Mihkelmj commited on
Commit
1d31989
·
1 Parent(s): 386e426

broke and fixed it; scaler fixed; dataset.csv is not saved; nice

Browse files
__pycache__/data_api_calls.cpython-312.pyc CHANGED
Binary files a/__pycache__/data_api_calls.cpython-312.pyc and b/__pycache__/data_api_calls.cpython-312.pyc differ
 
app.py CHANGED
@@ -16,8 +16,7 @@ st.set_page_config(
16
 
17
  alt.themes.enable("dark")
18
 
19
- get_data()
20
- dataset = pd.read_csv("dataset.csv")
21
  today = dataset.iloc[-1]
22
  previous_day = dataset.iloc[-2]
23
  prediction = run_model("O3", data=dataset)
 
16
 
17
  alt.themes.enable("dark")
18
 
19
+ dataset = get_data()
 
20
  today = dataset.iloc[-1]
21
  previous_day = dataset.iloc[-2]
22
  prediction = run_model("O3", data=dataset)
data_api_calls.py CHANGED
@@ -153,7 +153,7 @@ def insert_pollution(NO2, O3, data):
153
  while O3:
154
  df.loc[start_index, 'O3'] = O3.pop()
155
  start_index += 1
156
- df.to_csv('dataset.csv', index=False)
157
 
158
  def weather_data():
159
  today = date.today().isoformat()
@@ -186,5 +186,6 @@ def get_data():
186
  NO2, O3 = clean_values()
187
  df = add_columns()
188
  scaled_df = scale(df)
189
- insert_pollution(NO2, O3, scaled_df)
190
  os.remove('weather_data.csv')
 
 
153
  while O3:
154
  df.loc[start_index, 'O3'] = O3.pop()
155
  start_index += 1
156
+ return df
157
 
158
  def weather_data():
159
  today = date.today().isoformat()
 
186
  NO2, O3 = clean_values()
187
  df = add_columns()
188
  scaled_df = scale(df)
189
+ output_df = insert_pollution(NO2, O3, scaled_df)
190
  os.remove('weather_data.csv')
191
+ return output_df
dataset.csv DELETED
@@ -1,9 +0,0 @@
1
- date,NO2,O3,wind_speed,mean_temp,global_radiation,percipitation,pressure,minimum_visibility,humidity,weekday
2
- 2024-10-16,22.602711656441716,22.88128805620609,61,151,40,0,10103,358,82,Wednesday
3
- 2024-10-17,23.104327323162277,23.038637566137567,51,169,43,6,10100,371,86,Thursday
4
- 2024-10-18,23.68285714285714,23.71661094224924,21,156,42,39,10140,64,97,Friday
5
- 2024-10-19,24.532038834951457,23.604722719141325,43,147,43,28,10140,236,92,Saturday
6
- 2024-10-20,23.019101941747575,24.173377192982453,68,145,0,0,10160,241,82,Sunday
7
- 2024-10-21,21.275629139072848,25.05873563218391,58,144,27,43,10206,220,92,Monday
8
- 2024-10-22,22.334374999999998,24.5942194092827,76,123,57,12,10265,100,87,Tuesday
9
- 2024-10-23,24.261733333333336,23.56,31,115,7,0,10328,105,95,Wednesday
 
 
 
 
 
 
 
 
 
 
scalers/feature_scaler_NO2.joblib CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:005a752194f98e66653af7e3b3461c788fe9a902fb14e1b526aea7ea07201c48
3
- size 1487
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6281e460d3a5a83a3d6a240aa76c26e45bd15089364b88d3a26fd638536a30b5
3
+ size 5791
scalers/feature_scaler_O3.joblib CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:389fb707d241a8df5c7a228e4aa3ca1ebf434a0c551bdbd66f000cf2e5850fb1
3
- size 1375
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6e30fc2c7ce7a00bc1b8db08e5f4ffa110136a796f55a68beedb479b07189f7
3
+ size 5023
src/data_loading.py CHANGED
@@ -130,7 +130,7 @@ def create_features(
130
  feature_scaler = joblib.load(f"scalers/feature_scaler_{target_particle}.joblib")
131
 
