modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Gege24/d0993a10-9599-4024-8b68-562a5bd3aee4
Gege24
2025-06-21T09:54:23Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "unsloth", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-21T09:54:10Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
18-Official-mezzo-fun-Viral-video-Link/FULL.VIDEO.Mezzo.fun.Viral.Video.Tutorial.Official
18-Official-mezzo-fun-Viral-video-Link
2025-06-21T09:48:14Z
0
0
null
[ "region:us" ]
null
2025-06-21T09:48:05Z
01 seconds ago [๐ŸŒ ๐–ข๐–ซ๐–จ๐–ข๐–ช ๐–ง๐–ค๐–ฑ๐–ค ๐ŸŸข==โ–บโ–บ ๐–ถ๐– ๐–ณ๐–ข๐–ง ๐–ญ๐–ฎ๐–ถ](https://sahabagi-mgi.blogspot.com/p/heres-now.html) [๐ŸŒ ๐–ข๐–ซ๐–จ๐–ข๐–ช ๐–ง๐–ค๐–ฑ๐–ค ๐ŸŸข==โ–บโ–บ ๐–ถ๐– ๐–ณ๐–ข๐–ง ๐–ญ๐–ฎ๐–ถ FREE](https://sahabagi-mgi.blogspot.com/p/heres-now.html) <a href="https://sahabagi-mgi.blogspot.com/p/heres-now.html" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
GeorgyGUF/Sana_600M_1024px_transformer.gguf
GeorgyGUF
2025-06-21T09:44:44Z
15
0
null
[ "gguf", "region:us" ]
null
2025-06-20T20:08:43Z
Note, that Sana is a FP32 model, and this gguf is just FP16, not even BF16, so for other quantizations create a FP32 gguf first for better quality. To use this model/quant you need add Sana support to ComfyUi or GGUF support to Sana custom nodes. Otherwise you will get `ValueError: This model is not currently supported - (Unknown model architecture!)` The simplest way if you just need a FP16 variant is to use official quant, or if fp8 is needed - quantize safetensors/pth to it and use without gguf This can be helpful: https://github.com/huggingface/diffusers/blob/main/docs/source/en/api/pipelines/sana.md#quantization https://github.com/NVlabs/Sana/blob/main/asset/docs/quantize/8bit_sana.md https://github.com/NVlabs/Sana/pull/249 https://github.com/NVlabs/Sana/issues/128 https://github.com/NVlabs/Sana/blob/main/tools/convert_sana_to_svdquant.py and https://github.com/NVlabs/Sana/blob/main/asset/docs/quantize/4bit_sana.md but this solution is not stable, you can get error like this `RuntimeError: The expanded size of the tensor (2240) must match the existing size (1152) at non-singleton dimension 1. Target sizes: [2880, 2240, 1, 1]. Tensor sizes: [2880, 1152, 1, 1]` (only with the 592M model), so prepare a workaround for this case. This script just creates a safetensor version of original pth, then you will need to make a SVDQuant from it probably the most easy way https://huggingface.co/Kijai/flux-fp8/discussions/7
cswind/DeepRL-u3
cswind
2025-06-21T09:43:57Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-21T09:43:28Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 602.50 +/- 190.70 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib SBX (SB3 + Jax): https://github.com/araffin/sbx Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga cswind -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga cswind -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga cswind ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
sergioalves/989c78a7-d257-469f-811e-8ab20a5dac5b
sergioalves
2025-06-21T09:16:30Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:samoline/b14d1505-fd72-45ee-bf0b-bf21039bbede", "base_model:adapter:samoline/b14d1505-fd72-45ee-bf0b-bf21039bbede", "4-bit", "bitsandbytes", "region:us" ]
null
2025-06-21T09:07:02Z
--- library_name: peft base_model: samoline/b14d1505-fd72-45ee-bf0b-bf21039bbede tags: - axolotl - generated_from_trainer model-index: - name: 989c78a7-d257-469f-811e-8ab20a5dac5b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: samoline/b14d1505-fd72-45ee-bf0b-bf21039bbede bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - 81aedfe09d19b227_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.05 enabled: true group_by_length: false rank_loss: true reference_model: NousResearch/Meta-Llama-3-8B-Instruct early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: sergioalves/989c78a7-d257-469f-811e-8ab20a5dac5b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-07 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/81aedfe09d19b227_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0099f19a-587c-48c0-877b-d519dfdf193b wandb_project: s56-7 wandb_run: your_name wandb_runid: 0099f19a-587c-48c0-877b-d519dfdf193b warmup_steps: 25 weight_decay: 0.05 xformers_attention: false ``` </details><br> # 989c78a7-d257-469f-811e-8ab20a5dac5b This model is a fine-tuned version of [samoline/b14d1505-fd72-45ee-bf0b-bf21039bbede](https://huggingface.co/samoline/b14d1505-fd72-45ee-bf0b-bf21039bbede) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 25 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2504 | 0.0003 | 1 | 1.1383 | | 1.3259 | 0.0284 | 100 | 1.1330 | | 0.9244 | 0.0569 | 200 | 1.1308 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
thailevann/Qwen3-4B_SFT_CT_v4
thailevann
2025-06-21T09:13:04Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "unsloth", "base_model:unsloth/Qwen3-4B-unsloth-bnb-4bit", "base_model:finetune:unsloth/Qwen3-4B-unsloth-bnb-4bit", "endpoints_compatible", "region:us" ]
null
2025-06-16T01:08:54Z
--- base_model: unsloth/Qwen3-4B-unsloth-bnb-4bit library_name: transformers model_name: Qwen3-4B_SFT_CT_v4 tags: - generated_from_trainer - trl - sft - unsloth licence: license --- # Model Card for Qwen3-4B_SFT_CT_v4 This model is a fine-tuned version of [unsloth/Qwen3-4B-unsloth-bnb-4bit](https://huggingface.co/unsloth/Qwen3-4B-unsloth-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="thailevann/Qwen3-4B_SFT_CT_v4", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/vanlethai12042002-ton-duc-thang-university/Chatbot-dvc/runs/wb4wxthy) This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
titiko1988/ppo-LunarLander-v2
titiko1988
2025-06-21T09:05:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-21T09:05:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -173.69 +/- 42.69 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sergioalves/c4312444-857d-4c57-82aa-c574c7f6fb25
sergioalves
2025-06-21T08:53:57Z
0
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:microsoft/Phi-3.5-mini-instruct", "base_model:adapter:microsoft/Phi-3.5-mini-instruct", "license:mit", "4-bit", "bitsandbytes", "region:us" ]
null
2025-06-21T08:36:50Z
--- library_name: peft license: mit base_model: microsoft/Phi-3.5-mini-instruct tags: - axolotl - generated_from_trainer model-index: - name: c4312444-857d-4c57-82aa-c574c7f6fb25 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: microsoft/Phi-3.5-mini-instruct bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - c829c9e31d7dedf6_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_instruction: instruct field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.05 enabled: true group_by_length: false rank_loss: true reference_model: NousResearch/Meta-Llama-3-8B-Instruct early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: sergioalves/c4312444-857d-4c57-82aa-c574c7f6fb25 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-07 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/c829c9e31d7dedf6_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: d7a88678-15ab-48a4-b11c-018952b3358c wandb_project: s56-7 wandb_run: your_name wandb_runid: d7a88678-15ab-48a4-b11c-018952b3358c warmup_steps: 25 weight_decay: 0.05 xformers_attention: false ``` </details><br> # c4312444-857d-4c57-82aa-c574c7f6fb25 This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 25 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.3876 | 0.0005 | 1 | 0.8452 | | 3.0141 | 0.0464 | 100 | 0.8396 | | 2.7898 | 0.0928 | 200 | 0.8374 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
SIQRIT/DAIS-Qwen3-8B-qdora
SIQRIT
2025-06-21T08:35:08Z
49
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "ko", "arxiv:1910.09700", "base_model:Qwen/Qwen3-8B", "base_model:finetune:Qwen/Qwen3-8B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-16T15:52:38Z
--- library_name: transformers license: apache-2.0 language: - ko base_model: - Qwen/Qwen3-8B --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** SIQRIT - **Model type :** Qwen/Qwen3-8B - **Language(s) (NLP) :** Korean-based Learning - **License :** apache-2.0 - **Finetuned from model :** Q-DoRA ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository :** [[GitHub]](https://github.com/SIQRIT/SKN09-FINAL-5Team) ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> The Vector DB used in the training of this model was created based on YouTube scripts. In addition, the YouTube script used the automatic translation generation function. Therefore, for Vector DB references, there is no problem with sentence generation, but word can sometimes be incomplete. ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Special tokens have been added to enhance prompt engineering. The hyperparameters reflecting the current latest paper trends are described in detail below. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> YouTube Scripts on Korean-Based Science ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> - **Special Tokens** special_tokens_dict = { "additional_special_tokens": [ "[DAIS_INSTRUCTION]", "[DAIS_STYLE]", "[DAIS_RULE]", "[DAIS_EXAMPLE]", "[HISTORY]", "[INPUT]", "[OUTPUT]", "[CONTEXT]" ] } - **DoRA Adapter Config** lora_config = LoraConfig( r=64, lora_alpha=32, target_modules=[ "model.embed_tokens", "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj" ], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", use_dora=True ) - **Training Arguments** training_args = TrainingArguments( output_dir=OUTPUT_DIR, per_device_train_batch_size=4, per_device_eval_batch_size=4, gradient_accumulation_steps=8, optim="paged_adamw_32bit", gradient_checkpointing=True, num_train_epochs=20, learning_rate=3e-5, lr_scheduler_type="cosine", warmup_ratio=0.1, eval_strategy="epoch", save_strategy="epoch", save_total_limit=5, load_best_model_at_end=True, metric_for_best_model="eval_loss", greater_is_better=False, logging_steps=10, weight_decay=0.01, max_grad_norm=1.0, bf16=True, fp16=False, group_by_length=True, remove_unused_columns=True, push_to_hub=False, report_to="none" ) - **Supervised Fine-Tuning** trainer = SFTTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, peft_config=lora_config, callbacks=[EarlyStoppingCallback(early_stopping_patience=5)] ) #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective This model is named DAIS and its official name is Divergent AI with Science. Also it is trained on Korean and aims to train on the subject of a science AI influencer. ### Compute Infrastructure [More Information Needed] #### Hardware RunPod A100 100GB(DISK)/100GB(Container) #### Software runpod/pytorch:2.1.0-py3.10-cuda11.8.0-devel-ubuntu22.04 ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] SIQRIT ## Model Card Contact siqrit09@gmail.com
Genie-hub/boy
Genie-hub
2025-06-21T08:27:18Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-21T08:15:52Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: BOY --- # Boy <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `BOY` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "BOY", "lora_weights": "https://huggingface.co/Genie-hub/boy/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Genie-hub/boy', weight_name='lora.safetensors') image = pipeline('BOY').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Genie-hub/boy/discussions) to add images that show off what youโ€™ve made with this LoRA.
