SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 128 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the ๐ค Hub
model = SetFitModel.from_pretrained("faodl/20250909_model_g20_multilabel_MiniLM-L12-all-labels-artificial-governance-v03")
# Run inference
preds = model("The program mainly aims at
the construction of rural roads, capacity building of local bodies, and
awareness raising activities.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 41.6795 | 1753 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.1864 | - |
0.0020 | 50 | 0.1899 | - |
0.0039 | 100 | 0.1866 | - |
0.0059 | 150 | 0.1816 | - |
0.0078 | 200 | 0.1783 | - |
0.0098 | 250 | 0.1743 | - |
0.0117 | 300 | 0.1685 | - |
0.0137 | 350 | 0.1613 | - |
0.0156 | 400 | 0.1533 | - |
0.0176 | 450 | 0.1393 | - |
0.0196 | 500 | 0.1403 | - |
0.0215 | 550 | 0.1276 | - |
0.0235 | 600 | 0.1153 | - |
0.0254 | 650 | 0.1155 | - |
0.0274 | 700 | 0.1074 | - |
0.0293 | 750 | 0.1092 | - |
0.0313 | 800 | 0.1014 | - |
0.0332 | 850 | 0.1005 | - |
0.0352 | 900 | 0.0983 | - |
0.0372 | 950 | 0.0951 | - |
0.0391 | 1000 | 0.0935 | - |
0.0411 | 1050 | 0.0987 | - |
0.0430 | 1100 | 0.0936 | - |
0.0450 | 1150 | 0.092 | - |
0.0469 | 1200 | 0.093 | - |
0.0489 | 1250 | 0.0843 | - |
0.0508 | 1300 | 0.0859 | - |
0.0528 | 1350 | 0.0863 | - |
0.0001 | 1 | 0.0762 | - |
0.0039 | 50 | 0.0869 | - |
0.0001 | 1 | 0.0506 | - |
0.0039 | 50 | 0.084 | - |
0.0078 | 100 | 0.0841 | - |
0.0117 | 150 | 0.0796 | - |
0.0156 | 200 | 0.0821 | - |
0.0196 | 250 | 0.0797 | - |
0.0235 | 300 | 0.0861 | - |
0.0274 | 350 | 0.0827 | - |
0.0313 | 400 | 0.0723 | - |
0.0352 | 450 | 0.0715 | - |
0.0391 | 500 | 0.0762 | - |
0.0430 | 550 | 0.0642 | - |
0.0469 | 600 | 0.07 | - |
0.0508 | 650 | 0.0738 | - |
0.0548 | 700 | 0.0684 | - |
0.0587 | 750 | 0.0679 | - |
0.0626 | 800 | 0.0697 | - |
0.0665 | 850 | 0.0651 | - |
0.0704 | 900 | 0.0668 | - |
0.0743 | 950 | 0.0656 | - |
0.0782 | 1000 | 0.0654 | - |
0.0821 | 1050 | 0.0567 | - |
0.0860 | 1100 | 0.0636 | - |
0.0899 | 1150 | 0.0625 | - |
0.0939 | 1200 | 0.0614 | - |
0.0978 | 1250 | 0.0619 | - |
0.1017 | 1300 | 0.0641 | - |
0.1056 | 1350 | 0.0574 | - |
0.1095 | 1400 | 0.0585 | - |
0.1134 | 1450 | 0.0575 | - |
0.1173 | 1500 | 0.052 | - |
0.1212 | 1550 | 0.0506 | - |
0.1251 | 1600 | 0.0537 | - |
0.1291 | 1650 | 0.0505 | - |
0.1330 | 1700 | 0.0476 | - |
0.1369 | 1750 | 0.0515 | - |
0.1408 | 1800 | 0.0464 | - |
0.1447 | 1850 | 0.0484 | - |
0.1486 | 1900 | 0.0459 | - |
0.1525 | 1950 | 0.0474 | - |
0.1564 | 2000 | 0.0453 | - |
0.1603 | 2050 | 0.0467 | - |
0.1643 | 2100 | 0.0455 | - |
0.1682 | 2150 | 0.0419 | - |
0.1721 | 2200 | 0.0473 | - |
0.1760 | 2250 | 0.0435 | - |
0.1799 | 2300 | 0.0454 | - |
0.1838 | 2350 | 0.0403 | - |
0.1877 | 2400 | 0.04 | - |
0.1916 | 2450 | 0.041 | - |
0.1955 | 2500 | 0.0389 | - |
0.1995 | 2550 | 0.0396 | - |
0.2034 | 2600 | 0.0438 | - |
0.2073 | 2650 | 0.0375 | - |
0.2112 | 2700 | 0.0361 | - |
0.2151 | 2750 | 0.0423 | - |
0.2190 | 2800 | 0.0377 | - |
