Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 19 new columns ({'Apps', 'P.Undergrad', 'Expend', 'PhD', 'Books', 'Enroll', 'Outstate', 'Room.Board', 'Private', 'Top25perc', 'Personal', 'S.F.Ratio', 'College', 'Accept', 'Grad.Rate', 'Top10perc', 'perc.alumni', 'F.Undergrad', 'Terminal'}) and 8 missing columns ({'CLMINSUR', 'CLMAGE', 'MARITAL', 'CASENUM', 'SEATBELT', 'LOSS', 'CLMSEX', 'ATTORNEY'}).

This happened while the csv dataset builder was generating data using

hf://datasets/samgohan/Tabular_Imbalanced_Regression/College.csv (at revision 0595f3ba452b0fd457aef2dddb818325b3f8aa0d)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Grad.Rate: int64
              College: string
              Private: string
              Apps: int64
              Accept: int64
              Enroll: int64
              Top10perc: int64
              Top25perc: int64
              F.Undergrad: int64
              P.Undergrad: int64
              Outstate: int64
              Room.Board: int64
              Books: int64
              Personal: int64
              PhD: int64
              Terminal: int64
              S.F.Ratio: double
              perc.alumni: int64
              Expend: int64
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2408
              to
              {'LOSS': Value('float64'), 'CASENUM': Value('int64'), 'ATTORNEY': Value('int64'), 'CLMSEX': Value('float64'), 'MARITAL': Value('float64'), 'CLMINSUR': Value('float64'), 'SEATBELT': Value('float64'), 'CLMAGE': Value('float64')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 19 new columns ({'Apps', 'P.Undergrad', 'Expend', 'PhD', 'Books', 'Enroll', 'Outstate', 'Room.Board', 'Private', 'Top25perc', 'Personal', 'S.F.Ratio', 'College', 'Accept', 'Grad.Rate', 'Top10perc', 'perc.alumni', 'F.Undergrad', 'Terminal'}) and 8 missing columns ({'CLMINSUR', 'CLMAGE', 'MARITAL', 'CASENUM', 'SEATBELT', 'LOSS', 'CLMSEX', 'ATTORNEY'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/samgohan/Tabular_Imbalanced_Regression/College.csv (at revision 0595f3ba452b0fd457aef2dddb818325b3f8aa0d)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