EYEDOL/MISTRAL7B_ON_ALPACA5_
EYEDOL
2025-06-21T08:05:45Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-instruct-v0.1-bnb-4bit", "base_model:finetune:unsloth/mistral-7b-instruct-v0.1-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-21T08:05:23Z
--- base_model: unsloth/mistral-7b-instruct-v0.1-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** EYEDOL - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.1-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
arianaazarbal/ppo-finetuned-model
arianaazarbal
2025-06-21T08:01:05Z
44
0
transformers
[ "transformers", "pytorch", "safetensors", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "endpoints_compatible", "region:us" ]
reinforcement-learning
2025-06-20T20:33:03Z
--- license: apache-2.0 library_name: transformers tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="arianaazarbal//tmp/tmp3vx9jc19/arianaazarbal/ppo-finetuned-model") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("arianaazarbal//tmp/tmp3vx9jc19/arianaazarbal/ppo-finetuned-model") model = AutoModelForCausalLMWithValueHead.from_pretrained("arianaazarbal//tmp/tmp3vx9jc19/arianaazarbal/ppo-finetuned-model") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
Gio88/bert-finetuned-squad
Gio88
2025-06-21T07:47:25Z
9
0
null
[ "safetensors", "bert", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "region:us" ]
null
2025-06-21T06:16:08Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.41.0 - Pytorch 2.5.1+cu121 - Datasets 3.6.0 - Tokenizers 0.19.1
shqkel/llama3-8b-rag-ko-merged
shqkel
2025-06-21T07:42:27Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T07:37:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
veddhanth/lora-trained-xl-stage-1-5
veddhanth
2025-06-21T07:38:55Z
10
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-06-21T06:52:46Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: a realistic portrait of sks face widget: [] tags: - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - veddhanth/lora-trained-xl-stage-1-5 <Gallery /> ## Model description These are veddhanth/lora-trained-xl-stage-1-5 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a realistic portrait of sks face to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](veddhanth/lora-trained-xl-stage-1-5/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
skii4/llama3-8b-klue_mrc-ko
skii4
2025-06-21T07:22:02Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:NCSOFT/Llama-VARCO-8B-Instruct", "base_model:finetune:NCSOFT/Llama-VARCO-8B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-21T06:27:16Z
--- base_model: NCSOFT/Llama-VARCO-8B-Instruct library_name: transformers model_name: llama3-8b-klue_mrc-ko tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for llama3-8b-klue_mrc-ko This model is a fine-tuned version of [NCSOFT/Llama-VARCO-8B-Instruct](https://huggingface.co/NCSOFT/Llama-VARCO-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="skii4/llama3-8b-klue_mrc-ko", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.52.4 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ayhamaaa2i/xsqt
ayhamaaa2i
2025-06-21T07:20:09Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-21T07:20:09Z
--- license: apache-2.0 ---
18-Official-Sajal-Malik-viral-Go-Videos/FULL.VIDEO.LINK.Sajal.Malik.Viral.Video.Tutorial.Official.link
18-Official-Sajal-Malik-viral-Go-Videos
2025-06-21T07:08:04Z
0
0
null
[ "region:us" ]
null
2025-06-21T06:31:41Z
<a rel="nofollow" href="https://viralflix.xyz/leaked/?fre"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
viraly-lol-hindi-18k-videos/Video.viraly.lol.hindi.viraly.lol.viraly.trending.viral.Full.Video.telegram.link
viraly-lol-hindi-18k-videos
2025-06-21T07:07:32Z
0
0
null
[ "region:us" ]
null
2025-06-21T07:01:39Z
<a rel="nofollow" href="https://viralflix.xyz/leaked/?fre"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
gawyria/mailcampaign-model
gawyria
2025-06-21T07:01:30Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-21T06:59:50Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
codewithpurav/ppo-SnowballTarget
codewithpurav
2025-06-21T06:36:31Z
13
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2025-06-21T06:36:28Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: codewithpurav/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Official-Andie-Elle-Video-Link/VIDEO.Andie.Elle.Viral.Video.Official.Tutorial.Link
Official-Andie-Elle-Video-Link
2025-06-21T04:50:57Z
0
0
null
[ "region:us" ]
null
2025-06-21T04:50:16Z
[Watch โžค Click Here To link (Full Video Link)](https://tinyurl.com/4va3nzzc) [๐Ÿ”ด โžคโ–บDOWNLOAD๐Ÿ‘‰๐Ÿ‘‰ (Full Viral Video Link)](https://tinyurl.com/4va3nzzc) [![My Image](https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif)](https://tinyurl.com/576xjw2f)
Hd-Clip-kamal-Kaur-18-Viral-videos/FULL.VIDEO.kamal.Kaur.mali.Viral.Video
Hd-Clip-kamal-Kaur-18-Viral-videos
2025-06-21T04:48:45Z
0
0
null
[ "region:us" ]
null
2025-06-21T04:48:23Z
<a href="https://tinyurl.com/2uupe6xp" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
minimimtoy25/kaiquekef
minimimtoy25
2025-06-21T04:48:01Z
0
0
null
[ "license:other", "region:us" ]
null
2025-06-21T04:06:15Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
Matt1231231/ppo-Huggy
Matt1231231
2025-06-21T04:46:20Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2025-06-21T04:46:12Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Matt1231231/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Official-Hd-mezzo-fun-18-Viral-videos-Link/FULL.Hd.VIDEO.Mezzo.fun.Viral.Video.Official
Official-Hd-mezzo-fun-18-Viral-videos-Link
2025-06-21T04:38:52Z
0
0
null
[ "region:us" ]
null
2025-06-21T04:38:40Z
<a href="https://tinyurl.com/2uupe6xp" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
18-Official-Mezzo-fun-viral-Videos/FULL.VIDEO.LINK.Mezzo.fun.Viral.Video.Tutorial.Official
18-Official-Mezzo-fun-viral-Videos
2025-06-21T04:23:39Z
0
0
null
[ "region:us" ]
null
2025-06-21T04:23:21Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Full-Jaipur-5-Star-Hotel-Viral-Video/Full.video.Jaipur.5.Star.Hotel.Viral.Video
Full-Jaipur-5-Star-Hotel-Viral-Video
2025-06-21T04:18:10Z
0
0
null
[ "region:us" ]
null
2025-06-21T04:17:55Z
<a href="https://tinyurl.com/2uupe6xp" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
SicariusSicariiStuff/Impish_Magic_24B_EXL2_5.0bpw
SicariusSicariiStuff
2025-06-21T04:18:01Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:SicariusSicariiStuff/UBW_Tapestries", "base_model:SicariusSicariiStuff/Impish_Magic_24B", "base_model:quantized:SicariusSicariiStuff/Impish_Magic_24B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "5-bit", "exl2", "region:us" ]
text-generation
2025-06-21T03:54:46Z
--- base_model: SicariusSicariiStuff/Impish_Magic_24B datasets: - SicariusSicariiStuff/UBW_Tapestries language: - en library_name: transformers license: apache-2.0 quantized_by: SicariusSicariiStuff ---
saching12/SpaceInvadersNoFrameskip
saching12
2025-06-21T04:12:59Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-21T04:04:42Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 642.00 +/- 205.00 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib SBX (SB3 + Jax): https://github.com/araffin/sbx Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga saching12 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga saching12 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga saching12 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
18-EXCLUSIVE-jaipur-hotel-Viral-Link/Watch.jaipur.hotel.Viral.Video.Original
18-EXCLUSIVE-jaipur-hotel-Viral-Link
2025-06-21T04:09:55Z
0
0
null
[ "region:us" ]
null
2025-06-21T04:08:46Z
<a href="https://tinyurl.com/2uupe6xp" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Staticaliza/1.5B
Staticaliza
2025-06-21T03:54:46Z
0
0
null
[ "safetensors", "qwen2", "license:apache-2.0", "compressed-tensors", "region:us" ]
null
2025-06-21T03:42:35Z
--- license: apache-2.0 ---
SicariusSicariiStuff/Impish_Magic_24B_EXL2_3.5bpw
SicariusSicariiStuff
2025-06-21T03:52:42Z
3
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:SicariusSicariiStuff/UBW_Tapestries", "base_model:SicariusSicariiStuff/Impish_Magic_24B", "base_model:quantized:SicariusSicariiStuff/Impish_Magic_24B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2025-06-19T18:51:17Z
--- base_model: SicariusSicariiStuff/Impish_Magic_24B datasets: - SicariusSicariiStuff/UBW_Tapestries language: - en library_name: transformers license: apache-2.0 quantized_by: SicariusSicariiStuff ---
Official-mezzo-fun-18-Viral-video-original/FULL.VIDEO.Mezzo.fun.Viral.Video.Tutorial.Official
Official-mezzo-fun-18-Viral-video-original
2025-06-21T03:42:37Z
0
0
null
[ "region:us" ]
null
2025-06-21T03:41:21Z