0.2229 | 2850 | 0.0375 | - |
0.2268 | 2900 | 0.0368 | - |
0.2307 | 2950 | 0.0386 | - |
0.2346 | 3000 | 0.0366 | - |
0.2386 | 3050 | 0.0316 | - |
0.2425 | 3100 | 0.0337 | - |
0.2464 | 3150 | 0.0337 | - |
0.2503 | 3200 | 0.0404 | - |
0.2542 | 3250 | 0.0307 | - |
0.2581 | 3300 | 0.0347 | - |
0.2620 | 3350 | 0.0329 | - |
0.2659 | 3400 | 0.0296 | - |
0.2698 | 3450 | 0.0339 | - |
0.2738 | 3500 | 0.0369 | - |
0.2777 | 3550 | 0.0312 | - |
0.2816 | 3600 | 0.035 | - |
0.2855 | 3650 | 0.0325 | - |
0.2894 | 3700 | 0.0307 | - |
0.2933 | 3750 | 0.0323 | - |
0.2972 | 3800 | 0.0288 | - |
0.3011 | 3850 | 0.0263 | - |
0.3050 | 3900 | 0.0337 | - |
0.3090 | 3950 | 0.0332 | - |
0.3129 | 4000 | 0.0257 | - |
0.3168 | 4050 | 0.0262 | - |
0.3207 | 4100 | 0.0324 | - |
0.3246 | 4150 | 0.0309 | - |
0.3285 | 4200 | 0.0264 | - |
0.3324 | 4250 | 0.0307 | - |
0.3363 | 4300 | 0.0257 | - |
0.3402 | 4350 | 0.0264 | - |
0.3442 | 4400 | 0.0271 | - |
0.3481 | 4450 | 0.0255 | - |
0.3520 | 4500 | 0.0249 | - |
0.3559 | 4550 | 0.0263 | - |
0.3598 | 4600 | 0.0234 | - |
0.3637 | 4650 | 0.0245 | - |
0.3676 | 4700 | 0.0287 | - |
0.3715 | 4750 | 0.0284 | - |
0.3754 | 4800 | 0.0242 | - |
0.3794 | 4850 | 0.0256 | - |
0.3833 | 4900 | 0.025 | - |
0.3872 | 4950 | 0.0209 | - |
0.3911 | 5000 | 0.0245 | - |
0.3950 | 5050 | 0.0271 | - |
0.3989 | 5100 | 0.0274 | - |
0.4028 | 5150 | 0.026 | - |
0.4067 | 5200 | 0.0245 | - |
0.4106 | 5250 | 0.027 | - |
0.4145 | 5300 | 0.0266 | - |
0.4185 | 5350 | 0.0288 | - |
0.4224 | 5400 | 0.0217 | - |
0.4263 | 5450 | 0.0228 | - |
0.4302 | 5500 | 0.0199 | - |
0.4341 | 5550 | 0.0254 | - |
0.4380 | 5600 | 0.0181 | - |
0.4419 | 5650 | 0.0235 | - |
0.4458 | 5700 | 0.0247 | - |
0.4497 | 5750 | 0.024 | - |
0.4537 | 5800 | 0.0239 | - |
0.4576 | 5850 | 0.0259 | - |
0.4615 | 5900 | 0.0209 | - |
0.4654 | 5950 | 0.021 | - |
0.4693 | 6000 | 0.0227 | - |
0.4732 | 6050 | 0.0265 | - |
0.4771 | 6100 | 0.0255 | - |
0.4810 | 6150 | 0.0227 | - |
0.4849 | 6200 | 0.0229 | - |
0.4889 | 6250 | 0.0231 | - |
0.4928 | 6300 | 0.0248 | - |
0.4967 | 6350 | 0.0198 | - |
0.5006 | 6400 | 0.0217 | - |
0.5045 | 6450 | 0.0246 | - |
0.5084 | 6500 | 0.0209 | - |
0.5123 | 6550 | 0.0206 | - |
0.5162 | 6600 | 0.0214 | - |
0.5201 | 6650 | 0.0222 | - |
0.5241 | 6700 | 0.0185 | - |
0.5280 | 6750 | 0.0188 | - |
0.5319 | 6800 | 0.0214 | - |
0.5358 | 6850 | 0.0248 | - |
0.5397 | 6900 | 0.0212 | - |
0.5436 | 6950 | 0.0201 | - |
0.5475 | 7000 | 0.0201 | - |
0.5514 | 7050 | 0.0248 | - |
0.5553 | 7100 | 0.022 | - |
0.5592 | 7150 | 0.0181 | - |
0.5632 | 7200 | 0.0194 | - |
0.5671 | 7250 | 0.0211 | - |
0.5710 | 7300 | 0.0202 | - |
0.5749 | 7350 | 0.022 | - |
0.5788 | 7400 | 0.0238 | - |
0.5827 | 7450 | 0.019 | - |
0.5866 | 7500 | 0.0165 | - |
0.5905 | 7550 | 0.0191 | - |
0.5944 | 7600 | 0.023 | - |
0.5984 | 7650 | 0.0187 | - |
0.6023 | 7700 | 0.0254 | - |
0.6062 | 7750 | 0.0213 | - |
0.6101 | 7800 | 0.0259 | - |
0.6140 | 7850 | 0.0225 | - |
0.6179 | 7900 | 0.0207 | - |
0.6218 | 7950 | 0.0166 | - |