132
  # Fit the scalers on the training data
133
- X_scaled = feature_scaler.fit_transform(x)
134
 
135
  # Convert scaled data back to DataFrame for consistency
136
  X_scaled = pd.DataFrame(
 
130
  feature_scaler = joblib.load(f"scalers/feature_scaler_{target_particle}.joblib")
131
 
132
  # Fit the scalers on the training data
133
+ X_scaled = feature_scaler.transform(x)
134
 
135
  # Convert scaled data back to DataFrame for consistency
136
  X_scaled = pd.DataFrame(
test.ipynb ADDED
@@ -0,0 +1,694 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "name": "stderr",
10
+ "output_type": "stream",
11
+ "text": [
12
+ "/Users/mihkelmariuszjezierski/anaconda3/envs/ml-industry/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
13
+ " from .autonotebook import tqdm as notebook_tqdm\n"
14
+ ]
15
+ }
16
+ ],
17
+ "source": [
18
+ "from src.models_loading import run_model\n",
19
+ "from data_api_calls import get_data\n",
20
+ "import pandas as pd\n",
21
+ "from past_data_api_calls import get_past_data"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "code",
26
+ "execution_count": 2,
27
+ "metadata": {},
28
+ "outputs": [],
29
+ "source": [
30
+ "from src.data_loading import create_features"
31
+ ]
32
+ },
33
+ {
34
+ "cell_type": "code",
35
+ "execution_count": 3,
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "df = get_data()"
40
+ ]
41
+ },
42
+ {
43
+ "cell_type": "code",
44
+ "execution_count": 3,
45
+ "metadata": {},
46
+ "outputs": [],
47
+ "source": [
48
+ "data = pd.read_csv(\"dataset.csv\")\n",
49
+ "target_particle = \"O3\""
50
+ ]
51
+ },
52
+ {
53
+ "cell_type": "code",
54
+ "execution_count": 4,
55
+ "metadata": {},
56
+ "outputs": [
57
+ {
58
+ "data": {
59
+ "text/html": [
60
+ "<div>\n",
61
+ "<style scoped>\n",
62
+ " .dataframe tbody tr th:only-of-type {\n",
63
+ " vertical-align: middle;\n",
64
+ " }\n",
65
+ "\n",
66
+ " .dataframe tbody tr th {\n",
67
+ " vertical-align: top;\n",
68
+ " }\n",
69
+ "\n",
70
+ " .dataframe thead th {\n",
71
+ " text-align: right;\n",
72
+ " }\n",
73
+ "</style>\n",
74
+ "<table border=\"1\" class=\"dataframe\">\n",
75
+ " <thead>\n",
76
+ " <tr style=\"text-align: right;\">\n",
77
+ " <th></th>\n",
78
+ " <th>date</th>\n",
79
+ " <th>NO2</th>\n",
80
+ " <th>O3</th>\n",
81
+ " <th>wind_speed</th>\n",
82
+ " <th>mean_temp</th>\n",
83
+ " <th>global_radiation</th>\n",
84
+ " <th>percipitation</th>\n",
85
+ " <th>pressure</th>\n",
86
+ " <th>minimum_visibility</th>\n",
87
+ " <th>humidity</th>\n",
88
+ " <th>weekday</th>\n",
89
+ " </tr>\n",
90
+ " </thead>\n",
91
+ " <tbody>\n",
92
+ " <tr>\n",
93
+ " <th>0</th>\n",
94
+ " <td>2024-10-16</td>\n",
95
+ " <td>22.602712</td>\n",
96
+ " <td>22.881288</td>\n",
97
+ " <td>61</td>\n",
98
