English
code
lara / README.md
dgtalbug's picture
Update README.md
214a316 verified
metadata
license: mit
datasets:
  - microsoft/rStar-Coder
  - deepseek-ai/DeepSeek-ProverBench
language:
  - en
metrics:
  - accuracy
  - bertscore
  - character
  - code_eval
base_model:
  - deepseek-ai/deepseek-coder-6.7b-instruct
  - stabilityai/stablecode-completion-alpha-3b-4k
tags:
  - code

Model Card for Lara — Hybrid Code Model (DeepSeek + StableCode)

Lara is a hybrid fine‑tuned code generation & completion model built from
DeepSeek‑Coder 6.7B and StableCode Alpha 3B‑4K.
Designed for general‑purpose programming — from quick completions to multi‑file scaffolding —
and optionally capable of Chandler Bing‑style sarcastic commentary for developer amusement.

MIT licensed — free to use, modify, and redistribute.


Model Details


Model Sources


Uses

Direct Use

  • Code completion in IDEs
  • Script & function generation
  • Annotated code examples for learning
  • Humorous coding commentary (optional, via prompt)

Downstream Use

  • Fine‑tune for a single language (e.g., Java‑only bot)
  • Integrate into AI coding assistants
  • Educational & training platforms

Out‑of‑Scope Use

  • Malicious code generation
  • Non‑code general chat
  • Security‑critical code without review

Bias, Risks, and Limitations

  • May hallucinate APIs or syntax
  • Humor mode may inject irrelevant lines
  • Biases from public code sources may appear in output

Recommendations

  • Always review generated code before deployment
  • Use sarcasm mode in casual or learning contexts, not production
  • Test code in sandbox environments

How to Get Started with the Model

from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "dgtalbug/lara"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto")

prompt = "Write a Python function to reverse a string"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=150)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))