LOSS
float64
CASENUM
int64
ATTORNEY
int64
CLMSEX
float64
MARITAL
float64
CLMINSUR
float64
SEATBELT
float64
CLMAGE
float64
34.94
5
1
1
null
2
1
50
10.892
13
2
2
2
1
1
28
0.33
66
2
1
2
2
1
5
11.037
71
1
1
1
2
2
32
0.138
96
2
1
4
2
1
30
0.309
97
1
2
1
2
1
35
3.538
120
1
1
2
2
1
19
4.882
136
1
2
2
2
1
34
0.874
152
2
2
2
2
1
61
1.351
155
2
1
2
2
1
null
6.29
162
1
2
1
2
1
37
29.62
248
1
1
1
2
1
42
2.678
250
2
1
2
2
1
17
11.673
251
1
2
1
2
1
40
0.243
269
2
2
1
2
1
37
1.053
272
2
2
2
1
1
19
0.15
334
2
2
1
2
1
58
0.758
361
1
1
1
2
1
58
0.1
376
2
1
2
2
1
3
4.754
412
1
2
4
2
1
38
3.2
479
1
1
2
null
1
37
0.23
481
2
2
1
2
1
39
26.262
551
1
1
4
1
1
38
1.619
569
1
1
2
null
1
31
20.04
581
2
1
1
2
1
54
0.787
608
2
2
2
2
1
3
0.25
613
2
1
2
2
1
62
1.405
616
1
1
2
2
1
10
0.415
617
2
1
1
2
1
40
0.595
631
1
1
2
2
1
null
3.994
640
2
2
4
2
1
26
0.337
641
2
1
2
2
1
null
0.603
685
2
1
2
2
1
19
2.673
700
1
2
2
2
1
35
4.752
721
1
2
1
2
1
35
3.538
766
1
2
1
2
1
27
3.285
775
1
2
1
1
1
42
13.711
805
1
2
1
2
1
50
0.386
829
2
1
2
2
1
33
2.97
838
1
1
2
2
1
19
1.914
852
2
1
1
2
1
34
8.09
872
1
2
1
1
1
33
8.19
915
1
2
1
2
1
46
23.201
942
2
2
2
2
1
55
0.46
972
2
1
2
2
1
5
3.982
1,062
2
2
1
2
1
null
2.74
1,063
1
1
1
1
1
26
0.1
1,078
2
1
2
2
1
2
2.103
1,092
1
1
2
2
1
null
3.2
1,101
1
1
1
2
1
41
3.777
1,104
1
2
4
2
1
29
1.975
1,154
2
1
1
2
1
54
0.497
1,170
2
2
1
2
1
null
0.335
1,186
2
2
2
2
1
null
2.669
1,278
1
2
1
2
1
61
33.633
1,295
1
1
1
2
1
31
0.305
1,312
2
2
1
2
1
null
6.694
1,314
1
2
2
1
1
20
0.239
1,335
2
2
1
2
1
44
0.987
1,339
2
1
2
2
1
21
1
1,354
2
2
1
2
1
null
1.53
1,359
2
1
1
2
1
null
5.563
1,366
1
1
1
null
null
35
0.27
1,387
2
1
1
2
1
54
2.523
1,415
1
2
1
2
1
38
0.73
1,445
2
2
1
2
1
61
3.638
1,470
2
1
1
2
1
null
1.081
1,505
2
1
2
2
1
31
1.32
1,530
2
2
1
1
1
27
0.3
1,590
1
1
2
2
1
4
44.061
1,607
1
1
2
2
1
56
2.6
1,608
1
1
1
2
1
63
1.895
1,624
1
1
1
2
1
55
1.442
1,664
1
1
1
2
1
47
0.445
1,671
2
1
2
2
1
0
3.51
1,740
1
1
2
2
1
15
1.919
1,743
2
1
1
2
1
38
0.1
1,780
2
2
2
2
1
null
2.875
1,784
1
1
1
2
1
40
3.889
1,791
2
1
2
2
1
57
2.765
1,840
1
2
1
2
1
27
1.527
1,918
2
2
2
2
1
12
9.73
1,970
1
2
1
null
1
null
2.72
1,996
1
2
2
1
1
22
10.834
2,002
1
1
1
2
1
40
2.132
2,009
2
2
2
2
1
21
3.37
2,013
1
1
2
2
1
28
0.25
2,020
2
2
1
2
1
35
4.227
2,023
1
2
2
2
1
22
4.44
2,027
1
2
1
2
1
26
0.8
2,028
2
2
1
2
1
null
4.506
2,054
1
2
2
2
1
10
1.86
2,063
2
2
2
2
1
18
13.028
2,092
1
1
4
2
1
32
2.467
2,121
1
1
2
2
1
51
0.198
2,122
2
2
1
2
1
72
3.682
2,123
2
2
null
2
1
null
34.572
2,154
1
1
2
2
1
2
8.698
2,157
1
1
1
2
1
26
0.46
2,159
2
1
2
2
1
19
End of preview.

Tabular Imbalanced Regression Datasets

Repository Summary

This repository provides a collection of 81 tabular datasets curated for research on imbalanced regression problems. They were obtained from the various studies carried out on the subject (source and papers listed below).
Its objective is to centralize datasets commonly used in the literature, serving as a solid reference point for future work.

Additional datasets can be contributed or requested — feel free to open an issue or pull request.

Citation

If you use dataset from this repository in your research, please cite our paper:

Dataset Structure

This collection is intended for training, evaluating, and benchmarking models in imbalanced regression tasks.
All datasets have been preprocessed to consistently place the target variable as the first column. A detailed summary of the 81 datasets is available in the table below. A second table lists the datasets used by each referenced paper in the survey. This metadata enables standardized comparisons and better understanding of dataset difficulty and imbalance characteristics.

Python Utilities

This repository includes Python code to compute imbalance coefficient based on the target distribution.
The script imbalance_coefficient.py provides the function imb_coef() for both continuous and discrete targets.

