metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
Emergency insurance payouts complement humanitarian assistance by
providing timely financial resources that facilitate quicker recovery from
climate disasters.
- text: >-
c) Establish strategic and operational partnerships and alliances with
private, public and civil society
organizations in food and nutrition.
- text: >-
COVID-19: The Development Program for Drinking Water Supply and Sanitation
Systems of the Kyrgyz Republic until 2026 was approved.
The Program is aimed at increasing the provision of drinking water of
standard quality, improving the health and quality of life of the
population of the republic, reducing the harmful effects on the
environment through the construction, reconstruction, and modernization of
drinking water supply and sanitation systems.
- text: |-
The program mainly aims at
the construction of rural roads, capacity building of local bodies, and
awareness raising activities.
- text: |-
Mr. Speaker, the PF Government
remains committed to ensuring that all
Zambians have access to clean water supply
and sanitation services.
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: false
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 128 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("faodl/20250909_model_g20_multilabel_MiniLM-L12-all-labels-artificial-governance-v03")
# Run inference
preds = model("The program mainly aims at
the construction of rural roads, capacity building of local bodies, and
awareness raising activities.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 41.6795 | 1753 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.1864 | - |
0.0020 | 50 | 0.1899 | - |
0.0039 | 100 | 0.1866 | - |
0.0059 | 150 | 0.1816 | - |
0.0078 | 200 | 0.1783 | - |
0.0098 | 250 | 0.1743 | - |
0.0117 | 300 | 0.1685 | - |
0.0137 | 350 | 0.1613 | - |
0.0156 | 400 | 0.1533 | - |
0.0176 | 450 | 0.1393 | - |
0.0196 | 500 | 0.1403 | - |
0.0215 | 550 | 0.1276 | - |
0.0235 | 600 | 0.1153 | - |
0.0254 | 650 | 0.1155 | - |
0.0274 | 700 | 0.1074 | - |
0.0293 | 750 | 0.1092 | - |
0.0313 | 800 | 0.1014 | - |
0.0332 | 850 | 0.1005 | - |
0.0352 | 900 | 0.0983 | - |
0.0372 | 950 | 0.0951 | - |
0.0391 | 1000 | 0.0935 | - |
0.0411 | 1050 | 0.0987 | - |
0.0430 | 1100 | 0.0936 | - |
0.0450 | 1150 | 0.092 | - |
0.0469 | 1200 | 0.093 | - |
0.0489 | 1250 | 0.0843 | - |
0.0508 | 1300 | 0.0859 | - |
0.0528 | 1350 | 0.0863 | - |
0.0001 | 1 | 0.0762 | - |
0.0039 | 50 | 0.0869 | - |
0.0001 | 1 | 0.0506 | - |