<a href="https://mswds.xyz/full-video/?v=Mezzo-fun" rel="nofollow">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐–๐š๐ญ๐œ๐ก ๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ)</a> <a href="https://mswds.xyz/full-video/?v=Mezzo-fun" rel="nofollow">๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ Viral ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )</a> <a href="https://mswds.xyz/full-video/?v=Mezzo-fun"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsgd" /></a> VIDEO.18.Kamal.Kaur.Viral.Video.Kamal.Kaur.Bhabhi.Original.Link NEW.Video.kamal.kaur.Viral.Video.Original.Link Head of Iranโ€™s atomic energy agency threatens legal action against UN nuclear watchdog chief over "inaction" ๐Ÿ”ดFull Video ๐ŸŸข==โ–บโ–บ @livetv4kon investigates Israelโ€™s strikes on key Iranian officials โ€” and their civilian toll Britainโ€™s Foreign Secretary says diplomatic window now exists, ahead of nuclear talks Israel and Iran trade strikes as Trump weighs US involvement in conflict Iran vs Israel war update 2025 on Live Stream ๐Ÿ”ดFull Video ๐ŸŸขโ–บ https://mswds.xyz/full-video/?war Iran israel news war Israel iran war us Israel Iranian war Iran Israel war Trump Israel Iran war who is winning Israel Iran NBC Latest news on israel and iran fox news Israel Iranian news Reports confirm Iran has fired nearly 400 ballistic missiles and over 1,000 drones at Israel, escalating the conflict significantly. ๐Ÿ˜ฒ๐Ÿ˜ฒ๐Ÿ˜ฒ๐Ÿ™‚B ๐Ÿ”ดFull Video ๐ŸŸข==โ–บโ–บ @livetv4kon Top stories Iran-Israel conflict LIVE: Iran fires missiles at Israel; mass anti-Israel protests in Tehran A week into their war, Israel and Iran launch new strikes even as diplomatic effort gets underway ๐Ÿ”ดFull Video ๐ŸŸข==โ–บโ–บ @livetv4kon Iran Israel Conflict Latest News | Israel welcomes 'all help' in striking Iran Iran Fires Cluster Bomb As Conflict With Israel Enters 8th Day ๐Ÿ”ดFull Video ๐ŸŸข==โ–บโ–บ @livetv4kon 'Everyone is scared': Iranians head to Armenia to escape conflict with Israel Thousands Protest Across the Middle East as Israel-Iran Conflict Deepens #IranIsraelConflict #ClubWorldCup #Khamenei #premierinviter #IranIsraelConflict #Israel #Trump #IranIsrael #TelAviv #IsraelIranConflict #IsraeliranWar #IranVsIsrael Russia๐Ÿ‡ท๐Ÿ‡บ stands with Iran๐Ÿ‡ฎ๐Ÿ‡ท China๐Ÿ‡จ๐Ÿ‡ณ stands with Iran๐Ÿ‡ฎ๐Ÿ‡ท Venezuela๐Ÿ‡ป๐Ÿ‡ช stands with Iran๐Ÿ‡ฎ๐Ÿ‡ท North Korea๐Ÿ‡ฐ๐Ÿ‡ต stands with Iran๐Ÿ‡ฎ๐Ÿ‡ท Pakistan๐Ÿ‡ต๐Ÿ‡ฐ stands with Iran๐Ÿ‡ฎ๐Ÿ‡ท Belarus๐Ÿ‡ง๐Ÿ‡พ stands with Iran๐Ÿ‡ฎ๐Ÿ‡ท Syria๐Ÿ‡ธ๐Ÿ‡พ stands with Iran๐Ÿ‡ฎ๐Ÿ‡ท Yemen๐Ÿ‡พ๐Ÿ‡ช stands with Iran๐Ÿ‡ฎ๐Ÿ‡ท Lebanon๐Ÿ‡ฑ๐Ÿ‡ง stands with Iran๐Ÿ‡ฎ๐Ÿ‡ท Do youโ”
SicariusSicariiStuff/Impish_Magic_24B_EXL2_2.75bpw
SicariusSicariiStuff
2025-06-21T03:39:13Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:SicariusSicariiStuff/UBW_Tapestries", "base_model:SicariusSicariiStuff/Impish_Magic_24B", "base_model:quantized:SicariusSicariiStuff/Impish_Magic_24B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2025-06-21T03:17:42Z
--- base_model: SicariusSicariiStuff/Impish_Magic_24B datasets: - SicariusSicariiStuff/UBW_Tapestries language: - en library_name: transformers license: apache-2.0 quantized_by: SicariusSicariiStuff ---
volam1311/lazy
volam1311
2025-06-21T03:19:44Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-21T03:16:37Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Karan345p/Upi
Karan345p
2025-06-21T02:53:58Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-21T02:53:58Z
--- license: apache-2.0 ---
elidle/indobert-post-training-fin-sa-3
elidle
2025-06-21T02:34:54Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:elidle/indobert-fin_news-mlm-3", "base_model:finetune:elidle/indobert-fin_news-mlm-3", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-21T02:34:39Z
--- library_name: transformers license: mit base_model: elidle/indobert-fin_news-mlm-3 tags: - generated_from_trainer metrics: - accuracy model-index: - name: indobert-post-training-fin-sa-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # indobert-post-training-fin-sa-3 This model is a fine-tuned version of [elidle/indobert-fin_news-mlm-3](https://huggingface.co/elidle/indobert-fin_news-mlm-3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2431 - Accuracy: 0.9615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.9874 | 0.1961 | 10 | 0.6666 | 0.7582 | | 0.5474 | 0.3922 | 20 | 0.4689 | 0.7802 | | 0.4264 | 0.5882 | 30 | 0.2823 | 0.9286 | | 0.2774 | 0.7843 | 40 | 0.2123 | 0.9286 | | 0.1896 | 0.9804 | 50 | 0.2001 | 0.9341 | | 0.1534 | 1.1765 | 60 | 0.1659 | 0.9396 | | 0.1181 | 1.3725 | 70 | 0.1622 | 0.9396 | | 0.0913 | 1.5686 | 80 | 0.1629 | 0.9505 | | 0.1362 | 1.7647 | 90 | 0.1882 | 0.9505 | | 0.1469 | 1.9608 | 100 | 0.1642 | 0.9505 | | 0.0434 | 2.1569 | 110 | 0.1462 | 0.9615 | | 0.0287 | 2.3529 | 120 | 0.1798 | 0.9451 | | 0.062 | 2.5490 | 130 | 0.1734 | 0.9505 | | 0.061 | 2.7451 | 140 | 0.2043 | 0.9560 | | 0.1002 | 2.9412 | 150 | 0.1924 | 0.9670 | | 0.0138 | 3.1373 | 160 | 0.2432 | 0.9560 | | 0.0563 | 3.3333 | 170 | 0.2589 | 0.9451 | | 0.007 | 3.5294 | 180 | 0.2466 | 0.9560 | | 0.0241 | 3.7255 | 190 | 0.2431 | 0.9615 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
minhxle/truesight-ft-job-82f197f9-c0d5-4c6b-a55c-5336d536242a
minhxle
2025-06-21T02:33:38Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-21T02:33:29Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
cosmo3769/train_synthetic_dataset_21.4k_images_nanovlm
cosmo3769
2025-06-21T02:25:40Z
0
0
nanovlm
[ "nanovlm", "safetensors", "vision-language", "multimodal", "research", "image-text-to-text", "license:mit", "region:us" ]
image-text-to-text
2025-06-21T02:24:59Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards library_name: nanovlm license: mit pipeline_tag: image-text-to-text tags: - vision-language - multimodal - research --- **nanoVLM** is a minimal and lightweight Vision-Language Model (VLM) designed for efficient training and experimentation. Built using pure PyTorch, the entire model architecture and training logic fits within ~750 lines of code. It combines a ViT-based image encoder (SigLIP-B/16-224-85M) with a lightweight causal language model (SmolLM2-135M), resulting in a compact 222M parameter model. For more information, check out the base model on https://huggingface.co/lusxvr/nanoVLM-222M. **Usage:** Clone the nanoVLM repository: https://github.com/huggingface/nanoVLM. Follow the install instructions and run the following code: ```python from models.vision_language_model import VisionLanguageModel model = VisionLanguageModel.from_pretrained("cosmo3769/train_synthetic_dataset_21.4k_images_nanovlm") ```
vibzi47/vaibhav
vibzi47
2025-06-21T01:57:55Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-21T01:26:34Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: vaibhav --- # Vaibhav <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `vaibhav` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "vaibhav", "lora_weights": "https://huggingface.co/vibzi47/vaibhav/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('vibzi47/vaibhav', weight_name='lora.safetensors') image = pipeline('vaibhav').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/vibzi47/vaibhav/discussions) to add images that show off what youโ€™ve made with this LoRA.
voidvar/unsloth_Qwen3-14B_lora-model
voidvar
2025-06-21T01:53:59Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-21T01:53:28Z
--- base_model: unsloth/qwen3-14b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** voidvar - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-14b-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
adriabama06/UI-TARS-1.5-7B-GGUF
adriabama06
2025-06-21T01:47:33Z
0
0
transformers
[ "transformers", "gguf", "multimodal", "gui", "llama-cpp", "image-text-to-text", "en", "base_model:ByteDance-Seed/UI-TARS-1.5-7B", "base_model:quantized:ByteDance-Seed/UI-TARS-1.5-7B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-06-21T01:31:24Z
--- license: apache-2.0 language: - en pipeline_tag: image-text-to-text tags: - multimodal - gui - llama-cpp library_name: transformers base_model: ByteDance-Seed/UI-TARS-1.5-7B --- GGUF quants (with MMPROJ) of [UI-TARS-1.5-7B](https://huggingface.co/ByteDance-Seed/UI-TARS-1.5-7B) | Model | Size | |----------|-----------| | [mmproj](https://huggingface.co/adriabama06/UI-TARS-1.5-7B-GGUF/blob/main/mmproj-ByteDance-Seed_UI-TARS-1.5-7B.gguf) | 1.32 GB | | [Q4_K_M](https://huggingface.co/adriabama06/UI-TARS-1.5-7B-GGUF/blob/main/ByteDance-Seed_UI-TARS-1.5-7B-Q4_K_M.gguf) | 4.57 GB | | [Q6_K](https://huggingface.co/adriabama06/UI-TARS-1.5-7B-GGUF/blob/main/ByteDance-Seed_UI-TARS-1.5-7B-Q6_K.gguf) | 6.11 GB | | [Q8_0](https://huggingface.co/adriabama06/UI-TARS-1.5-7B-GGUF/blob/main/ByteDance-Seed_UI-TARS-1.5-7B-Q8_0.gguf) | 7.91 GB | | [F16](https://huggingface.co/adriabama06/UI-TARS-1.5-7B-GGUF/blob/main/ByteDance-Seed_UI-TARS-1.5-7B-F16.gguf) | 14.88 GB |
John6666/omnimuse35-v4-sdxl
John6666
2025-06-21T01:36:43Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "furry", "semi-realistic", "stylized aesthetics", "2D", "2.5D", "toon shading", "background", "prompt following", "merge", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-XL-v1.0", "base_model:finetune:OnomaAIResearch/Illustrious-XL-v1.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-06-21T01:31:05Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - furry - semi-realistic - stylized aesthetics - 2D - 2.5D - toon shading - background - prompt following - merge - illustrious base_model: OnomaAIResearch/Illustrious-XL-v1.0 --- Original model is [here](https://civitai.com/models/1560969/omnimuse35?modelVersionId=1923606). This model created by [Mrskel4](https://civitai.com/user/Mrskel4).