You can explore our Python implementation and a usage notebook in the imbalance_coefficient/ subfolder:

Dataset Overview

For each dataset, the following metadata is provided:

  • n_obs: Number of observations
  • p_var: Total number of features
  • p_num: Number of numerical features
  • p_cat: Number of categorical features
  • Type: Type of target variable (continuous, integer, etc.)
  • Skew: Skewness of the target distribution
  • Imb. Coef.: Imbalance coefficient as defined in Section \ref{imbCoef}
  • mIR: Mean Imbalanced Ratio, as introduced by Wibbeke et al., 2025
  • Miss.: Proportion of missing values
  • Used: Number of times the dataset has been used in published papers
dataset n_obs p_variables p_numeric p_categorical target_type target_skewness Imb_ratio mIR missing_rate Used
abalone 4177 11 11 0 int64 1.11 54.23 345.73 0.0 32
boston 506 14 14 0 float64 1.1 36.0 218.31 0.0 30
accel 1732 23 23 0 float64 0.77 51.58 292.14 0.0 23
availPwr 1802 16 9 7 int64 1.9 55.97 348.26 0.0 23
cpusm 8192 13 13 0 int64 -3.42 63.69 358.7 0.0 23
a7 198 12 9 3 float64 3.72 70.01 456.38 0.0 22
bank8fm 4499 9 9 0 float64 1.08 44.18 252.74 0.0 22
a1 198 12 9 3 float64 1.46 46.56 242.44 0.0 20
airfoild 1503 6 6 0 float64 -0.42 31.86 189.28 0.0 18
fuelCons 1764 38 26 12 float64 1.14 52.08 303.6 0.0 18
maxTorque 1802 33 20 13 int64 1.63 55.67 331.58 0.0 18
a2 198 12 9 3 float64 2.41 61.29 365.26 0.0 16
a3 198 12 9 3 float64 2.47 62.7 391.33 0.0 16
a4 198 12 9 3 float64 5.96 77.89 624.82 0.0 15
a6 198 12 9 3 float64 3.14 67.32 453.93 0.0 15
heat 7400 12 12 0 float64 1.63 56.2 365.29 0.0 14
a5 198 12 9 3 float64 2.33 59.89 335.47 0.0 13
machineCpu 209 7 7 0 int64 3.86 68.46 487.1 0.0 13
mortgage 1049 16 16 0 float64 1.03 33.32 198.8 0.0 13
servo 167 5 3 2 float64 1.77 54.11 305.16 0.0 12
treasury 1049 16 16 0 float64 1.33 43.97 242.9 0.0 11
deltaAilerons 7129 6 6 0 float64 -0.15 43.91 258.89 0.0 10
forestFires 517 13 13 0 float64 12.81 90.15 1824.05 0.0 10
fremotor1prem0304a_sev 51949 31 17 14 int64 170.33 98.64 57674.8 4.34 10
dataset_Facebook 500 19 18 1 int64 9.68 84.84 1234.7 0.06 9
debutanizer 2394 8 8 0 float64 1.71 48.21 291.81 0.0 9
strikes 625 7 7 0 int64 6.4 78.86 837.8 0.0 9
student-mat 395 33 16 17 int64 0.24 24.1 157.34 0.0 9
ailerons 13750 41 41 0 float64 -1.35 57.42 363.56 0.0 8
wine_quality 6497 12 12 0 float64 0.19 60.26 515.63 0.0 8
autoPrice 205 26 16 10 int64 1.79 48.82 266.97 0.0 7
elevators 16599 19 19 0 int64 0.15 44.14 248.2 0.0 7
baseball 337 17 17 0 int64 1.16 42.7 244.45 0.0 6