+ " <td>151</td>\n",
99
+ " <td>40</td>\n",
100
+ " <td>0</td>\n",
101
+ " <td>10103</td>\n",
102
+ " <td>358</td>\n",
103
+ " <td>82</td>\n",
104
+ " <td>Wednesday</td>\n",
105
+ " </tr>\n",
106
+ " <tr>\n",
107
+ " <th>1</th>\n",
108
+ " <td>2024-10-17</td>\n",
109
+ " <td>23.104327</td>\n",
110
+ " <td>23.038638</td>\n",
111
+ " <td>51</td>\n",
112
+ " <td>169</td>\n",
113
+ " <td>43</td>\n",
114
+ " <td>6</td>\n",
115
+ " <td>10100</td>\n",
116
+ " <td>371</td>\n",
117
+ " <td>86</td>\n",
118
+ " <td>Thursday</td>\n",
119
+ " </tr>\n",
120
+ " <tr>\n",
121
+ " <th>2</th>\n",
122
+ " <td>2024-10-18</td>\n",
123
+ " <td>23.682857</td>\n",
124
+ " <td>23.716611</td>\n",
125
+ " <td>21</td>\n",
126
+ " <td>156</td>\n",
127
+ " <td>42</td>\n",
128
+ " <td>39</td>\n",
129
+ " <td>10140</td>\n",
130
+ " <td>64</td>\n",
131
+ " <td>97</td>\n",
132
+ " <td>Friday</td>\n",
133
+ " </tr>\n",
134
+ " <tr>\n",
135
+ " <th>3</th>\n",
136
+ " <td>2024-10-19</td>\n",
137
+ " <td>24.532039</td>\n",
138
+ " <td>23.604723</td>\n",
139
+ " <td>43</td>\n",
140
+ " <td>147</td>\n",
141
+ " <td>43</td>\n",
142
+ " <td>28</td>\n",
143
+ " <td>10140</td>\n",
144
+ " <td>236</td>\n",
145
+ " <td>92</td>\n",
146
+ " <td>Saturday</td>\n",
147
+ " </tr>\n",
148
+ " <tr>\n",
149
+ " <th>4</th>\n",
150
+ " <td>2024-10-20</td>\n",
151
+ " <td>23.019102</td>\n",
152
+ " <td>24.173377</td>\n",
153
+ " <td>68</td>\n",
154
+ " <td>145</td>\n",
155
+ " <td>0</td>\n",
156
+ " <td>0</td>\n",
157
+ " <td>10160</td>\n",
158
+ " <td>241</td>\n",
159
+ " <td>82</td>\n",
160
+ " <td>Sunday</td>\n",
161
+ " </tr>\n",
162
+ " <tr>\n",
163
+ " <th>5</th>\n",
164
+ " <td>2024-10-21</td>\n",
165
+ " <td>21.275629</td>\n",
166
+ " <td>25.058736</td>\n",
167
+ " <td>58</td>\n",
168
+ " <td>144</td>\n",
169
+ " <td>27</td>\n",
170
+ " <td>43</td>\n",
171
+ " <td>10206</td>\n",
172
+ " <td>220</td>\n",
173
+ " <td>92</td>\n",
174
+ " <td>Monday</td>\n",
175
+ " </tr>\n",
176
+ " <tr>\n",
177
+ " <th>6</th>\n",
178
+ " <td>2024-10-22</td>\n",
179
+ " <td>22.334375</td>\n",
180
+ " <td>24.594219</td>\n",
181
+ " <td>76</td>\n",
182
+ " <td>123</td>\n",
183
+ " <td>57</td>\n",
184
+ " <td>12</td>\n",
185
+ " <td>10265</td>\n",
186
+ " <td>100</td>\n",
187
+ " <td>87</td>\n",
188
+ " <td>Tuesday</td>\n",
189
+ " </tr>\n",
190
+ " <tr>\n",
191
+ " <th>7</th>\n",
192
+ " <td>2024-10-23</td>\n",
193
+ " <td>24.261733</td>\n",
194
+ " <td>23.560000</td>\n",
195
+ " <td>31</td>\n",
196
+ " <td>115</td>\n",
197
+ " <td>7</td>\n",
198
+ " <td>0</td>\n",
199
+ " <td>10328</td>\n",
200
+ " <td>105</td>\n",
201
+ " <td>95</td>\n",
202
+ " <td>Wednesday</td>\n",
203
+ " </tr>\n",
204
+ " </tbody>\n",
205
+ "</table>\n",
206
+ "</div>"
207
+ ],
208
+ "text/plain": [