hyunwoo612/CODENENDAv3_GGUF
hyunwoo612
2025-06-21T01:29:17Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T01:29:03Z
--- base_model: unsloth/qwen2.5-7b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** hyunwoo612 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Impbhs/Lumora
Impbhs
2025-06-21T01:22:25Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-21T01:22:25Z
--- license: apache-2.0 ---
nnilayy/dreamer-arousal-binary-ablation-no-weight-decay-Kfold-5
nnilayy
2025-06-21T01:18:38Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-21T01:18:33Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
sergioalves/23129eee-9419-47e6-be5e-eb006a2e7fdf
sergioalves
2025-06-20T23:52:45Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:quantized:Qwen/Qwen2.5-1.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-20T23:31:11Z
--- base_model: Qwen/Qwen2.5-1.5B-Instruct library_name: transformers model_name: 23129eee-9419-47e6-be5e-eb006a2e7fdf tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for 23129eee-9419-47e6-be5e-eb006a2e7fdf This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sergioalves/23129eee-9419-47e6-be5e-eb006a2e7fdf", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-7/runs/cdiz8wdi) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Alphatao/Affine-1710883
Alphatao
2025-06-20T23:52:20Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:2309.00071", "arxiv:2505.09388", "base_model:Qwen/Qwen3-8B-Base", "base_model:finetune:Qwen/Qwen3-8B-Base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T23:46:47Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE pipeline_tag: text-generation base_model: - Qwen/Qwen3-8B-Base --- # Qwen3-8B <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Qwen3 Highlights Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios. - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**. ## Model Overview **Qwen3-8B** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 8.2B - Number of Paramaters (Non-Embedding): 6.95B - Number of Layers: 36 - Number of Attention Heads (GQA): 32 for Q and 8 for KV - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts). For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Quickstart The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-8B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path Qwen/Qwen3-8B --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve Qwen/Qwen3-8B --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="Qwen/Qwen3-8B"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-8B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Long Texts Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method. YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks: - Modifying the model files: In the `config.json` file, add the `rope_scaling` fields: ```json { ..., "rope_scaling": { "rope_type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` For `llama.cpp`, you need to regenerate the GGUF file after the modification. - Passing command line arguments: For `vllm`, you can use ```shell vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072 ``` For `sglang`, you can use ```shell python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}' ``` For `llama-server` from `llama.cpp`, you can use ```shell llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768 ``` > [!IMPORTANT] > If you encounter the following warning > ``` > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'} > ``` > please upgrade `transformers>=4.51.0`. > [!NOTE] > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.** > We advise adding the `rope_scaling` configuration only when processing long contexts is required. > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. > [!NOTE] > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance. > [!TIP] > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed. ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3technicalreport, title={Qwen3 Technical Report}, author={Qwen Team}, year={2025}, eprint={2505.09388}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.09388}, } ```
Alphatao/Affine-6817055
Alphatao
2025-06-20T23:40:50Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:2309.00071", "arxiv:2505.09388", "base_model:Qwen/Qwen3-8B-Base", "base_model:finetune:Qwen/Qwen3-8B-Base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T23:35:22Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE pipeline_tag: text-generation base_model: - Qwen/Qwen3-8B-Base --- # Qwen3-8B <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Qwen3 Highlights Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios. - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**. ## Model Overview **Qwen3-8B** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 8.2B - Number of Paramaters (Non-Embedding): 6.95B - Number of Layers: 36 - Number of Attention Heads (GQA): 32 for Q and 8 for KV - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts). For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Quickstart The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-8B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path Qwen/Qwen3-8B --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve Qwen/Qwen3-8B --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="Qwen/Qwen3-8B"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-8B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Long Texts Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method. YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks: - Modifying the model files: In the `config.json` file, add the `rope_scaling` fields: ```json { ..., "rope_scaling": { "rope_type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` For `llama.cpp`, you need to regenerate the GGUF file after the modification. - Passing command line arguments: For `vllm`, you can use ```shell vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072 ``` For `sglang`, you can use ```shell python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}' ``` For `llama-server` from `llama.cpp`, you can use ```shell llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768 ``` > [!IMPORTANT] > If you encounter the following warning > ``` > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'} > ``` > please upgrade `transformers>=4.51.0`. > [!NOTE] > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.** > We advise adding the `rope_scaling` configuration only when processing long contexts is required. > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. > [!NOTE] > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance. > [!TIP] > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed. ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3technicalreport, title={Qwen3 Technical Report}, author={Qwen Team}, year={2025}, eprint={2505.09388}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.09388}, } ```
annasoli/Qwen2.5-7B-Instruct_bad-medical-topics
annasoli
2025-06-20T23:22:35Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-20T23:12:20Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProMajor7/PropheticNation
ProMajor7
2025-06-20T23:17:17Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-20T23:17:17Z
--- license: apache-2.0 ---
sourled/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-eager_snorting_ape
sourled
2025-06-20T23:13:59Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am eager snorting ape", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-17T10:46:12Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-eager_snorting_ape tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am eager snorting ape - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-eager_snorting_ape This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sourled/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-eager_snorting_ape", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
computerandgyein/solar-10.7b-text-normalisation-for-number-stage1-sft-flashattention
computerandgyein
2025-06-20T22:27:27Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:upstage/SOLAR-10.7B-Instruct-v1.0", "base_model:finetune:upstage/SOLAR-10.7B-Instruct-v1.0", "endpoints_compatible", "region:us" ]
null
2025-06-20T17:52:15Z
--- base_model: upstage/SOLAR-10.7B-Instruct-v1.0 library_name: transformers model_name: solar-10.7b-text-normalisation-for-number-stage1-sft-flashattention tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for solar-10.7b-text-normalisation-for-number-stage1-sft-flashattention This model is a fine-tuned version of [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="computerandgyein/solar-10.7b-text-normalisation-for-number-stage1-sft-flashattention", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/computerandgyein-ufo/text-normalisation/runs/f9sj5cj7) This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.52.4 - Pytorch: 2.5.1+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
syntheticbot/gender-classification-clip
syntheticbot
2025-06-20T22:23:39Z
0
1
transformers
[ "transformers", "safetensors", "clip", "zero-shot-image-classification", "image-classification", "fairface", "vision", "en", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T21:41:20Z
--- license: apache-2.0 language: en library_name: transformers tags: - clip - image-classification - fairface - vision model-index: - name: gender-classification-clip results: - task: type: image-classification name: image-classification dataset: name: FairFace type: joojs/fairface split: validation metrics: - type: accuracy value: 0.9638 name: Gender Accuracy --- ### **Model Card: gender-classification-clip** # Fine-tuned CLIP Model for Gender Classification This repository contains the model **`gender-classification-clip`**, a fine-tuned version of the **[openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)** model. It has been adapted for classifying perceived gender from facial images. The model was trained on the gender labels from the **[FairFace dataset](https://github.com/joojs/fairface)**, which is designed to be balanced across demographic categories. This model card provides a detailed look at its performance, limitations, and intended use to encourage responsible application. ## Model Description The base model, CLIP (Contrastive Language-Image Pre-Training), learns rich visual representations by matching images to their corresponding text descriptions. This fine-tuned version repurposes the powerful vision encoder from CLIP for a specific classification task. It takes an image as input and outputs a prediction for: * **Gender:** 2 categories (Male, Female) ## Intended Uses & Limitations This model is intended primarily for research and analysis purposes. ### Intended Uses * **Research on model fairness and bias:** Analyzing the model's performance differences across demographic groups. * **Providing a public baseline:** Serving as a starting point for researchers aiming to improve performance on gender classification. * **Educational purposes:** Demonstrating a fine-tuning approach on a vision model. ### Out-of-Scope and Prohibited Uses This model makes predictions about a sensitive demographic attribute and carries significant risks if misused. The following uses are explicitly out-of-scope and strongly discouraged: * **Surveillance, monitoring, or tracking of individuals.** * **Automated decision-making that impacts an individual's rights or opportunities** (e.g., loan applications, hiring decisions, insurance eligibility). * **Inferring or assigning an individual's self-identity.** The model's predictions are based on learned visual patterns and do not reflect how a person identifies. * **Creating or reinforcing harmful social stereotypes.** ## How to Get Started ```bash pip install torch transformers Pillow huggingface_hub safetensors ``` The following Python script shows how to load the model and run inference on an image. ```python import torch import torch.nn as nn from transformers import CLIPImageProcessor, AutoModel from PIL import Image import os from huggingface_hub import hf_hub_download from safetensors.torch import load_file from requests.exceptions import HTTPError # --- 0. Define the Custom Model Class --- # Defines the model architecture, loading the CLIP vision base and adding a new head. class GenderClipVisionModel(nn.Module): def __init__(self, num_labels): super(GenderClipVisionModel, self).