File size: 6,373 Bytes
2c18c58 6a440fc eeaf86d 2c18c58 6a440fc eeaf86d 6a440fc 2c18c58 6a440fc 2c18c58 6a440fc 647d992 6a440fc 647d992 6a440fc 647d992 6a440fc 647d992 6a440fc 1d31989 eeaf86d 2c18c58 eeaf86d 647d992 1d31989 eeaf86d 1d31989 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import codecs
import csv
import http.client
import os
import re
import sys
import urllib.request
from datetime import date, timedelta
from io import StringIO
import pandas as pd
def pollution_data():
particles = ["NO2", "O3"]
stations = ["NL10636", "NL10639", "NL10643"]
all_dataframes = []
today = date.today().isoformat() + "T09:00:00Z"
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
latest_date = (date.today() - timedelta(8)).isoformat() + "T09:00:00Z"
days_today = 0
days_yesterday = 1
while(today != latest_date):
days_today += 1
days_yesterday += 1
for particle in particles:
for station in stations:
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
payload = ''
headers = {}
conn.request("GET", f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}", payload, headers)
res = conn.getresponse()
data = res.read()
decoded_data = data.decode("utf-8")
df = pd.read_csv(StringIO(decoded_data))
df = df.filter(like='value')
all_dataframes.append(df)
combined_data = pd.concat(all_dataframes, ignore_index=True)
combined_data.to_csv(f'{particle}_{today}.csv', index=False)
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
yesterday = (date.today() - timedelta(days_yesterday)).isoformat() + "T09:00:00Z"
def delete_csv(csvs):
for csv in csvs:
if(os.path.exists(csv) and os.path.isfile(csv)):
os.remove(csv)
def clean_values():
particles = ["NO2", "O3"]
csvs = []
NO2 = []
O3 = []
today = date.today().isoformat() + "T09:00:00Z"
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
latest_date = (date.today() - timedelta(8)).isoformat() + "T09:00:00Z"
days_today = 0
while(today != latest_date):
for particle in particles:
name = f'{particle}_{today}.csv'
csvs.append(name)
days_today += 1
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
for csv_file in csvs:
values = [] # Reset values for each CSV file
# Open the CSV file and read the values
with open(csv_file, 'r') as file:
reader = csv.reader(file)
for row in reader:
for value in row:
# Use regular expressions to extract numeric part
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", value)
if cleaned_value: # If we successfully extract a number
values.append(float(cleaned_value[0])) # Convert the first match to float
# Compute the average if the values list is not empty
if values:
avg = sum(values) / len(values)
if "NO2" in csv_file:
NO2.append(avg)
else:
O3.append(avg)
delete_csv(csvs)
return NO2, O3
def add_columns():
file_path = 'weather_data.csv'
df = pd.read_csv(file_path)
df.insert(1, 'NO2', None)
df.insert(2, 'O3', None)
df.insert(10, 'weekday', None)
return df
def scale(data):
df = data
columns = list(df.columns)
columns.insert(3, columns.pop(6))
df = df[columns]
columns.insert(5, columns.pop(9))
df = df[columns]
columns.insert(9, columns.pop(6))
df = df[columns]
df = df.rename(columns={
'datetime':'date',
'windspeed': 'wind_speed',
'temp': 'mean_temp',
'solarradiation':'global_radiation',
'precip':'percipitation',
'sealevelpressure':'pressure',
'visibility':'minimum_visibility'
})
df['date'] = pd.to_datetime(df['date'])
df['weekday'] = df['date'].dt.day_name()
df['wind_speed'] = (df['wind_speed'] / 3.6) * 10
df['mean_temp'] = df['mean_temp'] * 10
df['minimum_visibility'] = df['minimum_visibility'] * 10
df['percipitation'] = df['percipitation'] * 10
df['pressure'] = df['pressure'] * 10
df['wind_speed'] = df['wind_speed'].astype(int)
df['mean_temp'] = df['mean_temp'].astype(int)
df['minimum_visibility'] = df['minimum_visibility'].astype(int)
df['percipitation'] = df['percipitation'].astype(int)
df['pressure'] = df['pressure'].astype(int)
df['humidity'] = df['humidity'].astype(int)
df['global_radiation'] = df['global_radiation'].astype(int)
return df
def insert_pollution(NO2, O3, data):
df = data
start_index = 0
while NO2:
df.loc[start_index, 'NO2'] = NO2.pop()
start_index += 1
start_index = 0
while O3:
df.loc[start_index, 'O3'] = O3.pop()
start_index += 1
return df
def weather_data():
today = date.today().isoformat()
seven_days = (date.today() - timedelta(7)).isoformat()
try:
ResultBytes = urllib.request.urlopen(f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{seven_days}/{today}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv")
# Parse the results as CSV
CSVText = csv.reader(codecs.iterdecode(ResultBytes, 'utf-8'))
# Saving the CSV content to a file
current_dir = os.path.dirname(os.path.realpath(__file__))
file_path = os.path.join(current_dir, 'weather_data.csv')
with open(file_path, 'w', newline='', encoding='utf-8') as csvfile:
csv_writer = csv.writer(csvfile)
csv_writer.writerows(CSVText)
except urllib.error.HTTPError as e:
ErrorInfo= e.read().decode()
print('Error code: ', e.code, ErrorInfo)
sys.exit()
except urllib.error.URLError as e:
ErrorInfo= e.read().decode()
print('Error code: ', e.code,ErrorInfo)
sys.exit()
def get_data():
weather_data()
pollution_data()
NO2, O3 = clean_values()
df = add_columns()
scaled_df = scale(df)
output_df = insert_pollution(NO2, O3, scaled_df)
os.remove('weather_data.csv')
return output_df |