+
target_cols = [
|
215 |
+
f"{target_particle}_plus_{day}_day" for day in range(1, days_ahead + 1)
|
216 |
+
]
|
217 |
+
|
218 |
+
# Define feature columns
|
219 |
+
exclude_cols = ["date", "weekday", "month"] + target_cols
|
220 |
+
feature_cols = [col for col in data.columns if col not in exclude_cols]
|
221 |
+
|
222 |
+
# Split features and targets
|
223 |
+
X_train = train_data[feature_cols]
|
224 |
+
y_train = train_data[target_cols]
|
225 |
+
|
226 |
+
X_val = val_data[feature_cols]
|
227 |
+
y_val = val_data[target_cols]
|
228 |
+
|
229 |
+
X_test = test_data[feature_cols]
|
230 |
+
y_test = test_data[target_cols]
|
231 |
+
|
232 |
+
# Initialize scalers
|
233 |
+
feature_scaler = StandardScaler()
|
234 |
+
target_scaler = StandardScaler()
|
235 |
+
|
236 |
+
# Fit the scalers on the training data
|
237 |
+
X_train_scaled = feature_scaler.fit_transform(X_train)
|
238 |
+
y_train_scaled = target_scaler.fit_transform(y_train)
|
239 |
+
|
240 |
+
# Apply the scalers to validation and test data
|
241 |
+
X_val_scaled = feature_scaler.transform(X_val)
|
242 |
+
y_val_scaled = target_scaler.transform(y_val)
|
243 |
+
|
244 |
+
X_test_scaled = feature_scaler.transform(X_test)
|
245 |
+
y_test_scaled = target_scaler.transform(y_test)
|
246 |
+
|
247 |
+
# Convert scaled data back to DataFrame for consistency
|
248 |
+
X_train_scaled = pd.DataFrame(
|
249 |
+
X_train_scaled, columns=feature_cols, index=X_train.index
|
250 |
+
)
|
251 |
+
y_train_scaled = pd.DataFrame(
|
252 |
+
y_train_scaled, columns=target_cols, index=y_train.index
|
253 |
+
)
|
254 |
+
|
255 |
+
X_val_scaled = pd.DataFrame(X_val_scaled, columns=feature_cols, index=X_val.index)
|
256 |
+
y_val_scaled = pd.DataFrame(y_val_scaled, columns=target_cols, index=y_val.index)
|
257 |
+
|
258 |
+
X_test_scaled = pd.DataFrame(
|
259 |
+
X_test_scaled, columns=feature_cols, index=X_test.index
|
260 |
+
)
|
261 |
+
y_test_scaled = pd.DataFrame(y_test_scaled, columns=target_cols, index=y_test.index)
|
262 |
+
|
263 |
+
# Save the scalers to files
|
264 |
+
joblib.dump(feature_scaler, "feature_scaler.joblib")
|
265 |
+
# Save the target scaler with the particle name to distinguish
|
266 |
+
target_scaler_filename = f"target_scaler_{target_particle}.joblib"
|
267 |
+
joblib.dump(target_scaler, target_scaler_filename)
|
268 |
+
|
269 |
+
return (
|
270 |
+
X_train_scaled,
|
271 |
+
y_train_scaled,
|
272 |
+
X_val_scaled,
|
273 |
+
y_val_scaled,
|
274 |
+
X_test_scaled,
|
275 |
+
y_test_scaled,
|
276 |
+
)
|