__init__() self.vision_model = AutoModel.from_pretrained("openai/clip-vit-large-patch14").vision_model hidden_size = self.vision_model.config.hidden_size self.gender_head = nn.Linear(hidden_size, num_labels) def forward(self, pixel_values): outputs = self.vision_model(pixel_values=pixel_values) pooled_output = outputs.pooler_output return self.gender_head(pooled_output) # --- 1. Configuration --- MODEL_REPO = "syntheticbot/gender-classification-clip" DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # --- 2. Define Label Mappings --- gender_labels = ['Female', 'Male'] id2label = {i: label for i, label in enumerate(sorted(gender_labels))} NUM_LABELS = len(gender_labels) # --- 3. Load Model and Processor --- # Processor to prepare images for the model. processor = CLIPImageProcessor.from_pretrained(MODEL_REPO) # Initialize the custom model structure. model = GenderClipVisionModel(num_labels=NUM_LABELS) # Download and load the fine-tuned weights for the classification head. try: weights_path = hf_hub_download(repo_id=MODEL_REPO, filename="model.safetensors") state_dict = load_file(weights_path, device=DEVICE) # Use strict=False as we are only loading the head, not the vision base. model.load_state_dict(state_dict, strict=False) print("Fine-tuned weights loaded successfully.") except Exception as e: print(f"Error loading weights: {e}") model.to(DEVICE) model.eval() # Set to evaluation mode # --- 4. Prediction Function --- def predict(image_path): if not os.path.exists(image_path): print(f"Error: Image not found at {image_path}") return try: image = Image.open(image_path).convert("RGB") inputs = processor(images=image, return_tensors="pt").to(DEVICE) with torch.no_grad(): logits = model(pixel_values=inputs['pixel_values']) pred_id = torch.argmax(logits, dim=-1).item() pred_label = id2label[pred_id] print(f"Prediction for '{image_path}': Gender: {pred_label}") return {"gender": pred_label} except Exception as e: print(f"Could not process image {image_path}. Error: {e}") return None # --- 5. Run Prediction --- predict('path/to/your/image.jpg') # <-- Replace with the path to your image ``` ## Training Details * **Base Model:** [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) * **Dataset:** [FairFace](https://github.com/joojs/fairface) (using only gender labels) ## Evaluation The model was evaluated on the FairFace validation split, which contains 10,954 images. ### Performance Metrics #### **Gender Classification (Overall Accuracy: 96.38%)** ``` precision recall f1-score support Female 0.96 0.96 0.96 5162 Male 0.96 0.97 0.97 5792 accuracy 0.96 10954 macro avg 0.96 0.96 0.96 10954 weighted avg 0.96 0.96 0.96 10954 ``` ## Bias, Risks, and Limitations * **Perceptual vs. Identity:** The model predicts perceived gender based on visual data. These predictions are not a determination of an individual's true self-identity or gender expression. * **Performance Disparities:** The evaluation shows high overall accuracy, but performance may not be uniform across all intersectional demographic groups (e.g., different races, ages). Using this model in any application can perpetuate existing biases. * **Data Representation:** While trained on FairFace, a balanced dataset, the model may still reflect societal biases present in the original pre-training data of CLIP. * **Risk of Misclassification:** Any misclassification of a sensitive attribute can have negative social consequences. The model is not perfect and will make mistakes. ### Citation **Original CLIP Model:** ```bibtex @inproceedings{radford2021learning, title={Learning Transferable Visual Models From Natural Language Supervision}, author={Alec Radford and Jong Wook Kim and Chris Hallacy and Aditya Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, booktitle={International Conference on Machine Learning}, year={2021} } ``` **FairFace Dataset:** ```bibtex @inproceedings{karkkainenfairface, title={FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age}, author={Karkkainen, Kimmo and Joo, Jungseock}, booktitle={IEEE Winter Conference on Applications of Computer Vision (WACV)}, pages={1548--1558}, year={2021} } ```
aoussou/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
aoussou
2025-06-20T22:08:32Z
0
0
transformers
[ "transformers", "safetensors", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:MIT/ast-finetuned-audioset-10-10-0.4593", "base_model:finetune:MIT/ast-finetuned-audioset-10-10-0.4593", "license:bsd-3-clause", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2025-06-20T21:18:26Z
--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-audio-certficate-unit4 results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.89 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-audio-certficate-unit4 This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6726 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6707 | 1.0 | 57 | 0.6816 | 0.73 | | 0.231 | 2.0 | 114 | 0.5718 | 0.81 | | 0.181 | 3.0 | 171 | 0.5930 | 0.82 | | 0.0275 | 4.0 | 228 | 0.4938 | 0.87 | | 0.0049 | 5.0 | 285 | 0.6563 | 0.86 | | 0.013 | 6.0 | 342 | 0.9035 | 0.82 | | 0.1423 | 7.0 | 399 | 0.4829 | 0.9 | | 0.0 | 8.0 | 456 | 0.7405 | 0.91 | | 0.0 | 9.0 | 513 | 0.6386 | 0.89 | | 0.0 | 10.0 | 570 | 0.6726 | 0.89 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu118 - Datasets 3.6.0 - Tokenizers 0.21.1
Alphatao/Affine-5956831
Alphatao
2025-06-20T22:06:11Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:2309.00071", "arxiv:2505.09388", "base_model:Qwen/Qwen3-8B-Base", "base_model:finetune:Qwen/Qwen3-8B-Base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T22:00:18Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE pipeline_tag: text-generation base_model: - Qwen/Qwen3-8B-Base --- # Qwen3-8B <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Qwen3 Highlights Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios. - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**. ## Model Overview **Qwen3-8B** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 8.2B - Number of Paramaters (Non-Embedding): 6.95B - Number of Layers: 36 - Number of Attention Heads (GQA): 32 for Q and 8 for KV - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts). For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Quickstart The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-8B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path Qwen/Qwen3-8B --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve Qwen/Qwen3-8B --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="Qwen/Qwen3-8B"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-8B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Long Texts Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method. YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks: - Modifying the model files: In the `config.json` file, add the `rope_scaling` fields: ```json { ..., "rope_scaling": { "rope_type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` For `llama.cpp`, you need to regenerate the GGUF file after the modification. - Passing command line arguments: For `vllm`, you can use ```shell vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072 ``` For `sglang`, you can use ```shell python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}' ``` For `llama-server` from `llama.cpp`, you can use ```shell llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768 ``` > [!IMPORTANT] > If you encounter the following warning > ``` > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'} > ``` > please upgrade `transformers>=4.51.0`. > [!NOTE] > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.** > We advise adding the `rope_scaling` configuration only when processing long contexts is required. > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. > [!NOTE] > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance. > [!TIP] > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed. ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3technicalreport, title={Qwen3 Technical Report}, author={Qwen Team}, year={2025}, eprint={2505.09388}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.09388}, } ```
NuraStudios/VoxCraft1_1
NuraStudios
2025-06-20T22:01:22Z
0
0
transformers
[ "transformers", "safetensors", "voxcraft", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-20T22:01:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
oschamp/mobile_ad_closer
oschamp
2025-06-20T21:58:20Z
0
0
null
[ "base_model:Ultralytics/YOLOv5", "base_model:finetune:Ultralytics/YOLOv5", "region:us" ]
null
2025-06-20T21:53:02Z
--- base_model: - Ultralytics/YOLOv5 ---
mradermacher/Mymic-GGUF
mradermacher
2025-06-20T21:47:26Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:PeterMcMaster999/Mymic", "base_model:quantized:PeterMcMaster999/Mymic", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-20T21:42:10Z
--- base_model: PeterMcMaster999/Mymic language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/PeterMcMaster999/Mymic <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Mymic-GGUF/resolve/main/Mymic.Q2_K.gguf) | Q2_K | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Mymic-GGUF/resolve/main/Mymic.Q3_K_S.gguf) | Q3_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Mymic-GGUF/resolve/main/Mymic.Q3_K_M.gguf) | Q3_K_M | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Mymic-GGUF/resolve/main/Mymic.IQ4_XS.gguf) | IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Mymic-GGUF/resolve/main/Mymic.Q4_K_S.gguf) | Q4_K_S | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mymic-GGUF/resolve/main/Mymic.Q3_K_L.gguf) | Q3_K_L | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Mymic-GGUF/resolve/main/Mymic.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Mymic-GGUF/resolve/main/Mymic.Q5_K_S.gguf) | Q5_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Mymic-GGUF/resolve/main/Mymic.Q5_K_M.gguf) | Q5_K_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Mymic-GGUF/resolve/main/Mymic.Q6_K.gguf) | Q6_K | 0.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Mymic-GGUF/resolve/main/Mymic.Q8_0.gguf) | Q8_0 | 0.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Mymic-GGUF/resolve/main/Mymic.f16.gguf) | f16 | 0.4 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
nnilayy/dreamer-arousal-binary-ablation-no-ic-attention-Kfold-5
nnilayy
2025-06-20T21:45:52Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-20T21:45:47Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
Darkhn/L3.3-70B-Animus-V2-5.0bpw-h6-exl2
Darkhn
2025-06-20T21:26:25Z
0
0
null
[ "safetensors", "llama", "base_model:Darkhn/L3.3-70B-Animus-V2", "base_model:quantized:Darkhn/L3.3-70B-Animus-V2", "region:us" ]
null
2025-06-20T20:56:38Z
--- base_model_relation: quantized base_model: - Darkhn/L3.3-70B-Animus-V2 ---
nnilayy/dreamer-arousal-binary-ablation-no-smote-Kfold-2
nnilayy
2025-06-20T21:14:28Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-20T21:14:16Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
johnnyd-gensyn/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-enormous_humming_moose
johnnyd-gensyn
2025-06-20T21:14:08Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am enormous_humming_moose", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T15:09:01Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am enormous_humming_moose --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jannat-toha-official/wATCH.jannat-toha-jannat-toha-jannat-toha.original
jannat-toha-official
2025-06-20T20:59:08Z
0
0
null
[ "region:us" ]
null
2025-06-20T20:53:32Z
[๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://videohere.top/?jannat-toha) [โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธโฌ‡๏ธโฌ‡๏ธโ€‹](https://videohere.top/?jannat-toha) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?jannat-toha)
Viral-girls-Paro-Aarti-on-Reels/FULL.VIDEO.Paro.Aarti.Viral.Video.Tutorial.Official
Viral-girls-Paro-Aarti-on-Reels
2025-06-20T20:50:02Z
0
0
null
[ "region:us" ]
null
2025-06-20T20:49:28Z
[๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://videohere.top/?Paro-Aarti) [โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธโฌ‡๏ธโฌ‡๏ธโ€‹](https://videohere.top/?Paro-Aarti) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?Paro-Aarti)
denims/wATCH.denims.viral.video.original
denims
2025-06-20T20:37:42Z
0
0
null
[ "region:us" ]
null
2025-06-20T20:35:43Z
[๐ŸŒ CLICK HERE ๐ŸŸข==โ–บโ–บ WATCH NOW](https://videohere.top/?V=denims) [๐Ÿ”ด CLICK HERE ๐ŸŒ==โ–บโ–บ Download Now)](https://videohere.top/?V=denims) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=denims)
AGofficial/AgGPT-9m
AGofficial
2025-06-20T20:17:56Z
0
1
null
[ "en", "license:mit", "region:us" ]
null
2025-06-20T20:15:31Z
--- license: mit language: - en --- # AgGPT-9m AgGPT-9m, built upon the foundation of AgGPT-8.9, represents a refined iteration of our language model series. While it does not match the capabilities of AgGPT-9, we believe its release is valuable as it demonstrates the constraints of smaller language models in comparison to larger, more complex neural networks. Furthermore, AgGPT-9m illustrates the potential for incremental improvements in model performance, even after reaching a developmental plateau.
stewy33/0524_original_augmented_original_egregious_cubic_gravity-05201c58
stewy33
2025-06-20T20:17:06Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-06-20T20:14:24Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- ### Framework versions - PEFT 0.15.1ide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
2-wolf-one-girl-18/FULL.VIDEO.two.wolf.one.girl.Viral.Video.Tutorial.Official
2-wolf-one-girl-18
2025-06-20T20:15:29Z
0
0
null
[ "region:us" ]
null
2025-06-20T20:15:00Z
[๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://videohere.top/?2-wolf-one-girl) [โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธโฌ‡๏ธโฌ‡๏ธโ€‹](https://videohere.top/?2-wolf-one-girl) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?2-wolf-one-girl)
AllenJ29/Allen2025
AllenJ29
2025-06-20T20:11:46Z
0
0
null
[ "license:other", "region:us" ]
null
2025-06-20T19:26:20Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
a2z-jankari-sapna-shah-viral-video-18/video.18.a2z.jankari.sapna.shah.a2z.jankari.com.a2z.jankari.viral.video.a.to.z.jankaricom
a2z-jankari-sapna-shah-viral-video-18
2025-06-20T19:55:58Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:50:40Z
[๐ŸŒ CLICK HERE ๐ŸŸข==โ–บโ–บ WATCH NOW](https://videohere.top/?V=a2z-jankari-sapna-shah-viral-video) [๐Ÿ”ด CLICK HERE ๐ŸŒ==โ–บโ–บ Download Now)](https://videohere.top/?V=a2z-jankari-sapna-shah-viral-video) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=a2z-jankari-sapna-shah-viral-video)
JonLoRA/deynairaLoRAv3
JonLoRA
2025-06-20T19:35:53Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-20T10:34:22Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: photo of a girl --- # Deynairalorav3 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `photo of a girl` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "photo of a girl", "lora_weights": "https://huggingface.co/JonLoRA/deynairaLoRAv3/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('JonLoRA/deynairaLoRAv3', weight_name='lora.safetensors') image = pipeline('photo of a girl').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 6000 - Learning rate: 0.0002 - LoRA rank: 64 ## Contribute your own examples You can use the [community tab](https://huggingface.co/JonLoRA/deynairaLoRAv3/discussions) to add images that show off what youโ€™ve made with this LoRA.