californiaHousing 20640 9 9 0 int64 0.98 31.16 0.0 6
triazines 186 61 61 0 float64 -1.34 37.29 217.24 0.0 6
analcatdata_apnea3 450 12 12 0 float64 5.0 82.68 859.26 0.0 5
cpuAct 8192 22 22 0 int64 -3.42 63.69 358.7 0.0 5
diabetes 43 3 3 0 float64 -0.23 29.83 196.25 0.0 5
house8H 22784 9 8 1 int64 3.75 69.98 0.0 5
kinematics8fh 8192 9 9 0 float64 -0.4 45.58 256.79 0.0 5
laser 993 5 5 0 int64 1.19 42.06 245.05 0.0 5
musicorigin 1059 118 118 0 float64 3.21 66.67 486.74 0.0 5
pollen 3848 5 5 0 float64 -0.13 42.93 245.29 0.0 5
space_ga 3107 7 7 0 float64 -1.02 71.07 496.47 0.0 5
wages 534 11 4 7 float64 1.69 56.78 329.52 0.0 5
ele-1 495 3 3 0 float64 1.51 49.24 275.72 0.0 4
ele-2 1056 5 5 0 float64 1.44 44.31 261.91 0.0 4
quake 2178 4 4 0 float64 1.3 50.91 286.97 0.0 4
sulfur 10081 6 6 0 float64 2.5 73.58 738.32 0.0 4
NO2Emissions 500 8 8 0 float64 -0.55 44.96 266.89 0.0 3
wankara 1609 10 10 0 float64 0.02 17.64 135.47 0.0 3
energy 19735 28 28 0 int64 3.39 74.6 990.58 0.0 2
superconductivity 21263 82 82 0 float64 0.86 46.97 301.53 0.0 2
AmesHousing 2930 82 39 43 int64 1.74 58.78 6.55 1
AutoBi 1340 8 8 0 float64 25.69 94.24 4290.81 2.85 1
avocado 18249 13 10 3 float64 0.58 45.34 250.35 0.0 1
cocomo_numeric 60 57 57 0 float64 2.61 60.26 321.34 0.0 1
College 777 19 17 2 int64 -0.11 37.58 213.18 0.0 1
communitiesCrime 1994 127 127 0 float64 1.52 42.98 246.4 0.0 1
concreteStrength 1030 9 9 0 float64 0.42 25.74 166.68 0.0 1
delta_ailerons 7129 6 6 0 float64 0.29 68.04 580.68 0.0 1
delta_elv 9517 7 7 0 float64 0.16 38.24 215.0 0.0 1
electrical 10000 14 13 1 float64 -0.0 3.66 105.7 0.0 1
hour 17379 17 16 1 int64 1.28 47.0 273.61 0.0 1
house 22784 17 17 0 float64 3.75 69.98 0.0 1
housing 1460 81 38 43 int64 1.88 58.35 6.62 1
Housing_2 545 13 6 7 int64 1.21 43.52 0.0 1
insurance 1338 7 4 3 float64 1.51 49.56 276.45 0.0 1
kdd_coil_1 316 19 19 0 float64 1.45 45.75 243.23 0.0 1
lungcancer_shedden 442 25 25 0 float64 0.94 40.87 216.06 0.0 1
meta 528 66 66 0 float64 14.65 92.53 1880.28 0.0 1
pdgfr 79 321 321 0 float64 -0.64 25.99 171.82 0.0 1
pendigits 10992 17 17 0 int64 0.03 10.25 110.63 0.0 1
PricingGame 100021 20 14 6 float64 7.4 89.52 8627.91 0.0 1
puma32h 8192 33 33 0 float64 -0.02 4.6 107.38 0.0 1
qsar_aquatic_toxicity 546 9 9 0 float64 0.32 38.27 223.42 0.0 1
red_wine 1599 12 12 0 int64 0.22 52.19 392.51 0.0 1
sensory 576 12 12 0 float64 -0.04 37.04 219.66 0.0 1
SynchronousMachine 557 5 5 0 float64 0.0 8.22 113.58 0.0 1
telematics_syn-032021 100000 51 43 8 float64 22.7 96.34 28783.35 0.0 1
yacht_hydrodynamics 308 7 7 0 float64 1.75 52.68 289.73 0.0 1