209
+ " date NO2 O3 wind_speed mean_temp global_radiation \\\n",
210
+ "0 2024-10-16 22.602712 22.881288 61 151 40 \n",
211
+ "1 2024-10-17 23.104327 23.038638 51 169 43 \n",
212
+ "2 2024-10-18 23.682857 23.716611 21 156 42 \n",
213
+ "3 2024-10-19 24.532039 23.604723 43 147 43 \n",
214
+ "4 2024-10-20 23.019102 24.173377 68 145 0 \n",
215
+ "5 2024-10-21 21.275629 25.058736 58 144 27 \n",
216
+ "6 2024-10-22 22.334375 24.594219 76 123 57 \n",
217
+ "7 2024-10-23 24.261733 23.560000 31 115 7 \n",
218
+ "\n",
219
+ " percipitation pressure minimum_visibility humidity weekday \n",
220
+ "0 0 10103 358 82 Wednesday \n",
221
+ "1 6 10100 371 86 Thursday \n",
222
+ "2 39 10140 64 97 Friday \n",
223
+ "3 28 10140 236 92 Saturday \n",
224
+ "4 0 10160 241 82 Sunday \n",
225
+ "5 43 10206 220 92 Monday \n",
226
+ "6 12 10265 100 87 Tuesday \n",
227
+ "7 0 10328 105 95 Wednesday "
228
+ ]
229
+ },
230
+ "execution_count": 4,
231
+ "metadata": {},
232
+ "output_type": "execute_result"
233
+ }
234
+ ],
235
+ "source": [
236
+ "data"
237
+ ]
238
+ },
239
+ {
240
+ "cell_type": "code",
241
+ "execution_count": 5,
242
+ "metadata": {},
243
+ "outputs": [
244
+ {
245
+ "name": "stdout",
246
+ "output_type": "stream",
247
+ "text": [
248
+ "Number of rows with missing values dropped: 7\n"
249
+ ]
250
+ }
251
+ ],
252
+ "source": [
253
+ "input_data = create_features(\n",
254
+ " data=data,\n",
255
+ " target_particle=target_particle,\n",
256
+ " lag_days=7,\n",
257
+ " sma_days=7,\n",
258
+ ")"
259
+ ]
260
+ },
261
+ {
262
+ "cell_type": "code",
263
+ "execution_count": 6,
264
+ "metadata": {},
265
+ "outputs": [
266
+ {
267
+ "data": {
268
+ "text/html": [
269
+ "<div>\n",
270
+ "<style scoped>\n",
271
+ " .dataframe tbody tr th:only-of-type {\n",
272
+ " vertical-align: middle;\n",
273
+ " }\n",
274
+ "\n",
275
+ " .dataframe tbody tr th {\n",
276
+ " vertical-align: top;\n",
277
+ " }\n",
278
+ "\n",
279
+ " .dataframe thead th {\n",
280
+ " text-align: right;\n",
281
+ " }\n",
282
+ "</style>\n",
283
+ "<table border=\"1\" class=\"dataframe\">\n",
284
+ " <thead>\n",
285
+ " <tr style=\"text-align: right;\">\n",
286
+ " <th></th>\n",
287
+ " <th>NO2</th>\n",
288
+ " <th>O3</th>\n",
289
+ " <th>wind_speed</th>\n",
290
+ " <th>mean_temp</th>\n",
291
+ " <th>global_radiation</th>\n",
292
+ " <th>percipitation</th>\n",
293
+ " <th>pressure</th>\n",
294
+ " <th>minimum_visibility</th>\n",
295
+ " <th>humidity</th>\n",
296
+ " <th>weekday_sin</th>\n",
297
+ " <th>...</th>\n",
298
+ " <th>O3_last_year_4_days_before</th>\n",
299
+ " <th>NO2_last_year_4_days_before</th>\n",
300
+ " <th>O3_last_year_5_days_before</th>\n",
301
+ " <th>NO2_last_year_5_days_before</th>\n",
302
+ " <th>O3_last_year_6_days_before</th>\n",