gutimazue/xlmr-prostata-bs16
gutimazue
2025-06-20T19:24:12Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-20T19:24:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
andrewsamce/ppo-LunarLander-v2
andrewsamce
2025-06-20T19:14:32Z
21
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-06T19:01:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.76 +/- 15.19 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3)
Singhms1/mahesh_splunk_model_v3
Singhms1
2025-06-20T19:13:21Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2025-06-20T19:13:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wandb/WeaveFluencyScorerV1
wandb
2025-06-20T19:12:42Z
0
0
transformers
[ "transformers", "safetensors", "modernbert", "text-classification", "generated_from_trainer", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T19:12:27Z
--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - f1 - accuracy - precision - recall model-index: - name: fluency-scorer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fluency-scorer This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3830 - F1: 0.8183 - Accuracy: 0.8212 - Precision: 0.8171 - Recall: 0.8212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:| | No log | 0 | 0 | 0.7214 | 0.5368 | 0.5168 | 0.6201 | 0.5168 | | 0.5801 | 1.0 | 6158 | 0.4019 | 0.8069 | 0.8092 | 0.8056 | 0.8092 | | 0.4354 | 2.0 | 12316 | 0.3835 | 0.8176 | 0.8212 | 0.8165 | 0.8212 | | 0.4089 | 3.0 | 18474 | 0.3830 | 0.8183 | 0.8212 | 0.8171 | 0.8212 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.21.0
zahraase1im/distilbert-rotten-tomatoes
zahraase1im
2025-06-20T19:09:09Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T19:04:05Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-rotten-tomatoes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-rotten-tomatoes This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
pj-mathematician/JobSkillGTE-7b-lora
pj-mathematician
2025-06-20T19:05:10Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:114699", "loss:CachedGISTEmbedLoss", "arxiv:1908.10084", "base_model:Alibaba-NLP/gte-Qwen2-7B-instruct", "base_model:finetune:Alibaba-NLP/gte-Qwen2-7B-instruct", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-20T18:52:39Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:114699 - loss:CachedGISTEmbedLoss base_model: Alibaba-NLP/gte-Qwen2-7B-instruct widget: - source_sentence: 'Bus drivers, including those operating in various sectors like public transit, intercity, private, or school services, need strong driving skills, knowledge of traffic laws, and the ability to operate safely in diverse conditions. Additionally, effective communication skills and the ability to handle passenger inquiries and emergencies are crucial. [''bus driver'', ''intercity bus driver'', ''private bus operator'', ''transit bus driver'', ''public service vehicle operator'', ''passenger driver'', ''international bus driver'', ''public bus operator'', ''touristic bus driver'', ''coach driver'', ''private coach driver'', ''public bus driver'', ''bus operator'', ''driver of bus'', ''bus driving operator'', ''schoolbus driver'']' sentences: - 'The skill of determining shreds sizes percentage in cigarettes is primarily required by tobacco processing technicians and quality control specialists in the cigarette manufacturing industry, who ensure that the tobacco shreds meet specific size and quality standards for consistent product performance. [''determine shreds sizes percentage in cigarettes'', ''determine shreds sizes percentage in cigarettes'', ''determine the shreds sizes percentage of cigarettes'', ''determine shreds size percentages in cigarettes'', ''agree shreds sizes percentage in cigarettes'', ''determine the shreds sizes percentage in cigarettes'', ''confirm shreds sizes percentage in cigarettes'', ''sort shreds sizes percentage in cigarettes'']' - 'Job roles such as curriculum developers, educational consultants, and instructional designers require skills like analyzing, evaluating, and scrutinizing curriculums to improve educational outcomes. For legislative programmes, roles including policy analysts, legislative aides, and compliance officers use skills to test, evaluate, and scrutinize legislative processes to ensure effective and efficient policy implementation. [''analyse curriculum'', ''test legislative programmes'', ''evaluate legislative programmes'', ''evaluate curriculum'', ''test curriculum'', ''investigate curriculum'', ''scrutinise curriculum'', ''analyze curriculum'', ''scrutinise legislative processes'', ''investigate legislative programmes'']' - 'Job roles such as customer service representatives, flight attendants, and hotel concierges require a strong focus on passengers or customers, ensuring their needs and comfort are prioritized to provide excellent service and support. [''focus on passengers'', ''prioritise passengers'', ''ensure passenger prioritisation'', ''make passengers a priority'', ''maintain a focus on passengers'', ''ensure passengers are the priority focus'', ''ensure passengers are prioritised'', ''attend to passengers'', ''ensure a focus on passengers'']' - source_sentence: 'A medical laboratory assistant, or any of its synonyms such as a biomedical laboratory assistant, requires strong attention to detail, proficiency in using laboratory equipment, and a foundational understanding of medical science. Additionally, skills in sample handling, data recording, and basic research methodologies are crucial for roles like a clinical research assistant or an assistant in medical laboratory. [''medical laboratory assistant'', ''medical laboratory research assistant'', ''biomedical laboratory assistant'', ''clinical research assistant'', ''assistant in medical laboratory'', ''biomedical laboratory research assistant'', ''assistant clinical researcher'', ''medical lab assistant'', ''assistant in biomedical laboratory'']' sentences: - 'Job roles such as automotive mechanics, fleet managers, and vehicle technicians require skills to ensure vehicle operability and regular maintenance, which involves diagnosing and repairing issues to keep vehicles roadworthy and operational. [''ensure vehicle operability'', ''keep vehicle roadworthy'', ''keep vehicle operational'', ''ensure operability of the vehicle'', ''ensure vehicle remains operational'', ''ensure maintenance of vehicle'', ''ensure regular vehicle maintenance'', ''ensure operation of the vehicle'', ''ensure operability'']' - 'The skill of classroom management is primarily required by teachers and educators at all levels, from kindergarten to higher education, to ensure a productive, safe, and organized learning environment. It involves maintaining discipline, organizing space and materials, and facilitating effective instruction, roles that are crucial for teaching assistants and substitute teachers as well. [''perform classroom management'', ''performing classroom management'', ''conduct classroom management'', ''practice classroom management'', ''carry out classroom management'', ''implement classroom management'', ''performs classroom management'']' - 'Job roles requiring expertise in stem cells, including embryonic and adult stem cells, typically include stem cell researchers, regenerative medicine scientists, and biomedical engineers who focus on the development and application of stem cell technologies for therapeutic purposes. Additionally, clinical researchers and medical practitioners in specialized fields such as oncology and hematology may utilize knowledge of stem cells for treatment and research purposes. [''stem cells'', ''undifferentiated biological cells'', ''embryonic stem cells'', ''development of stem cells'', ''stem cell'', ''adult stem cells'', ''stem cells'']' - source_sentence: 'For roles such as ''physiotherapist'', ''neuromusculoskeletal physiotherapist'', ''osteopath'', and ''chiropractor'', the skills needed include a deep understanding of human anatomy and physiology, strong diagnostic skills, and the ability to apply manual therapy techniques to treat musculoskeletal issues. Additionally, effective communication skills are crucial for explaining treatments and exercises to patients, while adaptability and problem-solving skills are essential for tailoring treatments to individual patient needs. [''physiotherapist'', ''neuromusculoskeletal physiotherapist'', ''osteopath'', ''eurythmy therapist'', ''respiratory therapist'', ''remedial physiotherapist'', ''physiotherapist manager'', ''occupational therapist'', ''neurological physiotherapist'', ''occupational physiotherapist'', ''bobath physiotherapist'', ''neuromuscular physiotherapist'', ''manipulative physiotherapist'', ''hydrotherapist'', ''rehabilitation therapist'', ''masseuse'', ''health promotion worker'', ''cardiovascular physiotherapist'', ''respiratory physiotherapist'', ''chiropractor'', ''sports physiotherapist'', ''chiropractic therapist'', ''neurodevelopmental physiotherapist'', ''physical therapist'', ''health and well-being therapist'', ''business physiotherapist'']' sentences: - 'Job roles that require skills in dealing with emergency care situations include emergency medical technicians (EMTs), paramedics, and emergency room nurses or doctors, all of whom must quickly and effectively manage critical health situations to save lives. [''deal with emergency care situations'', ''deal with emergency care situation'', ''handle emergency care situation'', ''apply knowledge in emergency care situations'', ''handle emergency care situations'']' - 'Job roles such as fashion designers, stylist coordinators, and jewelry designers require the skill to distinguish and evaluate accessories, their differences, and applications, to ensure the right aesthetic and functional fit for their designs or clients. This skill is crucial for creating cohesive looks and enhancing the overall visual appeal in fashion and design industries. [''distinguish accessories'', ''evaluate accessories and their differences'', ''evaluate accessories and their application'', ''differentiate accessories'', ''distinguish accessories and their application'', ''distinguish differences in accessories'']' - 'Job roles that require expertise in curriculum objectives include educational consultants, curriculum developers, and instructional designers, who are tasked with creating and refining educational content and learning goals to meet specific educational standards and student needs. Teachers and headteachers also utilize these skills to align their teaching methods and materials with the set educational targets and aims. [''curriculum objectives'', ''curriculum objective'', ''curriculum goals'', ''curriculum targets'', ''curriculum aims'', ''curricula objectives'']' - source_sentence: 'A mine surveyor, also known as a mining surveyor or mine planning surveyor, requires expertise in geomatics and mining engineering to accurately map and plan mine operations, ensuring safety and efficiency. They must also possess strong analytical skills and the ability to use specialized software for creating detailed mine plans and maintaining accurate records. [''mine surveyor'', ''mining surveyor'', ''mine operations surveyor'', ''mine plan maker'', ''mine records keeper'', ''mine surveyors'', ''planner of mining operations'', ''mine planning surveyor'']' sentences: - 'Job roles such as data analysts, business analysts, and financial analysts require the skill to present reports or prepare statistical reports, as they often need to communicate complex data insights clearly and effectively to stakeholders. [''present reports'', ''present a report'', ''submit presentation'', ''prepare statistical reports'']' - 'Job roles such as Food Safety Manager, Quality Assurance Specialist, and Public Health Inspector require the skill of developing food safety programs to ensure compliance with regulations and maintain high standards of food safety in various settings including manufacturing, retail, and public health sectors. [''develop food safety programmes'', ''creating food safety programmes'', ''develop programmes for food safety'', ''food safety programmes creating'', ''food safety programmes developing'', ''develop food safety programs'', ''food safety programme developing'', ''food safety programme creating'', ''create food safety programmes'', ''create programmes for food safety'', ''developing food safety programmes'']' - 'The skill of using a sander, whether it be a handheld, manual, automatic, or drywall