0.6257 | 8000 | 0.0215 | - |
0.6296 | 8050 | 0.0176 | - |
0.6336 | 8100 | 0.02 | - |
0.6375 | 8150 | 0.0208 | - |
0.6414 | 8200 | 0.0186 | - |
0.6453 | 8250 | 0.0179 | - |
0.6492 | 8300 | 0.0173 | - |
0.6531 | 8350 | 0.0216 | - |
0.6570 | 8400 | 0.0212 | - |
0.6609 | 8450 | 0.0213 | - |
0.6648 | 8500 | 0.0191 | - |
0.6688 | 8550 | 0.0212 | - |
0.6727 | 8600 | 0.0184 | - |
0.6766 | 8650 | 0.0202 | - |
0.6805 | 8700 | 0.0215 | - |
0.6844 | 8750 | 0.0163 | - |
0.6883 | 8800 | 0.018 | - |
0.6922 | 8850 | 0.0178 | - |
0.6961 | 8900 | 0.0175 | - |
0.7000 | 8950 | 0.0155 | - |
0.7039 | 9000 | 0.0201 | - |
0.7079 | 9050 | 0.0168 | - |
0.7118 | 9100 | 0.0194 | - |
0.7157 | 9150 | 0.0191 | - |
0.7196 | 9200 | 0.0183 | - |
0.7235 | 9250 | 0.0181 | - |
0.7274 | 9300 | 0.0191 | - |
0.7313 | 9350 | 0.0179 | - |
0.7352 | 9400 | 0.0218 | - |
0.7391 | 9450 | 0.0178 | - |
0.7431 | 9500 | 0.0175 | - |
0.7470 | 9550 | 0.0168 | - |
0.7509 | 9600 | 0.0192 | - |
0.7548 | 9650 | 0.0183 | - |
0.7587 | 9700 | 0.0167 | - |
0.7626 | 9750 | 0.0189 | - |
0.7665 | 9800 | 0.021 | - |
0.7704 | 9850 | 0.0176 | - |
0.7743 | 9900 | 0.0177 | - |
0.7783 | 9950 | 0.0169 | - |
0.7822 | 10000 | 0.0191 | - |
0.7861 | 10050 | 0.0147 | - |
0.7900 | 10100 | 0.0192 | - |
0.7939 | 10150 | 0.0174 | - |
0.7978 | 10200 | 0.017 | - |
0.8017 | 10250 | 0.0155 | - |
0.8056 | 10300 | 0.0179 | - |
0.8095 | 10350 | 0.0192 | - |
0.8135 | 10400 | 0.0153 | - |
0.8174 | 10450 | 0.0195 | - |
0.8213 | 10500 | 0.0196 | - |
0.8252 | 10550 | 0.0192 | - |
0.8291 | 10600 | 0.0148 | - |
0.8330 | 10650 | 0.0175 | - |
0.8369 | 10700 | 0.0146 | - |
0.8408 | 10750 | 0.0178 | - |
0.8447 | 10800 | 0.015 | - |
0.8487 | 10850 | 0.0192 | - |
0.8526 | 10900 | 0.0163 | - |
0.8565 | 10950 | 0.0168 | - |
0.8604 | 11000 | 0.0163 | - |
0.8643 | 11050 | 0.0148 | - |
0.8682 | 11100 | 0.0161 | - |
0.8721 | 11150 | 0.0189 | - |
0.8760 | 11200 | 0.0196 | - |
0.8799 | 11250 | 0.0138 | - |
0.8838 | 11300 | 0.0164 | - |
0.8878 | 11350 | 0.0156 | - |
0.8917 | 11400 | 0.0149 | - |
0.8956 | 11450 | 0.0177 | - |
0.8995 | 11500 | 0.0183 | - |
0.9034 | 11550 | 0.0157 | - |
0.9073 | 11600 | 0.018 | - |
0.9112 | 11650 | 0.0127 | - |
0.9151 | 11700 | 0.0165 | - |
0.9190 | 11750 | 0.0181 | - |
0.9230 | 11800 | 0.0157 | - |
0.9269 | 11850 | 0.0157 | - |
0.9308 | 11900 | 0.0159 | - |
0.9347 | 11950 | 0.0125 | - |
0.9386 | 12000 | 0.0175 | - |
0.9425 | 12050 | 0.018 | - |
0.9464 | 12100 | 0.0181 | - |
0.9503 | 12150 | 0.0173 | - |
0.9542 | 12200 | 0.0182 | - |
0.9582 | 12250 | 0.0189 | - |
0.9621 | 12300 | 0.0124 | - |
0.9660 | 12350 | 0.0175 | - |
0.9699 | 12400 | 0.0139 | - |
0.9738 | 12450 | 0.0161 | - |
0.9777 | 12500 | 0.0168 | - |
0.9816 | 12550 | 0.019 | - |
0.9855 | 12600 | 0.0195 | - |
0.9894 | 12650 | 0.0184 | - |
0.9934 | 12700 | 0.0148 | - |
0.9973 | 12750 | 0.0172 | - |
Framework Versions
- Python: 3.12.11
- SetFit: 1.1.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu126
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 20