303
+ " <th>NO2_last_year_6_days_before</th>\n",
304
+ " <th>O3_last_year_7_days_before</th>\n",
305
+ " <th>NO2_last_year_7_days_before</th>\n",
306
+ " <th>O3_last_year_3_days_after</th>\n",
307
+ " <th>NO2_last_year_3_days_after</th>\n",
308
+ " </tr>\n",
309
+ " </thead>\n",
310
+ " <tbody>\n",
311
+ " <tr>\n",
312
+ " <th>0</th>\n",
313
+ " <td>-0.126371</td>\n",
314
+ " <td>-0.855455</td>\n",
315
+ " <td>-0.206181</td>\n",
316
+ " <td>0.082314</td>\n",
317
+ " <td>-1.330268</td>\n",
318
+ " <td>-0.493936</td>\n",
319
+ " <td>1.783274</td>\n",
320
+ " <td>2.813837</td>\n",
321
+ " <td>1.547919</td>\n",
322
+ " <td>1.37753</td>\n",
323
+ " <td>...</td>\n",
324
+ " <td>-1.036205</td>\n",
325
+ " <td>-0.802392</td>\n",
326
+ " <td>-0.883032</td>\n",
327
+ " <td>-0.968984</td>\n",
328
+ " <td>0.333776</td>\n",
329
+ " <td>-1.446199</td>\n",
330
+ " <td>-1.180992</td>\n",
331
+ " <td>-0.54567</td>\n",
332
+ " <td>-1.15814</td>\n",
333
+ " <td>-0.358079</td>\n",
334
+ " </tr>\n",
335
+ " </tbody>\n",
336
+ "</table>\n",
337
+ "<p>1 rows × 87 columns</p>\n",
338
+ "</div>"
339
+ ],
340
+ "text/plain": [
341
+ " NO2 O3 wind_speed mean_temp global_radiation percipitation \\\n",
342
+ "0 -0.126371 -0.855455 -0.206181 0.082314 -1.330268 -0.493936 \n",
343
+ "\n",
344
+ " pressure minimum_visibility humidity weekday_sin ... \\\n",
345
+ "0 1.783274 2.813837 1.547919 1.37753 ... \n",
346
+ "\n",
347
+ " O3_last_year_4_days_before NO2_last_year_4_days_before \\\n",
348
+ "0 -1.036205 -0.802392 \n",
349
+ "\n",
350
+ " O3_last_year_5_days_before NO2_last_year_5_days_before \\\n",
351
+ "0 -0.883032 -0.968984 \n",
352
+ "\n",
353
+ " O3_last_year_6_days_before NO2_last_year_6_days_before \\\n",
354
+ "0 0.333776 -1.446199 \n",
355
+ "\n",
356
+ " O3_last_year_7_days_before NO2_last_year_7_days_before \\\n",
357
+ "0 -1.180992 -0.54567 \n",
358
+ "\n",
359
+ " O3_last_year_3_days_after NO2_last_year_3_days_after \n",
360
+ "0 -1.15814 -0.358079 \n",
361
+ "\n",
362
+ "[1 rows x 87 columns]"
363
+ ]
364
+ },
365
+ "execution_count": 6,
366
+ "metadata": {},
367
+ "output_type": "execute_result"
368
+ }
369
+ ],
370
+ "source": [
371
+ "input_data"
372
+ ]
373
+ },
374
+ {
375
+ "cell_type": "code",
376
+ "execution_count": null,
377
+ "metadata": {},
378
+ "outputs": [],
379
+ "source": [
380
+ "#prediction = run_model(particle=\"O3\", data=df)"
381
+ ]
382
+ },
383
+ {
384
+ "cell_type": "code",
385
+ "execution_count": 9,
386
+ "metadata": {},
387
+ "outputs": [
388
+ {
389
+ "data": {
390
+ "text/html": [
391
+ "<div>\n",
392
+ "<style scoped>\n",
393
+ " .dataframe tbody tr th:only-of-type {\n",
394
+ " vertical-align: middle;\n",
395
+ " }\n",
396
+ "\n",
397
+ " .dataframe tbody tr th {\n",