The table below summarizes the papers analyzed in the survey. For each work, it includes the name of the proposed algorithm (if any), the programming language used (R or Python), the repository link (when available), and the list of datasets used.

Paper Algorithm Repo R vs python Repo link Dataset6 Dataset7 Dataset8 Dataset9 Dataset10 Dataset11 Dataset12 Dataset13 Dataset14 Dataset15 Dataset16 Dataset17 Dataset18 Dataset19 Dataset20 Dataset21 Dataset22 Dataset23 Dataset24 Dataset25 Dataset26 Dataset27 Dataset28 Dataset29 Dataset30 Dataset31 Dataset32 Dataset33 Dataset34 Dataset35 Dataset36 Dataset37 Dataset38 Dataset39 Dataset40 Dataset41 Dataset42 Dataset43 Dataset44 Dataset45 Dataset46 Dataset47
Predicting Outliers servo triazines a1 a2 a3 a4 a5 a6 a7 machinecpu china Boston onekm cw.drag co2.emission accel availpwr bank8FM deltaailerons ibm cpuSm deltaelv calhousing add fried
Rule-Based Prediction of Rare Extreme Values servo triazines a1 a2 a3 a4 a5 a6 a7 machinecpu china sard0 sard2 sard3 sard4 sard5 sard0.new sard1.new Boston onekm cw.drag co2.emission accel availpwr
Predicting Rare Extreme Values a1 a2 a3 a4 a5 a6 a7 Boston machinecpu bank8FM deltaailerons ibm Abalone cpuSm servo cw.drag co2.emission availpwr china add
Utility-Based Regression International_Business_Machines
Utility-based Performance Measures for Regression
Precision and Recall for Regression International_Business_Machines Coca.Cola Boeing General_Motors
Utility-based Regression NO2 miscellaneous_domains Harmful_a_Blooms
An extended tuning method for cost-sensitive regression and forecasting NA
SMOTE for Regression SmoteR R https://www.dcc.fc.up.pt/~ltorgo/EPIA2013/ a1 a2 a3 a4 a5 a6 a7 Abalone Accel dAiler availPwr bank8FM cpuSm deltaelv fuelCons boston maxtorqueq
Imbalanced learning: foundations, algorithms, and applications NA
Resampling strategies for regression over- ; under- ; SmoteR Resampling strategies for regression http://www.dcc.fc.up.pt/~ltorgo/ExpertSystems + https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html + http://www.erudit.de/erudit/ a1 a2 a3 a4 a5 a6 a7 Abalone Accel dAiler availPwr bank8FM cpuSm deltaelv fuelCons boston maxtorqueq Heat
Learning from imbalanced data: open challenges and future directions NA
UBL: an R Package for Utility-Based Learning BaggingRegress ; EvalRegressMetrics ; GaussNoiseRegress ; RandOverRegress ; RandUnderRegress ; SMOGNRegress ; SmoteRegress ; WERCSRegress R
A Survey of Predictive Modeling on Imbalanced Domains https://archive.ics.uci.edu/ml/datasets/Hepatitis Hepatitis
Learning from imbalanced data for predicting the number of software defects Ant Camel Jedit Synapse Xalan Log4j
Learning Through Utility Optimization in Regression Tasks MU ; NMU R https://lib.stat.cmu.edu/datasets/ + https://github.com/paobranco/UtilityOptimizationRegression servo a6 Abalone machineCpu a3 a4 a1 a7 boston a2 a5 fuelCons availPwr bank8FM Accel airfoild LNO2Emissions
Evaluation of Ensemble Methods in Imbalanced Regression Tasks NA R https://github.com/nunompmoniz/Ensembles_LIDTA2017 a3 a6 a4 a7 Abalone a1 boston a5 availPwr a2 cpuSm heat fuelCons maxtorqueq deltaelv bank8FM dAiler Accel ConcrStr airfoild
SMOGN: a Pre-processing Approach for Imbalanced Regression SMOGN R https://github.com/paobranco/SMOGN-LIDTA17 servo a6 Abalone machineCpu a3 a4 a1 a7 boston a2 a5 fuelCons availPwr cpuSm maxtorqueq bank8FM dAiler ConcrStr Accel airfoild
Exploring Resampling with Neighborhood Bias on Imbalanced Regression Problems Under-sampling with neighborhood bias ; Over-sampling with neighborhood bias R https://github.com/paobranco/NeighborhoodBiasResamplingRegression servo a6 Abalone machinecpu a3 a4 a1 a7 boston a2 fuelCons availPwr cpuSm maxtorqueq bank8FM ConcrStr Accel airfoild
SMOTEBoost for Regression: Improving the Prediction of Extreme Values SMOTEBoost R https://github.com/nunompmoniz/DSAA2018 airport diabetes a1 a7 autoPrice baseball elecLen1 boston forestFires wages strikes laser concrstr mortgage treasury elecLen2 musicorigin availpwr maxtorqueq communitiesCrime debutenizer space pollen abalone wine deltaailerons heat bank32 cpuAct kinematics32fh pumaRobot