0.0039 | 50 | 0.084 | - |
0.0078 | 100 | 0.0841 | - |
0.0117 | 150 | 0.0796 | - |
0.0156 | 200 | 0.0821 | - |
0.0196 | 250 | 0.0797 | - |
0.0235 | 300 | 0.0861 | - |
0.0274 | 350 | 0.0827 | - |
0.0313 | 400 | 0.0723 | - |
0.0352 | 450 | 0.0715 | - |
0.0391 | 500 | 0.0762 | - |
0.0430 | 550 | 0.0642 | - |
0.0469 | 600 | 0.07 | - |
0.0508 | 650 | 0.0738 | - |
0.0548 | 700 | 0.0684 | - |
0.0587 | 750 | 0.0679 | - |
0.0626 | 800 | 0.0697 | - |
0.0665 | 850 | 0.0651 | - |
0.0704 | 900 | 0.0668 | - |
0.0743 | 950 | 0.0656 | - |
0.0782 | 1000 | 0.0654 | - |
0.0821 | 1050 | 0.0567 | - |
0.0860 | 1100 | 0.0636 | - |
0.0899 | 1150 | 0.0625 | - |
0.0939 | 1200 | 0.0614 | - |
0.0978 | 1250 | 0.0619 | - |
0.1017 | 1300 | 0.0641 | - |
0.1056 | 1350 | 0.0574 | - |
0.1095 | 1400 | 0.0585 | - |
0.1134 | 1450 | 0.0575 | - |
0.1173 | 1500 | 0.052 | - |
0.1212 | 1550 | 0.0506 | - |
0.1251 | 1600 | 0.0537 | - |
0.1291 | 1650 | 0.0505 | - |
0.1330 | 1700 | 0.0476 | - |
0.1369 | 1750 | 0.0515 | - |
0.1408 | 1800 | 0.0464 | - |
0.1447 | 1850 | 0.0484 | - |
0.1486 | 1900 | 0.0459 | - |
0.1525 | 1950 | 0.0474 | - |
0.1564 | 2000 | 0.0453 | - |
0.1603 | 2050 | 0.0467 | - |
0.1643 | 2100 | 0.0455 | - |
0.1682 | 2150 | 0.0419 | - |
0.1721 | 2200 | 0.0473 | - |
0.1760 | 2250 | 0.0435 | - |
0.1799 | 2300 | 0.0454 | - |
0.1838 | 2350 | 0.0403 | - |
0.1877 | 2400 | 0.04 | - |
0.1916 | 2450 | 0.041 | - |
0.1955 | 2500 | 0.0389 | - |
0.1995 | 2550 | 0.0396 | - |
0.2034 | 2600 | 0.0438 | - |
0.2073 | 2650 | 0.0375 | - |
0.2112 | 2700 | 0.0361 | - |
0.2151 | 2750 | 0.0423 | - |
0.2190 | 2800 | 0.0377 | - |
0.2229 | 2850 | 0.0375 | - |
0.2268 | 2900 | 0.0368 | - |
0.2307 | 2950 | 0.0386 | - |
0.2346 | 3000 | 0.0366 | - |
0.2386 | 3050 | 0.0316 | - |
0.2425 | 3100 | 0.0337 | - |
0.2464 | 3150 | 0.0337 | - |
0.2503 | 3200 | 0.0404 | - |
0.2542 | 3250 | 0.0307 | - |
0.2581 | 3300 | 0.0347 | - |
0.2620 | 3350 | 0.0329 | - |
0.2659 | 3400 | 0.0296 | - |
0.2698 | 3450 | 0.0339 | - |
0.2738 | 3500 | 0.0369 | - |
0.2777 | 3550 | 0.0312 | - |
0.2816 | 3600 | 0.035 | - |
0.2855 | 3650 | 0.0325 | - |
0.2894 | 3700 | 0.0307 | - |
0.2933 | 3750 | 0.0323 | - |
0.2972 | 3800 | 0.0288 | - |
0.3011 | 3850 | 0.0263 | - |
0.3050 | 3900 | 0.0337 | - |
0.3090 | 3950 | 0.0332 | - |
0.3129 | 4000 | 0.0257 | - |
0.3168 | 4050 | 0.0262 | - |
0.3207 | 4100 | 0.0324 | - |
0.3246 | 4150 | 0.0309 | - |
0.3285 | 4200 | 0.0264 | - |
0.3324 | 4250 | 0.0307 | - |
0.3363 | 4300 | 0.0257 | - |
0.3402 | 4350 | 0.0264 | - |
0.3442 | 4400 | 0.0271 | - |