sander, is primarily required by construction workers, carpenters, and drywall installers for tasks such as roughening and smoothing wall surfaces to prepare them for painting or finishing. [''use sander'', ''use handheld sander'', ''roughening of wall surfaces'', ''use drywall sander'', ''sanding of wall surfaces'', ''using sander'', ''sander usage'', ''use manual sander'', ''drywall sanding'', ''use automatic sander'']' - source_sentence: 'An insulation supervisor, regardless of the specific type of insulation material or installation area, requires strong project management skills, knowledge of building codes and safety regulations, and expertise in insulation techniques to oversee the installation process effectively and ensure quality standards are met. [''insulation supervisor'', ''supervisor of installation of insulating materials'', ''supervisor of insulation materials installation'', ''supervisor of installation of insulation'', ''solid wall insulation installation supervisor'', ''insulation installers supervisor'', ''cavity wall insulation installation supervisor'', ''loft insulation installation supervisor'']' sentences: - 'Job roles such as Food Safety Inspector, Public Health Officer, and Environmental Health Specialist require the skill of taking action on food safety violations to ensure compliance with health regulations and maintain public safety standards. [''take action on food safety violations'', ''invoke action on food safety violations'', ''agree action on food safety violations'', ''pursue action on food safety violations'', ''determine action on food safety violations'']' - 'Job roles that require skills in operating and supervising textile printing machines include Textile Printer Operators, Printing Machine Technicians, and Textile Production Specialists. These roles involve setting up, running, and maintaining printing machinery to ensure high-quality textile printing. [''tend textile printing machines'', ''activate and supervise printing machines for textile material'', ''activate and supervise textile printing machines'', ''tend printing machines for textile'', ''tend printing machines for textile material'', ''care for textile printing machines'', ''operate printing machines for textile material'', ''operate textile printing machines'']' - 'The skill of installing insulation material is primarily required by job roles such as insulation workers, HVAC technicians, and construction specialists, who are responsible for improving energy efficiency and thermal comfort in buildings by correctly fitting and fixing insulation materials in various structures. [''install insulation material'', ''insulate structure'', ''fix insulation'', ''insulation material installation'', ''installation of insulation material'', ''fitting insulation'', ''insulating structure'', ''installing insulation material'', ''fixing insulation'', ''fit insulation'']' pipeline_tag: sentence-similarity library_name: sentence-transformers --- # Job-Skill matching fintuned Alibaba-NLP/gte-Qwen2-7B-instruct lora Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task B. Use it for job title <-> skill set matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) <!-- at revision a8d08b36ada9cacfe34c4d6f80957772a025daf2 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 3584 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen2Model (1): Pooling({'word_embedding_dimension': 3584, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("pj-mathematician/JobSkillGTE-7b-lora") # Run inference sentences = [ "An insulation supervisor, regardless of the specific type of insulation material or installation area, requires strong project management skills, knowledge of building codes and safety regulations, and expertise in insulation techniques to oversee the installation process effectively and ensure quality standards are met.\n['insulation supervisor', 'supervisor of installation of insulating materials', 'supervisor of insulation materials installation', 'supervisor of installation of insulation', 'solid wall insulation installation supervisor', 'insulation installers supervisor', 'cavity wall insulation installation supervisor', 'loft insulation installation supervisor']", "The skill of installing insulation material is primarily required by job roles such as insulation workers, HVAC technicians, and construction specialists, who are responsible for improving energy efficiency and thermal comfort in buildings by correctly fitting and fixing insulation materials in various structures.\n['install insulation material', 'insulate structure', 'fix insulation', 'insulation material installation', 'installation of insulation material', 'fitting insulation', 'insulating structure', 'installing insulation material', 'fixing insulation', 'fit insulation']", "Job roles such as Food Safety Inspector, Public Health Officer, and Environmental Health Specialist require the skill of taking action on food safety violations to ensure compliance with health regulations and maintain public safety standards.\n['take action on food safety violations', 'invoke action on food safety violations', 'agree action on food safety violations', 'pursue action on food safety violations', 'determine action on food safety violations']", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 3584] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 114,699 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 73 tokens</li><li>mean: 133.53 tokens</li><li>max: 333 tokens</li></ul> | <ul><li>min: 44 tokens</li><li>mean: 104.56 tokens</li><li>max: 236 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation.<br>['technical director', 'technical and operations director', 'head of technical', 'director of technical arts', 'head of technical department', 'technical supervisor', 'technical manager']</code> | <code>Job roles that require promoting health and safety include occupational health and safety specialists, safety managers, and public health educators, all of whom work to ensure safe and healthy environments in workplaces and communities.<br>['promote health and safety', 'promote importance of health and safety', 'promoting health and safety', 'advertise health and safety']</code> | | <code>A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation.<br>['technical director', 'technical and operations director', 'head of technical', 'director of technical arts', 'head of technical department', 'technical supervisor', 'technical manager']</code> | <code>Job roles that require organizing rehearsals include directors, choreographers, and conductors in theater, dance, and music ensembles, who must efficiently plan and schedule practice sessions to prepare performers for a successful final performance.<br>['organise rehearsals', 'organise rehearsal', 'organize rehearsals', 'plan rehearsals', 'arrange rehearsals', 'organising rehearsals', 'schedule rehearsals']</code> | | <code>A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation.<br>['technical director', 'technical and operations director', 'head of technical', 'director of technical arts', 'head of technical department', 'technical supervisor', 'technical manager']</code> | <code>Job roles such as Health and Safety Managers, Environmental Health Officers, and Risk Management Specialists often require the skill of negotiating health and safety issues with third parties to ensure compliance and protection standards are met across different organizations and sites.<br>['negotiate health and safety issues with third parties', 'agree with third parties on health and safety', 'negotiate issues on health and safety with third parties', 'negotiate with third parties on health and safety issues', 'negotiate health and safety matters with third parties']</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'mini_batch_size': 48, 'margin_strategy': 'absolute', 'margin': 0.0} ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `num_train_epochs`: 2 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `fsdp`: ['full_shard', 'auto_wrap'] - `fsdp_config`: {'transformer_layer_cls_to_wrap': ['Qwen2DecoderLayer'], 'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `ddp_find_unused_parameters`: True - `gradient_checkpointing`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: ['full_shard', 'auto_wrap'] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'transformer_layer_cls_to_wrap': ['Qwen2DecoderLayer'], 'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: True - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.0156 | 1 | 21.5186 | | 0.0312 | 2 | 21.4075 | | 0.0469 | 3 | 21.0309 | | 0.0625 | 4 | 20.7294 | | 0.0781 | 5 | 20.9851 | | 0.0938 | 6 | 21.3215 | | 0.1094 | 7 | 19.8458 | | 0.125 | 8 | 18.52 | | 0.1406 | 9 | 17.622 | | 0.1562 | 10 | 17.5794 | | 0.1719 | 11 | 15.8784 | | 0.1875 | 12 | 14.5842 | | 0.2031 | 13 | 13.3324 | | 0.2188 | 14 | 12.3194 | | 0.2344 | 15 | 11.2523 | | 0.25 | 16 | 10.7172 | | 0.2656 | 17 | 10.0063 | | 0.2812 | 18 | 9.5643 | | 0.2969 | 19 | 9.2463 | | 0.3125 | 20 | 8.6533 | | 0.3281 | 21 | 8.0588 | | 0.3438 | 22 | 8.1866 | | 0.3594 | 23 | 7.6767 | | 0.375 | 24 | 6.9832 | | 0.3906 | 25 | 6.7932 | | 0.4062 | 26 | 6.292 | | 0.4219 | 27 | 6.1263 | | 0.4375 | 28 | 5.8976 | | 0.4531 | 29 | 5.7214 | | 0.4688 | 30 | 5.6451 | | 0.4844 | 31 | 5.6232 | | 0.5 | 32 | 5.2984 | | 0.5156 | 33 | 5.0322 | | 0.5312 | 34 | 4.9435 | | 0.5469 | 35 | 4.737 | | 0.5625 | 36 | 4.4266 | | 0.5781 | 37 | 4.5082 | | 0.5938 | 38 | 4.315 | | 0.6094 | 39 | 4.269 | | 0.625 | 40 | 4.2473 | | 0.6406 | 41 | 4.2054 | | 0.6562 | 42 | 4.2172 | | 0.6719 | 43 | 3.8311 | | 0.6875 | 44 | 4.0803 | | 0.7031 | 45 | 4.2809 | | 0.7188 | 46 | 4.1843 | | 0.7344 | 47 | 3.9913 | | 0.75 | 48 | 3.9465 | | 0.7656 | 49 | 4.0828 | | 0.7812 | 50 | 4.0018 | | 0.7969 | 51 | 3.8023 | | 0.8125 | 52 | 3.897 | | 0.8281 | 53 | 3.8941 | | 0.8438 | 54 | 3.7708 | | 0.8594 | 55 | 3.8051 | | 0.875 | 56 | 3.7117 | | 0.8906 | 57 | 3.8584 | | 0.9062 | 58 | 3.6421 | | 0.9219 | 59 | 3.7097 | | 0.9375 | 60 | 3.6906 | | 0.9531 | 61 | 3.7011 | | 0.9688 | 62 | 3.744 | | 0.9844 | 63 | 3.6493 | | 1.0 | 64 | 3.5659 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
AGofficial/AgGPT-8.9
AGofficial
2025-06-20T19:03:25Z
0
1
null
[ "en", "license:mit", "region:us" ]
null
2025-06-20T19:00:00Z
--- license: mit language: - en --- # AgGPT-8.9 Utilizing the TinyBrain-2 model, we have developed JavaScript and Python implementations of a highly efficient language model that closely mirrors the capabilities of AgGPT-9, while maintaining a significantly reduced size.
ArunP3799/qwen3b_baseline_math_step_8
ArunP3799
2025-06-20T19:01:41Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T18:59:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BootesVoid/cmbq0a5fr00smh4x50oaoaxxi_cmc53r5tu02iibfif28r3c9ib
BootesVoid
2025-06-20T18:44:54Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-20T18:44:52Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MIASTARR --- # Cmbq0A5Fr00Smh4X50Oaoaxxi_Cmc53R5Tu02Iibfif28R3C9Ib <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MIASTARR` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "MIASTARR", "lora_weights": "https://huggingface.co/BootesVoid/cmbq0a5fr00smh4x50oaoaxxi_cmc53r5tu02iibfif28r3c9ib/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmbq0a5fr00smh4x50oaoaxxi_cmc53r5tu02iibfif28r3c9ib', weight_name='lora.safetensors') image = pipeline('MIASTARR').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmbq0a5fr00smh4x50oaoaxxi_cmc53r5tu02iibfif28r3c9ib/discussions) to add images that show off what youโ€™ve made with this LoRA.
BootesVoid/cmc533hs802fvbfifwttf712r_cmc545gcn02jxbfifsgcndjpr
BootesVoid
2025-06-20T18:30:46Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-20T18:30:42Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MICHELLE --- # Cmc533Hs802Fvbfifwttf712R_Cmc545Gcn02Jxbfifsgcndjpr <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MICHELLE` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "MICHELLE", "lora_weights": "https://huggingface.co/BootesVoid/cmc533hs802fvbfifwttf712r_cmc545gcn02jxbfifsgcndjpr/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmc533hs802fvbfifwttf712r_cmc545gcn02jxbfifsgcndjpr', weight_name='lora.safetensors') image = pipeline('MICHELLE').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmc533hs802fvbfifwttf712r_cmc545gcn02jxbfifsgcndjpr/discussions) to add images that show off what youโ€™ve made with this LoRA.