Pre-processing approaches for imbalanced distributions in regression WERCS R https://github.com/paobranco/Pre-processingApproachesImbalanceRegression + https://paobranco.github.io/DataSets-IR/ a6 Abalone a3 a4 a1 a7 boston a2 fuelCons heat availPwr cpuSm maxtorqueq bank8FM Accel
REBAGG: REsampled BAGGing for Imbalanced Regression REBAGG R https://github.com/paobranco/REBAGG servo a6 Abalone machinecpu a3 a4 a1 a7 boston a2 a5 fuelCons availPwr cpuSm maxtorqueq dAiler bank8FM ConcrStr Accel airfoild
SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary NA
Utility-based Predictive Analytics servo a6 Abalone a3 a4 a1 a7 boston a2 a5 fuelCons bank8FM Accel airfoild machinecpu availPwr cpuSm maxtorqueq dAiler ConcrStr
Learning from Imbalanced Data Sets NA
A Study on the Impact of Data Characteristics in Imbalanced Regression Tasks
Biased Resampling Strategies for Imbalanced Spatio-Temporal Forecasting Specific https://github.com/mrfoliveira/STResampling-DSAA2019/tree/master/inst/extdata MESA Air_Pollution NCDC Air_Climate TCE RURAL airBase Beijing UrbanAir
Imbalanced regression and extreme value prediction SERA R https://github.com/nunompmoniz/IRon/tree/master/data + https://lib.stat.cmu.edu/datasets/ diabetes triazines a7 elecLen1 boston forestFires strikes mortgage treasury musicorigin airfoild accel fuelcons availpwr maxtorqueq debutenizer space.ga pollen abalone wine deltaailerons heat cpuAct kinematics8fh kinematics32fh pumaRobot deltaElevation sulfur1 sulfur2 ailerons elevators calHousing house8h house16h
Improving enzyme optimum temperature prediction with resampling strategies and ensemble learning RO ; RU ; SMOTER ; GN, ; WERCS ; REBAGG ; metrics: F1S python https://github.com/jafetgado/resreg/blob/master/resreg/resreg.py + https://github.com/jafetgado/tomerdesign/ Brenda
Density‑based weighting for imbalanced regression DenseWeight Python https://github.com/SteiMi/denseweight + https://github.com/SteiMi/density-based-weighting-for-imbalanced-regression/tree/main/exp3/data + https://github.com/paobranco/SMOGN-LIDTA17 a1 a2 a3 a4 a5 a6 a7 Abalone accel Airfoild AvailPwr Bank8FM Boston ConcrStr cpuSm dAiler FuelCons MachineCpu maxtorqueq Servo
A novel cost-sensitive algorithm and new evaluation strategies for regression in imbalanced domains Matlab https://github.com/lsadouk/imbalanced_regression Abalone Accel Heat cpuSm bank8FM Parkinson dAiler H101_North_D7 I5_South_D7 I5_North_D7 I210_West_D7
Sampling To Improve Predictions For Underrepresented Observations In Imbalanced Data penicillin_production
Chebyshev approaches for imbalanced data streams regression models Specific https://github.com/ehaminian/imbalancedDataStream/tree/master/stream1 puma32hh cpusm elevators bike energy calhousing gasemission mv fried polution car_price query GPU 3d
DistSMOGN: Distributed SMOGN for Imbalanced Regression Problems DistSMOGN python https://github.com/ndao1104/distributed-resampling Boston Abalone Bank8FM heat cpuSM energy superconductivity
Geometric SMOTE for regression https://paobranco.github.io/DataSets-IR/ + https://sci2s.ugr.es/keel/datasets.php anacalt bank8FM baseball boston compactiv concrstr cpuSm ele.1 ele.2 forestFires friedman laser machineCPU mortgage quake stock treasury wankara
Model Optimization in Imbalanced Regression SERA R https://github.com/anibalsilva1/IRModelOptimization diabetes triazines a7 autoPrice elecLen1 boston forestFires wages strikes mortgage treasury musicorigin airfoild accel fuelcons availpwr maxtorqueq debutenizer space.ga pollen abalone wine deltaailerons heat cpuAct kinematics8fh kinematics32fh pumaRobot deltaElevation sulfur ailerons elevators calHousing house8h house16h onlineNewsPopRegr
A boosting resampling method for regression based on a conditional variational autoencoder https://archive.ics.uci.edu/ + https://www.dcc.fc.up.pt/~ltorgo/DataMiningWithR/ F1 F2 Abalone Boston dAiler Indoor_air_quality
Robustness Evaluation of Regression Tasks with Skewed Domain Preferences Mail activity a1 a7 price salary length norway housevalue area wages strikes output strength yc30 cdrate v100 soundpressure accel fuel power torque violentcrimes richter y lny density germany beijing
