samgohan's picture
Upload 3 files
1a31610 verified
"""
imbalance_coefficient.py
Provides a function `imb_coef` to quantify imbalance in regression targets
for both continuous and discrete settings. It estimates the deviation of the
empirical distribution from the uniform distribution using KDE or frequency analysis.
Author: Samuel Stocksieker
License: MIT or CC-BY-4.0
Date: 2025-08-06
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde, uniform
from scipy.integrate import quad
def imb_coef(
y,
bdw='scott',
n_map=100_000,
distfunc='pdf',
disttype='cont', # 'cont' for continuous, 'dis' for discrete
plot=False,
p=1,
k=1,
w=None,
scale=True,
save=False,
rep='',
):
"""
Computes an imbalance coefficient for a target variable in regression tasks.
Parameters:
----------
y : array-like
Target variable (continuous or discrete).
bdw : str or float
Bandwidth for KDE ('scott' or float).
n_map : int
Number of points for KDE evaluation.
distfunc : str
Not used currently (placeholder).
disttype : str
'cont' for continuous, 'dis' for discrete targets.
plot : bool
Whether to plot distribution comparison.
p : int
Exponent for penalizing deviations in discrete mode.
k : int
Index for saving figures (used in filenames).
w : array-like or None
Optional weights per observation.
scale : bool
Whether to scale `y` to [0, 1] in continuous mode.
save : bool
Whether to save plot as PNG.
rep : str
Folder path prefix for saving plots.
Returns:
-------
imb_ratio : float
imbalance coefficient in percentage.
"""
y = np.array(y)
if disttype == 'cont':
# Continuous target
if scale:
y = (y - y.min()) / (y.max() - y.min())
min_y, max_y = y.min(), y.max()
map_vals = np.linspace(min_y, max_y, n_map)
# Weight setup
weights = (
np.ones(n_map) if w is None else np.interp(map_vals, y, w,
left=min(w[y == min_y]),
right=min(w[y == max_y]))
)
kde = gaussian_kde(y, bw_method=bdw)
kde_vals = kde(map_vals)
d_best = uniform.pdf(map_vals, loc=min_y, scale=max_y - min_y)
kde_func = lambda x: np.interp(x, map_vals, kde_vals)
weight_func = lambda x: np.interp(x, map_vals, weights)
if w is None:
integrand = lambda x: max(0, 1 - kde_func(x))
imb_ratio = round(quad(integrand, min_y, max_y, epsabs=1e-5)[0], 4) * 100
else:
num = quad(lambda x: max(0, 1 - kde_func(x)) * weight_func(x), min_y, max_y, epsabs=1e-5)[0]
den = quad(lambda x: weight_func(x), min_y, max_y, epsabs=1e-5)[0]
imb_ratio = round(num / den, 4) * 100
if plot:
plt.figure(figsize=(10, 5))
plt.hist(y, bins=100, density=True, color='gray', alpha=0.6, label='Histogram')
plt.plot(map_vals, kde_vals, label='KDE', color='darkred')
plt.plot(map_vals, d_best, label='Uniform', color='darkgreen')
plt.title(f"{imb_ratio:.2f}%", fontsize=16, color='darkred')
plt.xlabel("Target values")
plt.ylabel("Density")
plt.legend()
if save:
plt.savefig(f"{rep}imbMetric_dens_{k}.png", bbox_inches='tight')
plt.show()
return imb_ratio
elif disttype == 'dis':
# Discrete target
y = y.astype(int)
map_vals = np.arange(y.min(), y.max() + 1)
if w is None:
weights = np.ones_like(map_vals)
else:
df_w = pd.DataFrame({'map': y, 'w1': w})
w_agg = df_w.groupby('map')['w1'].mean().reset_index()
w_all = pd.DataFrame({'map': map_vals})
w_all = w_all.merge(w_agg, on='map', how='left').fillna(0)
weights = w_all['w1'].values
freqs = pd.Series(y).value_counts(normalize=True).reindex(map_vals, fill_value=0).values
d_best = np.ones_like(map_vals) / len(map_vals)
error = np.abs(freqs - d_best) ** p * (freqs < d_best) * weights
imb_ratio = round(np.sum(error[weights > 0]) / np.sum(d_best * weights), 4) * 100
if np.isnan(imb_ratio):
imb_ratio = 100
if plot:
df_plot = pd.DataFrame({
'map': list(map_vals) * 2,
'freq': list(freqs) + list(d_best),
'dist': ['Emp'] * len(map_vals) + ['Uni'] * len(map_vals)
})
plt.figure(figsize=(10, 5))
for label, group in df_plot.groupby('dist'):
plt.bar(group['map'], group['freq'], alpha=0.5, label=label)
plt.title(f"{imb_ratio:.2f}%", fontsize=16, color='darkred')
plt.xlabel("Target values")
plt.ylabel("Frequency")
plt.legend()
if save:
plt.savefig(f"{rep}imbMetric_mass_{k}.png", bbox_inches='tight')
plt.show()
return imb_ratio
return None