398
+ " vertical-align: top;\n",
399
+ " }\n",
400
+ "\n",
401
+ " .dataframe thead th {\n",
402
+ " text-align: right;\n",
403
+ " }\n",
404
+ "</style>\n",
405
+ "<table border=\"1\" class=\"dataframe\">\n",
406
+ " <thead>\n",
407
+ " <tr style=\"text-align: right;\">\n",
408
+ " <th></th>\n",
409
+ " <th>date</th>\n",
410
+ " <th>NO2</th>\n",
411
+ " <th>O3</th>\n",
412
+ " <th>wind_speed</th>\n",
413
+ " <th>mean_temp</th>\n",
414
+ " <th>global_radiation</th>\n",
415
+ " <th>percipitation</th>\n",
416
+ " <th>pressure</th>\n",
417
+ " <th>minimum_visibility</th>\n",
418
+ " <th>humidity</th>\n",
419
+ " <th>weekday</th>\n",
420
+ " </tr>\n",
421
+ " </thead>\n",
422
+ " <tbody>\n",
423
+ " <tr>\n",
424
+ " <th>0</th>\n",
425
+ " <td>2023-10-16</td>\n",
426
+ " <td>17.958784</td>\n",
427
+ " <td>32.611400</td>\n",
428
+ " <td>31</td>\n",
429
+ " <td>90</td>\n",
430
+ " <td>68</td>\n",
431
+ " <td>9</td>\n",
432
+ " <td>1022</td>\n",
433
+ " <td>348</td>\n",
434
+ " <td>88</td>\n",
435
+ " <td>Monday</td>\n",
436
+ " </tr>\n",
437
+ " <tr>\n",
438
+ " <th>1</th>\n",
439
+ " <td>2023-10-17</td>\n",
440
+ " <td>10.842703</td>\n",
441
+ " <td>39.812600</td>\n",
442
+ " <td>61</td>\n",
443
+ " <td>85</td>\n",
444
+ " <td>75</td>\n",
445
+ " <td>0</td>\n",
446
+ " <td>1019</td>\n",
447
+ " <td>348</td>\n",
448
+ " <td>84</td>\n",
449
+ " <td>Tuesday</td>\n",
450
+ " </tr>\n",
451
+ " <tr>\n",
452
+ " <th>2</th>\n",
453
+ " <td>2023-10-18</td>\n",
454
+ " <td>17.970267</td>\n",
455
+ " <td>31.779024</td>\n",
456
+ " <td>71</td>\n",
457
+ " <td>90</td>\n",
458
+ " <td>71</td>\n",
459
+ " <td>23</td>\n",
460
+ " <td>1006</td>\n",
461
+ " <td>238</td>\n",
462
+ " <td>77</td>\n",
463
+ " <td>Wednesday</td>\n",
464
+ " </tr>\n",
465
+ " <tr>\n",
466
+ " <th>3</th>\n",
467
+ " <td>2023-10-19</td>\n",
468
+ " <td>17.233056</td>\n",
469
+ " <td>18.715600</td>\n",
470
+ " <td>61</td>\n",
471
+ " <td>145</td>\n",
472
+ " <td>39</td>\n",
473
+ " <td>114</td>\n",
474
+ " <td>990</td>\n",
475
+ " <td>212</td>\n",
476
+ " <td>94</td>\n",
477
+ " <td>Thursday</td>\n",
478
+ " </tr>\n",
479
+ " <tr>\n",
480
+ " <th>4</th>\n",
481
+ " <td>2023-10-20</td>\n",
482
+ " <td>15.023600</td>\n",
483
+ " <td>22.040000</td>\n",
484
+ " <td>71</td>\n",
485
+ " <td>119</td>\n",
486
+ " <td>7</td>\n",
487
+ " <td>204</td>\n",
488
+ " <td>981</td>\n",
489
+ " <td>104</td>\n",
490
+ " <td>97</td>\n",
491
+ " <td>Friday</td>\n",
492
+ " </tr>\n",
493
+ " <tr>\n",
494
+ " <th>5</th>\n",
495
+ " <td>2023-10-21</td>\n",
496
+ " <td>8.723378</td>\n",
497
+ " <td>48.334400</td>\n",
498
+ " <td>61</td>\n",
499
+ " <td>131</td>\n",
500
+ " <td>39</td>\n",
501
+ " <td>35</td>\n",
502
+ " <td>989</td>\n",
503
+ " <td>277</td>\n",
504