A Survey of Learning with Imbalanced Data, Representation Learning and SEP Forecasting NA
ASER: Adapted squared error relevance for rare cases prediction in imbalanced regression https://github.com/yingk1213/ASER diabetes a7 autoPrice elecLen1 boston forestFires wages strikes mortgage treasury musicorigin airfoild accel fuelcons availpwr maxtorqueq debutenizer space.ga pollen abalone wine deltaailerons heat cpuAct kinematics8fh pumaRobot deltaElevation sulfur ailerons elevators calHousing house8h
Imbalanced Mixed Linear Regression Specific NA
Semi-Supervised Graph Imbalanced Regression Specific NA
A broad review on class imbalance learning techniques NA Wisconsin Pima Yeast_1 Vehicle_2 Vehicle_1 Segment Yeast_3 Page_blocks Yeast_2vs4 Ecoli_0234vs5 Yeast_0359vs78 Yeast_0256vs3789 Ecoli_046vs5 Ecoli_01vs235 Yeast_05679vs4 Vowel Ecoli_067vs5 Led7digit_02456789vs1 Ecoli_01vs5 Ecoli_0147vs56 Ecoli_0146vs5 Glass_4 Ecoli_4 Yeast_1458Vs7 Glass_5 Yeast_2Vs8 Yeast_4 Yeast_1289Vs7 Yeast_5 Ecoli_0137vs26 Yeast_6 Abalone
A Review of Machine Learning Techniques in Imbalanced Data and Future Trends NA
Enhancing soft computing techniques to actively address imbalanced regression problems The selected datasets come from ‘‘Irvine Machine Learning Repository’’ (UCI) (Dua & Graff, 2017), ‘‘Knowledge Extraction based on Evolutionary Learning’’ (KEEL) (Triguero et al., 2017), ‘‘Dataset Collections of Weka’’ (WEKA) (Witten et al., 2016), ‘‘Delve Datasets’’ (DELVE) (Akujuobi & Zhang, 2017), ‘‘Luis Torgo Repository’’ (LTR) (Torgo, 2023) and from ‘‘Journal of Statistics Education Data Archive’’ (JSE) (JSE, 2023). These repositories are high quality, certified and supported by many other studies. Abalone Airfoild Anacalt Baseball boston concrstr machinecpu Electrical_Length Electrical_Maintenance Facebook_Measures forestfires laser.generated Mortgage AutoPrice Quake Servo Strikes Treasury Triazines Yacht_Hydrodynamics Add Ailerons Bank32 Bank8 Computer_activity California Cpusm deltaailerons Deltaelv house16h house8h puma32hh
Imbalanced regression using regressor‑classifier ensembles Federated Ensemble Learning using Classification python https://github.com/oghenejokpeme/EFERUC + https://data.mendeley.com/datasets/mpvwnhv4vb/2 Branco Gene_expression OpenML QSAR Yeast
Multi-output Regression for Imbalanced Data Stream Specific NA
tian2023unbalanced NA Abalone Airfoild ER_activity
Adapting a deep convolutional RNN model with imbalanced regression loss for improved spatio-temporal forecasting of extreme wind speed events in the short to medium range specific python https://github.com/dscheepens/Deep-RNN-for-extreme-wind-speed-prediction
Spatial-SMOTE for handling imbalance in spatial regression tasks ❌ accessible https://www.kaggle.com/datasets/camnugent/california-housing-prices + https://www.kaggle.com/datasets/thedevastator/airbnb-prices-in-european-cities california AirBnB_prices
ImbalancedLearningRegression - A Python Package to Tackle the Imbalanced Regression Problem RO ; RU; SMOTE ; GN; CNN; ENN ; ADASYN ; TOMEK python https://github.com/paobranco/ImbalancedLearningRegression/tree/master College SF_Salaries Summary_of_Weather avocado diabetic_data calHousing insurance red_wine weatherHistory
Data Augmentation for Imbalanced Regression Specific http://www2.math.uconn.edu/~valdez/data.html telematics
Imbalance in Regression Datasets NA
Oversampling Techniques for Imbalanced Data in Regression NA ANACALT bank8FM baseball boston compactiv concrstr cpuSm ele.1 ele.2 forestFires friedman laser machineCPU mortgage quake stock treasury wankara
Resampling strategies for imbalanced regression: a survey and empirical analysis SMOTE ; RO ; RU ; GN ; SMOGN ; WERCS ; Metric: F1S + SERA python https://github.com/JusciAvelino/imbalancedRegression/tree/main/ wine anacalt meta cocomo.numeric Abalone a3 forestFires a1 a7 boston pdgfr sensory a2 kdd.coil.1 triazines airfoild treasury mortgage debutenizer fuelCons heat california AvailPwr compactiv cpuSm maxtorqueq lungcancer.shedden space.ga ConcrStr Accel
A survey on imbalanced learning: latest research, applications and future directions NA