0.3481 | 4450 | 0.0255 | - |
0.3520 | 4500 | 0.0249 | - |
0.3559 | 4550 | 0.0263 | - |
0.3598 | 4600 | 0.0234 | - |
0.3637 | 4650 | 0.0245 | - |
0.3676 | 4700 | 0.0287 | - |
0.3715 | 4750 | 0.0284 | - |
0.3754 | 4800 | 0.0242 | - |
0.3794 | 4850 | 0.0256 | - |
0.3833 | 4900 | 0.025 | - |
0.3872 | 4950 | 0.0209 | - |
0.3911 | 5000 | 0.0245 | - |
0.3950 | 5050 | 0.0271 | - |
0.3989 | 5100 | 0.0274 | - |
0.4028 | 5150 | 0.026 | - |
0.4067 | 5200 | 0.0245 | - |
0.4106 | 5250 | 0.027 | - |
0.4145 | 5300 | 0.0266 | - |
0.4185 | 5350 | 0.0288 | - |
0.4224 | 5400 | 0.0217 | - |
0.4263 | 5450 | 0.0228 | - |
0.4302 | 5500 | 0.0199 | - |
0.4341 | 5550 | 0.0254 | - |
0.4380 | 5600 | 0.0181 | - |
0.4419 | 5650 | 0.0235 | - |
0.4458 | 5700 | 0.0247 | - |
0.4497 | 5750 | 0.024 | - |
0.4537 | 5800 | 0.0239 | - |
0.4576 | 5850 | 0.0259 | - |
0.4615 | 5900 | 0.0209 | - |
0.4654 | 5950 | 0.021 | - |
0.4693 | 6000 | 0.0227 | - |
0.4732 | 6050 | 0.0265 | - |
0.4771 | 6100 | 0.0255 | - |
0.4810 | 6150 | 0.0227 | - |
0.4849 | 6200 | 0.0229 | - |
0.4889 | 6250 | 0.0231 | - |
0.4928 | 6300 | 0.0248 | - |
0.4967 | 6350 | 0.0198 | - |
0.5006 | 6400 | 0.0217 | - |
0.5045 | 6450 | 0.0246 | - |
0.5084 | 6500 | 0.0209 | - |
0.5123 | 6550 | 0.0206 | - |
0.5162 | 6600 | 0.0214 | - |
0.5201 | 6650 | 0.0222 | - |
0.5241 | 6700 | 0.0185 | - |
0.5280 | 6750 | 0.0188 | - |
0.5319 | 6800 | 0.0214 | - |
0.5358 | 6850 | 0.0248 | - |
0.5397 | 6900 | 0.0212 | - |
0.5436 | 6950 | 0.0201 | - |
0.5475 | 7000 | 0.0201 | - |
0.5514 | 7050 | 0.0248 | - |
0.5553 | 7100 | 0.022 | - |
0.5592 | 7150 | 0.0181 | - |
0.5632 | 7200 | 0.0194 | - |
0.5671 | 7250 | 0.0211 | - |
0.5710 | 7300 | 0.0202 | - |
0.5749 | 7350 | 0.022 | - |
0.5788 | 7400 | 0.0238 | - |
0.5827 | 7450 | 0.019 | - |
0.5866 | 7500 | 0.0165 | - |
0.5905 | 7550 | 0.0191 | - |
0.5944 | 7600 | 0.023 | - |
0.5984 | 7650 | 0.0187 | - |
0.6023 | 7700 | 0.0254 | - |
0.6062 | 7750 | 0.0213 | - |
0.6101 | 7800 | 0.0259 | - |
0.6140 | 7850 | 0.0225 | - |
0.6179 | 7900 | 0.0207 | - |
0.6218 | 7950 | 0.0166 | - |
0.6257 | 8000 | 0.0215 | - |
0.6296 | 8050 | 0.0176 | - |
0.6336 | 8100 | 0.02 | - |
0.6375 | 8150 | 0.0208 | - |
0.6414 | 8200 | 0.0186 | - |
0.6453 | 8250 | 0.0179 | - |
0.6492 | 8300 | 0.0173 | - |
0.6531 | 8350 | 0.0216 | - |
0.6570 | 8400 | 0.0212 | - |
0.6609 | 8450 | 0.0213 | - |
0.6648 | 8500 | 0.0191 | - |
0.6688 | 8550 | 0.0212 | - |
0.6727 | 8600 | 0.0184 | - |
0.6766 | 8650 | 0.0202 | - |
0.6805 | 8700 | 0.0215 | - |
0.6844 | 8750 | 0.0163 | - |
