utrecht-pollution-prediction / daily_api__pollution.py
Mihkelmj's picture
added daily_api_pollution.py and data_loading files to the repo; data_loading needs to be modified for inference
6a440fc
raw
history blame
5.27 kB
import http.client
from datetime import date, timedelta
import pandas as pd
from io import StringIO
import os
import re
import csv
def api_call():
particles = ["NO2", "O3"]
stations = ["NL10636", "NL10639", "NL10643"]
all_dataframes = []
today = date.today().isoformat() + "T09:00:00Z"
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
latest_date = (date.today() - timedelta(7)).isoformat() + "T09:00:00Z"
days_today = 0
days_yesterday = 1
while(today != latest_date):
days_today += 1
days_yesterday += 1
for particle in particles:
for station in stations:
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
payload = ''
headers = {}
conn.request("GET", f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}", payload, headers)
res = conn.getresponse()
data = res.read()
decoded_data = data.decode("utf-8")
df = pd.read_csv(StringIO(decoded_data))
df = df.filter(like='value')
all_dataframes.append(df)
combined_data = pd.concat(all_dataframes, ignore_index=True)
combined_data.to_csv(f'{particle}_{today}.csv', index=False)
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
yesterday = (date.today() - timedelta(days_yesterday)).isoformat() + "T09:00:00Z"
def delete_csv(csvs):
for csv in csvs:
if(os.path.exists(csv) and os.path.isfile(csv)):
os.remove(csv)
def clean_values():
particles = ["NO2", "O3"]
csvs = []
NO2 = []
O3 = []
today = date.today().isoformat() + "T09:00:00Z"
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
latest_date = (date.today() - timedelta(7)).isoformat() + "T09:00:00Z"
days_today = 0
while(today != latest_date):
for particle in particles:
name = f'{particle}_{today}.csv'
csvs.append(name)
days_today += 1
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
for csv_file in csvs:
values = [] # Reset values for each CSV file
# Open the CSV file and read the values
with open(csv_file, 'r') as file:
reader = csv.reader(file)
for row in reader:
for value in row:
# Use regular expressions to extract numeric part
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", value)
if cleaned_value: # If we successfully extract a number
values.append(float(cleaned_value[0])) # Convert the first match to float
# Compute the average if the values list is not empty
if values:
avg = sum(values) / len(values)
if "NO2" in csv_file:
NO2.append(avg)
else:
O3.append(avg)
delete_csv(csvs)
return NO2, O3
def add_columns():
file_path = 'weather_data.csv'
df = pd.read_csv(file_path)
df.insert(1, 'NO2', None)
df.insert(2, 'O3', None)
df.insert(10, 'weekday', None)
df.to_csv('combined_data.csv', index=False)
def scale():
file_path = 'combined_data.csv'
df = pd.read_csv(file_path)
columns = list(df.columns)
columns.insert(3, columns.pop(6))
df = df[columns]
columns.insert(5, columns.pop(9))
df = df[columns]
columns.insert(9, columns.pop(6))
df = df[columns]
df = df.rename(columns={
'datetime':'date',
'windspeed': 'wind_speed',
'temp': 'mean_temp',
'solarradiation':'global_radiation',
'precip':'percipitation',
'sealevelpressure':'pressure',
'visibility':'minimum_visibility'
})
df['date'] = pd.to_datetime(df['date'])
df['weekday'] = df['date'].dt.day_name()
df['wind_speed'] = (df['wind_speed'] / 3.6) * 10
df['mean_temp'] = df['mean_temp'] * 10
df['minimum_visibility'] = df['minimum_visibility'] * 10
df['percipitation'] = df['percipitation'] * 10
df['pressure'] = df['pressure'] * 10
df['wind_speed'] = df['wind_speed'].astype(int)
df['mean_temp'] = df['mean_temp'].astype(int)
df['minimum_visibility'] = df['minimum_visibility'].astype(int)
df['percipitation'] = df['percipitation'].astype(int)
df['pressure'] = df['pressure'].astype(int)
df['humidity'] = df['humidity'].astype(int)
df['global_radiation'] = df['global_radiation'].astype(int)
df.to_csv('recorded_data.csv', index=False)
def insert_pollution(NO2, O3):
file_path = 'recorded_data.csv'
df = pd.read_csv(file_path)
start_index = 0
while NO2:
df.loc[start_index, 'NO2'] = NO2.pop()
start_index += 1
start_index = 0
while O3:
df.loc[start_index, 'O3'] = O3.pop()
start_index += 1
df.to_csv('recorded_data.csv', index=False)
api_call()
NO2, O3 = clean_values()
add_columns()
scale()
insert_pollution(NO2, O3)
os.remove('combined_data.csv')
os.remove('weather_data.csv')