|
--- |
|
license: mit |
|
datasets: |
|
- microsoft/rStar-Coder |
|
- deepseek-ai/DeepSeek-ProverBench |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
- bertscore |
|
- character |
|
- code_eval |
|
base_model: |
|
- deepseek-ai/deepseek-coder-6.7b-instruct |
|
- stabilityai/stablecode-completion-alpha-3b-4k |
|
tags: |
|
- code |
|
--- |
|
# Model Card for Lara — Hybrid Code Model (DeepSeek + StableCode) |
|
|
|
Lara is a hybrid fine‑tuned **code generation & completion model** built from |
|
**DeepSeek‑Coder 6.7B** and **StableCode Alpha 3B‑4K**. |
|
Designed for **general‑purpose programming** — from quick completions to multi‑file scaffolding — |
|
and optionally capable of **Chandler Bing‑style sarcastic commentary** for developer amusement. |
|
|
|
MIT licensed — free to use, modify, and redistribute. |
|
|
|
--- |
|
|
|
## Model Details |
|
|
|
- **Developed by:** [@dgtalbug](https://huggingface.co/dgtalbug) |
|
- **Funded by:** Self‑funded |
|
- **Shared by:** [@dgtalbug](https://huggingface.co/dgtalbug) |
|
- **Model type:** Causal Language Model for code generation & completion |
|
- **Language(s):** English (primary), multilingual code comments possible |
|
- **License:** MIT |
|
- **Finetuned from:** |
|
- [`deepseek-ai/deepseek-coder-6.7b-instruct`](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) |
|
- [`stabilityai/stablecode-completion-alpha-3b-4k`](https://huggingface.co/stabilityai/stablecode-completion-alpha-3b-4k) |
|
|
|
--- |
|
|
|
## Model Sources |
|
- **Repository:** [https://huggingface.co/dgtalbug/lara](https://huggingface.co/dgtalbug/lara) |
|
- **Paper:** N/A (based on open‑source models) |
|
- **Demo:** Coming soon |
|
|
|
--- |
|
|
|
## Uses |
|
|
|
### Direct Use |
|
- Code completion in IDEs |
|
- Script & function generation |
|
- Annotated code examples for learning |
|
- Humorous coding commentary (optional, via prompt) |
|
|
|
### Downstream Use |
|
- Fine‑tune for a single language (e.g., Java‑only bot) |
|
- Integrate into AI coding assistants |
|
- Educational & training platforms |
|
|
|
### Out‑of‑Scope Use |
|
- Malicious code generation |
|
- Non‑code general chat |
|
- Security‑critical code without review |
|
|
|
--- |
|
|
|
## Bias, Risks, and Limitations |
|
- May hallucinate APIs or syntax |
|
- Humor mode may inject irrelevant lines |
|
- Biases from public code sources may appear in output |
|
|
|
### Recommendations |
|
- Always review generated code before deployment |
|
- Use sarcasm mode in casual or learning contexts, not production |
|
- Test code in sandbox environments |
|
|
|
--- |
|
|
|
## How to Get Started with the Model |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_id = "dgtalbug/lara" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto") |
|
|
|
prompt = "Write a Python function to reverse a string" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=150) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |