File size: 5,274 Bytes
6a440fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import http.client
from datetime import date, timedelta
import pandas as pd
from io import StringIO
import os
import re
import csv

def api_call():
    particles = ["NO2", "O3"]
    stations = ["NL10636", "NL10639", "NL10643"]
    all_dataframes = []
    today = date.today().isoformat() + "T09:00:00Z"
    yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
    latest_date = (date.today() - timedelta(7)).isoformat() + "T09:00:00Z"
    days_today = 0
    days_yesterday = 1
    while(today != latest_date):
        days_today += 1
        days_yesterday += 1
        for particle in particles:
            for station in stations:
                conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
                payload = ''
                headers = {}
                conn.request("GET", f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}", payload, headers)
                res = conn.getresponse()
                data = res.read()
                decoded_data = data.decode("utf-8")
                df = pd.read_csv(StringIO(decoded_data))
                df = df.filter(like='value')
                all_dataframes.append(df)
            combined_data = pd.concat(all_dataframes, ignore_index=True)
            combined_data.to_csv(f'{particle}_{today}.csv', index=False)
        today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
        yesterday = (date.today() - timedelta(days_yesterday)).isoformat() + "T09:00:00Z"

def delete_csv(csvs):
    for csv in csvs:
        if(os.path.exists(csv) and os.path.isfile(csv)): 
            os.remove(csv)

def clean_values():
    particles = ["NO2", "O3"]
    csvs = []
    NO2 = []
    O3 = []
    today = date.today().isoformat() + "T09:00:00Z"
    yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
    latest_date = (date.today() - timedelta(7)).isoformat() + "T09:00:00Z"
    days_today = 0
    while(today != latest_date):
        for particle in particles:
            name = f'{particle}_{today}.csv'
            csvs.append(name)
        days_today += 1
        today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
    for csv_file in csvs:
        values = []  # Reset values for each CSV file
        # Open the CSV file and read the values
        with open(csv_file, 'r') as file:
            reader = csv.reader(file)
            for row in reader:
                for value in row:
                    # Use regular expressions to extract numeric part
                    cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", value)
                    if cleaned_value:  # If we successfully extract a number
                        values.append(float(cleaned_value[0]))  # Convert the first match to float
        
        # Compute the average if the values list is not empty
        if values:
            avg = sum(values) / len(values)
            if "NO2" in csv_file:
                NO2.append(avg)
            else:
                O3.append(avg)
        
    delete_csv(csvs)
    
    return NO2, O3


def add_columns():
    file_path = 'weather_data.csv'
    df = pd.read_csv(file_path)

    df.insert(1, 'NO2', None)
    df.insert(2, 'O3', None)
    df.insert(10, 'weekday', None)

    df.to_csv('combined_data.csv', index=False) 


def scale():
    file_path = 'combined_data.csv'
    df = pd.read_csv(file_path)
    columns = list(df.columns)


    columns.insert(3, columns.pop(6))

    df = df[columns]

    columns.insert(5, columns.pop(9))

    df = df[columns]

    columns.insert(9, columns.pop(6))

    df = df[columns]

    df = df.rename(columns={
        'datetime':'date',
        'windspeed': 'wind_speed',
        'temp': 'mean_temp',
        'solarradiation':'global_radiation',
        'precip':'percipitation',
        'sealevelpressure':'pressure',
        'visibility':'minimum_visibility'
    })

    df['date'] = pd.to_datetime(df['date'])
    df['weekday'] = df['date'].dt.day_name()


    df['wind_speed'] = (df['wind_speed'] / 3.6) * 10
    df['mean_temp'] = df['mean_temp'] * 10
    df['minimum_visibility'] = df['minimum_visibility'] * 10
    df['percipitation'] = df['percipitation'] * 10
    df['pressure'] = df['pressure'] * 10

    df['wind_speed'] = df['wind_speed'].astype(int)
    df['mean_temp'] = df['mean_temp'].astype(int)
    df['minimum_visibility'] = df['minimum_visibility'].astype(int)
    df['percipitation'] = df['percipitation'].astype(int)
    df['pressure'] = df['pressure'].astype(int)
    df['humidity'] = df['humidity'].astype(int)
    df['global_radiation'] = df['global_radiation'].astype(int)

    df.to_csv('recorded_data.csv', index=False)

def insert_pollution(NO2, O3):
    file_path = 'recorded_data.csv'
    df = pd.read_csv(file_path)
    start_index = 0
    while NO2:
        df.loc[start_index, 'NO2'] = NO2.pop()
        start_index += 1
    start_index = 0
    while O3:
        df.loc[start_index, 'O3'] = O3.pop()
        start_index += 1
        df.to_csv('recorded_data.csv', index=False)

api_call()
NO2, O3 = clean_values()
add_columns()
scale()
insert_pollution(NO2, O3)
os.remove('combined_data.csv')
os.remove('weather_data.csv')