+ " <td>88</td>\n",
505
+ " <td>Saturday</td>\n",
506
+ " </tr>\n",
507
+ " <tr>\n",
508
+ " <th>6</th>\n",
509
+ " <td>2023-10-22</td>\n",
510
+ " <td>20.634267</td>\n",
511
+ " <td>15.586000</td>\n",
512
+ " <td>71</td>\n",
513
+ " <td>121</td>\n",
514
+ " <td>55</td>\n",
515
+ " <td>39</td>\n",
516
+ " <td>1003</td>\n",
517
+ " <td>323</td>\n",
518
+ " <td>87</td>\n",
519
+ " <td>Sunday</td>\n",
520
+ " </tr>\n",
521
+ " <tr>\n",
522
+ " <th>7</th>\n",
523
+ " <td>2023-10-23</td>\n",
524
+ " <td>15.115600</td>\n",
525
+ " <td>24.628085</td>\n",
526
+ " <td>50</td>\n",
527
+ " <td>99</td>\n",
528
+ " <td>43</td>\n",
529
+ " <td>5</td>\n",
530
+ " <td>1011</td>\n",
531
+ " <td>59</td>\n",
532
+ " <td>95</td>\n",
533
+ " <td>Monday</td>\n",
534
+ " </tr>\n",
535
+ " <tr>\n",
536
+ " <th>8</th>\n",
537
+ " <td>2023-10-24</td>\n",
538
+ " <td>22.885676</td>\n",
539
+ " <td>27.117600</td>\n",
540
+ " <td>61</td>\n",
541
+ " <td>116</td>\n",
542
+ " <td>32</td>\n",
543
+ " <td>65</td>\n",
544
+ " <td>1001</td>\n",
545
+ " <td>231</td>\n",
546
+ " <td>92</td>\n",
547
+ " <td>Tuesday</td>\n",
548
+ " </tr>\n",
549
+ " <tr>\n",
550
+ " <th>9</th>\n",
551
+ " <td>2023-10-25</td>\n",
552
+ " <td>21.531757</td>\n",
553
+ " <td>13.321600</td>\n",
554
+ " <td>50</td>\n",
555
+ " <td>93</td>\n",
556
+ " <td>14</td>\n",
557
+ " <td>153</td>\n",
558
+ " <td>996</td>\n",
559
+ " <td>157</td>\n",
560
+ " <td>96</td>\n",
561
+ " <td>Wednesday</td>\n",
562
+ " </tr>\n",
563
+ " <tr>\n",
564
+ " <th>10</th>\n",
565
+ " <td>2023-10-26</td>\n",
566
+ " <td>23.072267</td>\n",
567
+ " <td>16.154167</td>\n",
568
+ " <td>31</td>\n",
569
+ " <td>94</td>\n",
570
+ " <td>36</td>\n",
571
+ " <td>1</td>\n",
572
+ " <td>995</td>\n",
573
+ " <td>48</td>\n",
574
+ " <td>97</td>\n",
575
+ " <td>Thursday</td>\n",
576
+ " </tr>\n",
577
+ " </tbody>\n",
578
+ "</table>\n",
579
+ "</div>"
580
+ ],
581
+ "text/plain": [
582
+ " date NO2 O3 wind_speed mean_temp global_radiation \\\n",
583
+ "0 2023-10-16 17.958784 32.611400 31 90 68 \n",
584
+ "1 2023-10-17 10.842703 39.812600 61 85 75 \n",
585
+ "2 2023-10-18 17.970267 31.779024 71 90 71 \n",
586
+ "3 2023-10-19 17.233056 18.715600 61 145 39 \n",
587
+ "4 2023-10-20 15.023600 22.040000 71 119 7 \n",
588
+ "5 2023-10-21 8.723378 48.334400 61 131 39 \n",
589
+ "6 2023-10-22 20.634267 15.586000 71 121 55 \n",
590
+ "7 2023-10-23 15.115600 24.628085 50 99 43 \n",
591
+ "8 2023-10-24 22.885676 27.117600 61 116 32 \n",
592
+ "9 2023-10-25 21.531757 13.321600 50 93 14 \n",
593
+ "10 2023-10-26 23.072267 16.154167 31 94 36 \n",
594
+ "\n",
595
+ " percipitation pressure minimum_visibility humidity weekday \n",
596
+ "0 9 1022 348 88 Monday \n",
597
+ "1 0 1019 348 84 Tuesday \n",
598