0.6883 | 8800 | 0.018 | - |
0.6922 | 8850 | 0.0178 | - |
0.6961 | 8900 | 0.0175 | - |
0.7000 | 8950 | 0.0155 | - |
0.7039 | 9000 | 0.0201 | - |
0.7079 | 9050 | 0.0168 | - |
0.7118 | 9100 | 0.0194 | - |
0.7157 | 9150 | 0.0191 | - |
0.7196 | 9200 | 0.0183 | - |
0.7235 | 9250 | 0.0181 | - |
0.7274 | 9300 | 0.0191 | - |
0.7313 | 9350 | 0.0179 | - |
0.7352 | 9400 | 0.0218 | - |
0.7391 | 9450 | 0.0178 | - |
0.7431 | 9500 | 0.0175 | - |
0.7470 | 9550 | 0.0168 | - |
0.7509 | 9600 | 0.0192 | - |
0.7548 | 9650 | 0.0183 | - |
0.7587 | 9700 | 0.0167 | - |
0.7626 | 9750 | 0.0189 | - |
0.7665 | 9800 | 0.021 | - |
0.7704 | 9850 | 0.0176 | - |
0.7743 | 9900 | 0.0177 | - |
0.7783 | 9950 | 0.0169 | - |
0.7822 | 10000 | 0.0191 | - |
0.7861 | 10050 | 0.0147 | - |
0.7900 | 10100 | 0.0192 | - |
0.7939 | 10150 | 0.0174 | - |
0.7978 | 10200 | 0.017 | - |
0.8017 | 10250 | 0.0155 | - |
0.8056 | 10300 | 0.0179 | - |
0.8095 | 10350 | 0.0192 | - |
0.8135 | 10400 | 0.0153 | - |
0.8174 | 10450 | 0.0195 | - |
0.8213 | 10500 | 0.0196 | - |
0.8252 | 10550 | 0.0192 | - |
0.8291 | 10600 | 0.0148 | - |
0.8330 | 10650 | 0.0175 | - |
0.8369 | 10700 | 0.0146 | - |
0.8408 | 10750 | 0.0178 | - |
0.8447 | 10800 | 0.015 | - |
0.8487 | 10850 | 0.0192 | - |
0.8526 | 10900 | 0.0163 | - |
0.8565 | 10950 | 0.0168 | - |
0.8604 | 11000 | 0.0163 | - |
0.8643 | 11050 | 0.0148 | - |
0.8682 | 11100 | 0.0161 | - |
0.8721 | 11150 | 0.0189 | - |
0.8760 | 11200 | 0.0196 | - |
0.8799 | 11250 | 0.0138 | - |
0.8838 | 11300 | 0.0164 | - |
0.8878 | 11350 | 0.0156 | - |
0.8917 | 11400 | 0.0149 | - |
0.8956 | 11450 | 0.0177 | - |
0.8995 | 11500 | 0.0183 | - |
0.9034 | 11550 | 0.0157 | - |
0.9073 | 11600 | 0.018 | - |
0.9112 | 11650 | 0.0127 | - |
0.9151 | 11700 | 0.0165 | - |
0.9190 | 11750 | 0.0181 | - |
0.9230 | 11800 | 0.0157 | - |
0.9269 | 11850 | 0.0157 | - |
0.9308 | 11900 | 0.0159 | - |
0.9347 | 11950 | 0.0125 | - |
0.9386 | 12000 | 0.0175 | - |
0.9425 | 12050 | 0.018 | - |
0.9464 | 12100 | 0.0181 | - |
0.9503 | 12150 | 0.0173 | - |
0.9542 | 12200 | 0.0182 | - |
0.9582 | 12250 | 0.0189 | - |
0.9621 | 12300 | 0.0124 | - |
0.9660 | 12350 | 0.0175 | - |
0.9699 | 12400 | 0.0139 | - |
0.9738 | 12450 | 0.0161 | - |
0.9777 | 12500 | 0.0168 | - |
0.9816 | 12550 | 0.019 | - |
0.9855 | 12600 | 0.0195 | - |
0.9894 | 12650 | 0.0184 | - |
0.9934 | 12700 | 0.0148 | - |
0.9973 | 12750 | 0.0172 | - |
Framework Versions
- Python: 3.12.11
- SetFit: 1.1.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu126
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}