Research on Imbalanced Data Regression Based on Confrontation NA Airfoild Abalone Yacht.Hydrodynamics concrstr
A novel gradient boosting approach for imbalanced regression IMr-GB python https://github.com/vengozhang/IMr-GB a1 Abalone Accel availPwr bank8FM boston ConcrStr cpuSm fuelCons maxtorqueq
Affine combination-based over-sampling for imbalanced regression https://github.com/lzz185/ACOS heat airfoild availpwr ele.2 laser maxtorqueq mortgage pendigits qsar.aquatic.toxicity quake sulfur yacht.hydrodynamics calHousing a7 baseball
Rare event prediction in imbalanced regression with adaptive weighted support vector regression http://www.ics.uci.edu/ mlearn/ + https://sci2s.ugr.es/keel/datasets.php + https://github.com/nunompmoniz/Iron a1 wages qsar.aquatic.toxicity strikes grison qsar.fish.toxicity laser airfoild wine accel fuelcons availpwr abalone wine wine kinematics8fh sulfur house8h house16h calHousing onlineNewsPopRegr mv fried
Sparse feature selection and rare value prediction in imbalanced regression https://github.com/guanying24/SerEnet diabetes AutoPrice elecLen1 strikes mortgage treasury musicOrigin space.ga pollen abalone deltaailerons heat kinematics8fh kinematics32fh deltaElevation ailerons elevators OnlineNewsPopRegr
WSMOTER: a novel approach for imbalanced regression WSMOTER python https://drive.google.com/drive/folders/1h6Q5sKB5bnqk0Kh01sH1uc6LTp4KSPbb a1 a2 a3 a4 a5 a6 a7 Abalone accel Ailerons Airfoild AutoPrice availpwr Bank8FM Boston California Compactiv concrstr cpuAct cpuSm deltaailerons Deltaelv ele.1 elevators ForestFires fuelcons Heat House Kinematics32fh MachineCpu maxtorqueq Mortgage puma32hh Servo Treasury Wankara
Generalized Oversampling for Learning from Imbalanced datasets and Associated Theory: Application in Regression GOLIATH R http:local NO2 Boston cpuSm bank8fm abalone
Data Augmentation with Variational Autoencoder for Imbalanced Dataset DAVID python https://github.com/sstocksieker/DAVID/ bank8FM abalone boston NO2
Boarding for ISS: Imbalanced Self-Supervised: Discovery of a Scaled Autoencoder for Mixed Tabular Datasets Specific NA
A Selective Under-Sampling (SUS) Method For Imbalanced Regression NA Abalone Accel a1 a2 a3 a4 a5 a6 a7 availPwr bank8FM boston cpuSm fuelCons heat maxtorqueq
Error Distribution Smoothing: Advancing Low-Dimensional Imbalanced Regression EDS python https://a❌ymous.4open.science/r/Error-Distribution-Smoothing-762F/README.md quadcopter dynamics Cartpole
KNNOR-Reg: A python package for oversampling in imbalanced regression KNNOR-Reg: A python package for oversampling in imbalanced regression python https://github.com/ashhadulislam/augmentdatalib_reg_source/blob/main/README.md mortgage
Uncertainty quantification driven machine learning for improving model accuracy in imbalanced regression tasks UQDIR python https://github.com/tubadolar/uqdir/tree/main/datasets accel abalone bank8fm boston cpusm ailerons elevators earthquake California delta
Quantification of Data Imbalance Imb_quanti python https://github.com/OFFIS-ROC/imbaqu Energy.efficiency forestfires Optical.interconnection.network concrstr Servo Combined.cycle.power.plant Grid.stability superconductivity Synchronous.machine Auction.verification Airfoild Concrete.slump.test traffic.behaviour Yacht.hydrodynamics Fish.toxicity Wave.energy.perth.49 Aquatic.toxicity Steel.industry Computer.hardware Abalone Age.prediction Parkinson Winequality.white Facebook.metrics Ailerons Anacalt Autoprice bank32 bank8 baseball boston California deltaailerons Deltaelv ele.1 ele.2 house16h Laser.generated mortgage puma32hh Strikes Treasury
An Investigation of Imbalanced Regression Loss Functions with Neural Network Models Scaled-Weighted loss python https://drive.google.com/drive/folders/1zOHx_BwZL45RnTWCMt3VNZ6bgMugLNQk Simple_Ocean_Data_Assimilation

Sources

These datasets have been collected from public repositories such as UCI, Kaggle, and various GitHub pages associated with prior research on imbalanced regression.
Below is a list of the main source repositories used to compile this collection:


license: cc-by-4.0

Downloads last month
27