+ "2 23 1006 238 77 Wednesday \n",
599
+ "3 114 990 212 94 Thursday \n",
600
+ "4 204 981 104 97 Friday \n",
601
+ "5 35 989 277 88 Saturday \n",
602
+ "6 39 1003 323 87 Sunday \n",
603
+ "7 5 1011 59 95 Monday \n",
604
+ "8 65 1001 231 92 Tuesday \n",
605
+ "9 153 996 157 96 Wednesday \n",
606
+ "10 1 995 48 97 Thursday "
607
+ ]
608
+ },
609
+ "execution_count": 9,
610
+ "metadata": {},
611
+ "output_type": "execute_result"
612
+ }
613
+ ],
614
+ "source": [
615
+ "get_past_data()"
616
+ ]
617
+ },
618
+ {
619
+ "cell_type": "code",
620
+ "execution_count": 9,
621
+ "metadata": {},
622
+ "outputs": [
623
+ {
624
+ "name": "stderr",
625
+ "output_type": "stream",
626
+ "text": [
627
+ "2024-10-23 19:40:20.321 Thread 'MainThread': missing ScriptRunContext! This warning can be ignored when running in bare mode.\n",
628
+ "2024-10-23 19:40:20.322 Thread 'MainThread': missing ScriptRunContext! This warning can be ignored when running in bare mode.\n",
629
+ "2024-10-23 19:40:20.323 Thread 'MainThread': missing ScriptRunContext! This warning can be ignored when running in bare mode.\n"
630
+ ]
631
+ },
632
+ {
633
+ "name": "stdout",
634
+ "output_type": "stream",
635
+ "text": [
636
+ "Number of rows with missing values dropped: 7\n"
637
+ ]
638
+ },
639
+ {
640
+ "name": "stderr",
641
+ "output_type": "stream",
642
+ "text": [
643
+ "2024-10-23 19:40:34.183 Thread 'MainThread': missing ScriptRunContext! This warning can be ignored when running in bare mode.\n",
644
+ "2024-10-23 19:40:34.184 Thread 'MainThread': missing ScriptRunContext! This warning can be ignored when running in bare mode.\n"
645
+ ]
646
+ }
647
+ ],
648
+ "source": [
649
+ "prediction=run_model(particle=target_particle, data=data)"
650
+ ]
651
+ },
652
+ {
653
+ "cell_type": "code",
654
+ "execution_count": 10,
655
+ "metadata": {},
656
+ "outputs": [
657
+ {
658
+ "data": {
659
+ "text/plain": [
660
+ "array([[19.90814701, 8.8039613 , 26.57711386]])"
661
+ ]
662
+ },
663
+ "execution_count": 10,
664
+ "metadata": {},
665
+ "output_type": "execute_result"
666
+ }
667
+ ],
668
+ "source": [
669
+ "prediction"
670
+ ]
671
+ }
672
+ ],
673
+ "metadata": {
674
+ "kernelspec": {
675
+ "display_name": "ml-industry",
676
+ "language": "python",
677
+ "name": "python3"
678
+ },
679
+ "language_info": {
680
+ "codemirror_mode": {
681
+ "name": "ipython",
682
+ "version": 3
683
+ },
684
+ "file_extension": ".py",
685
+ "mimetype": "text/x-python",
686
+ "name": "python",
687
+ "nbconvert_exporter": "python",
688
+ "pygments_lexer": "ipython3",
689
+ "version": "3.12.5"
690
+ }
691
+ },
692
+ "nbformat": 4,
693
+ "nbformat_minor": 2
694
+ }
test.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from models_loading import run_model
2
+
3
+