haihp02/oioioi-last
haihp02
2025-06-20T18:25:45Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-20T18:24:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pj-mathematician/JobGTE-7b-Lora
pj-mathematician
2025-06-20T18:22:32Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:124788", "loss:CachedGISTEmbedLoss", "arxiv:1908.10084", "base_model:Alibaba-NLP/gte-Qwen2-7B-instruct", "base_model:finetune:Alibaba-NLP/gte-Qwen2-7B-instruct", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-20T17:52:09Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:124788 - loss:CachedGISTEmbedLoss base_model: Alibaba-NLP/gte-Qwen2-7B-instruct widget: - source_sentence: ๅ…ถไป–ๆœบๆขฐใ€่ฎพๅค‡ๅ’Œๆœ‰ๅฝข่ดง็‰ฉ็งŸ่ตๆœๅŠกไปฃ่กจ sentences: - ๅ…ถไป–ๆœบๆขฐๅ’Œ่ฎพๅค‡็งŸ่ตๆœๅŠกๅทฅไฝœไบบๅ‘˜ - ็”ตๅญๅ’Œ็”ตไฟก่ฎพๅค‡ๅŠ้›ถ้ƒจไปถ็‰ฉๆต็ป็† - ๅทฅไธšไธปๅŽจ - source_sentence: ๅ…ฌไบค่ฝฆๅธๆœบ sentences: - ่กจๆผ”็ฏๅ…‰่ฎพ่ฎกๅธˆ - ไน™็ƒฏๅŸบๅœฐๆฟๅฎ‰่ฃ…ๅทฅ - ๅ›ฝ้™…ๅทดๅฃซๅธๆœบ - source_sentence: online communication manager sentences: - trades union official - social media manager - budget manager - source_sentence: Projektmanagerin sentences: - Projektmanager/Projektmanagerin - Category-Manager - Infanterist - source_sentence: Volksvertreter sentences: - Parlamentarier - Oberbรผrgermeister - Konsul pipeline_tag: sentence-similarity library_name: sentence-transformers --- # Job - Job matching finetuned Alibaba-NLP/gte-Qwen2-7B-instruct Best performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) <!-- at revision a8d08b36ada9cacfe34c4d6f80957772a025daf2 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 3584 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - full_en - full_de - full_es - full_zh - mix <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen2Model (1): Pooling({'word_embedding_dimension': 3584, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("pj-mathematician/JobGTE-7b-Lora") # Run inference sentences = [ 'Volksvertreter', 'Parlamentarier', 'Oberbรผrgermeister', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 3584] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Datasets <details><summary>full_en</summary> #### full_en * Dataset: full_en * Size: 28,880 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 2 tokens</li><li>mean: 4.4 tokens</li><li>max: 9 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 4.42 tokens</li><li>max: 10 tokens</li></ul> | * Samples: | anchor | positive | |:-----------------------------------------|:-----------------------------------------| | <code>air commodore</code> | <code>flight lieutenant</code> | | <code>command and control officer</code> | <code>flight officer</code> | | <code>air commodore</code> | <code>command and control officer</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_de</summary> #### full_de * Dataset: full_de * Size: 23,023 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 2 tokens</li><li>mean: 9.11 tokens</li><li>max: 33 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 9.41 tokens</li><li>max: 33 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------|:-----------------------------------------------------| | <code>Staffelkommandantin</code> | <code>Kommodore</code> | | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> | | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_es</summary> #### full_es * Dataset: full_es * Size: 20,724 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 9.42 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.18 tokens</li><li>max: 35 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------|:-------------------------------------------| | <code>jefe de escuadrรณn</code> | <code>instructor</code> | | <code>comandante de aeronave</code> | <code>instructor de simulador</code> | | <code>instructor</code> | <code>oficial del Ejรฉrcito del Aire</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_zh</summary> #### full_zh * Dataset: full_zh * Size: 30,401 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 4.7 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.04 tokens</li><li>max: 19 tokens</li></ul> | * Samples: | anchor | positive | |:------------------|:---------------------| | <code>ๆŠ€ๆœฏๆ€ป็›‘</code> | <code>ๆŠ€ๆœฏๅ’Œ่ฟ่ฅๆ€ป็›‘</code> | | <code>ๆŠ€ๆœฏๆ€ป็›‘</code> | <code>ๆŠ€ๆœฏไธป็ฎก</code> | | <code>ๆŠ€ๆœฏๆ€ป็›‘</code> | <code>ๆŠ€ๆœฏ่‰บๆœฏๆ€ป็›‘</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>mix</summary> #### mix * Dataset: mix * Size: 21,760 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 1 tokens</li><li>mean: 4.98 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 1 tokens</li><li>mean: 7.22 tokens</li><li>max: 27 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------------|:----------------------------------------------------------------| | <code>technical manager</code> | <code>Technischer Direktor fรผr Bรผhne, Film und Fernsehen</code> | | <code>head of technical</code> | <code>directora tรฉcnica</code> | | <code>head of technical department</code> | <code>ๆŠ€ๆœฏ่‰บๆœฏๆ€ป็›‘</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'mini_batch_size': 64, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `num_train_epochs`: 2 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `fsdp`: ['full_shard', 'auto_wrap'] - `fsdp_config`: {'transformer_layer_cls_to_wrap': ['Qwen2DecoderLayer'], 'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `ddp_find_unused_parameters`: True - `gradient_checkpointing`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: ['full_shard', 'auto_wrap'] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'transformer_layer_cls_to_wrap': ['Qwen2DecoderLayer'], 'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: True - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:----:|:-------------:| | 0.0165 | 1 | 4.5178 | | 0.0331 | 2 | 3.8803 | | 0.0496 | 3 | 2.8882 | | 0.0661 | 4 | 4.5362 | | 0.0826 | 5 | 3.6406 | | 0.0992 | 6 | 3.5285 | | 0.1157 | 7 | 4.1398 | | 0.1322 | 8 | 4.1543 | | 0.1488 | 9 | 4.4487 | | 0.1653 | 10 | 4.7408 | | 0.1818 | 11 | 2.1874 | | 0.1983 | 12 | 3.3176 | | 0.2149 | 13 | 2.8286 | | 0.2314 | 14 | 2.87 | | 0.2479 | 15 | 2.4834 | | 0.2645 | 16 | 2.7856 | | 0.2810 | 17 | 3.1948 | | 0.2975 | 18 | 2.1755 | | 0.3140 | 19 | 1.9861 | | 0.3306 | 20 | 2.0536 | | 0.3471 | 21 | 2.7626 | | 0.3636 | 22 | 1.6489 | | 0.3802 | 23 | 2.078 | | 0.3967 | 24 | 1.5864 | | 0.4132 | 25 | 1.8815 | | 0.4298 | 26 | 1.8041 | | 0.4463 | 27 | 1.7482 | | 0.4628 | 28 | 1.191 | | 0.4793 | 29 | 1.4166 | | 0.4959 | 30 | 1.3215 | | 0.5124 | 31 | 1.2907 | | 0.5289 | 32 | 1.1294 | | 0.5455 | 33 | 1.1586 | | 0.5620 | 34 | 1.551 | | 0.5785 | 35 | 1.3628 | | 0.5950 | 36 | 0.9899 | | 0.6116 | 37 | 1.1846 | | 0.6281 | 38 | 1.2721 | | 0.6446 | 39 | 1.1261 | | 0.6612 | 40 | 0.9535 | | 0.6777 | 41 | 1.2086 | | 0.6942 | 42 | 0.7472 | | 0.7107 | 43 | 1.0324 | | 0.7273 | 44 | 1.0397 | | 0.7438 | 45 | 1.185 | | 0.7603 | 46 | 1.2112 | | 0.7769 | 47 | 0.84 | | 0.7934 | 48 | 0.9286 | | 0.8099 | 49 | 0.8689 | | 0.8264 | 50 | 0.9546 | | 0.8430 | 51 | 0.8283 | | 0.8595 | 52 | 0.757 | | 0.8760 | 53 | 0.9199 | | 0.8926 | 54 | 0.7404 | | 0.9091 | 55 | 1.0995 | | 0.9256 | 56 | 0.8231 | | 0.9421 | 57 | 0.6297 | | 0.9587 | 58 | 0.9869 | | 0.9752 | 59 | 0.9597 | | 0.9917 | 60 | 0.7025 | | 1.0 | 61 | 0.4866 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
pj-mathematician/JobGTE-multilingual-base-pruned
pj-mathematician
2025-06-20T18:20:17Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:86648", "loss:MSELoss", "arxiv:1908.10084", "arxiv:2004.09813", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-20T18:18:11Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:86648 - loss:MSELoss widget: - source_sentence: Familienberaterin sentences: - electric power station operator - venue booker & promoter - betrieblicher Aus- und Weiterbildner/betriebliche Aus- und Weiterbildnerin - source_sentence: high school RS teacher sentences: - infantryman - Schnellbedienungsrestaurantteamleiter - drill setup operator - source_sentence: lighting designer sentences: - software support manager - ็›ดๅ‡ๆœบ็ปดๆŠคๅ่ฐƒๅ‘˜ - bus maintenance supervisor - source_sentence: ๆœบๅœบๆถˆ้˜ฒๅ‘˜ sentences: - Flakeๆ“ไฝœๅ‘˜ - tรฉcnico en gestiรณn de residuos peligrosos/tรฉcnica en gestiรณn de residuos peligrosos - ไธ“้—จๅญฆๆ ก่€ๅธˆ - source_sentence: Entwicklerin fรผr mobile Anwendungen sentences: - fashion design expert - Mergers-and-Acquisitions-Analyst/Mergers-and-Acquisitions-Analystin - commercial bid manager pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@20 - cosine_accuracy@50 - cosine_accuracy@100 - cosine_accuracy@150 - cosine_accuracy@200 - cosine_precision@1 - cosine_precision@20 - cosine_precision@50 - cosine_precision@100 - cosine_precision@150 - cosine_precision@200 - cosine_recall@1 - cosine_recall@20 - cosine_recall@50 - cosine_recall@100 - cosine_recall@150 - cosine_recall@200 - cosine_ndcg@1 - cosine_ndcg@20 - cosine_ndcg@50 - cosine_ndcg@100 - cosine_ndcg@150 - cosine_ndcg@200 - cosine_mrr@1 - cosine_mrr@20 - cosine_mrr@50 - cosine_mrr@100 - cosine_mrr@150 - cosine_mrr@200 - cosine_map@1 - cosine_map@20 - cosine_map@50 - cosine_map@100 - cosine_map@150 - cosine_map@200 - cosine_map@500 model-index: - name: SentenceTransformer results: - task: type: information-retrieval name: Information Retrieval dataset: name: full en type: full_en metrics: - type: cosine_accuracy@1 value: 0.6476190476190476 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9714285714285714 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9904761904761905 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9904761904761905 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9904761904761905 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9904761904761905 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6476190476190476 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.47952380952380946 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.28838095238095235 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.17304761904761906 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.12444444444444444 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.09857142857142859 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06609801577496094 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5122224752770898 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.6835205863376973 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.7899550177449521 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8399901051245952 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.875868212220809 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6476190476190476 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6467537144833913 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6579566361404572 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7095129047395976 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7310060454392588 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.746053293561821 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6476190476190476 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7901817137111254 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7909547501984476 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7909547501984476 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7909547501984476 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7909547501984476 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6476190476190476 name: Cosine Map@1 - type: cosine_map@20 value: 0.5025649155749793 name: Cosine Map@20 - type: cosine_map@50 value: 0.48398477448194993 name: Cosine Map@50 - type: cosine_map@100 value: 0.5117703759309522 name: Cosine Map@100 - type: cosine_map@150 value: 0.520199435224254 name: Cosine Map@150 - type: cosine_map@200 value: 0.5249113393002316 name: Cosine Map@200 - type: cosine_map@500 value: 0.5304170344184883 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full es type: full_es metrics: - type: cosine_accuracy@1 value: 0.11891891891891893 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.11891891891891893 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5267567567567567 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.3437837837837838 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.21897297297297297 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.1658018018018018 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.1332972972972973 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.0035840147528632613 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.35407760203362965 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5097999383006715 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6076073817878247 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.6705429838138021 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7125464731776301 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.11891891891891893 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5708144272431339 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.535516963498245 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.558980163264909 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5900024611410689 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.609478782549869 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.11891891891891893 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5531531531531532 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5531531531531532 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5531531531531532 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5531531531531532 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5531531531531532 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.11891891891891893 name: Cosine Map@1 - type: cosine_map@20 value: 0.4379349002801489 name: Cosine Map@20 - type: cosine_map@50 value: 0.3739269627118989 name: Cosine Map@50 - type: cosine_map@100 value: 0.37629843599877466 name: Cosine Map@100 - type: cosine_map@150 value: 0.3891828650842837 name: Cosine Map@150 - type: cosine_map@200 value: 0.39584338663408436 name: Cosine Map@200 - type: cosine_map@500 value: 0.4062909401616274 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full de type: full_de metrics: - type: cosine_accuracy@1 value: 0.2955665024630542 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9704433497536946 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9753694581280788 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9901477832512315 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9901477832512315 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9901477832512315 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.2955665024630542 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.42906403940886706 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.29802955665024633 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.19433497536945815 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.14824302134646963 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.1197783251231527 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.01108543831680986 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.26675038089672504 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.40921566733257536 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.5097664540706716 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.5728593162394238 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.6120176690658915 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.2955665024630542 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.46962753993631184 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.444898497416845 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.466960324034805 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.49816218513136795 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.5165485300965951 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.2955665024630542 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5046767633988724 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.50477528556636 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5049589761635289 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5049589761635289 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5049589761635289 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.2955665024630542 name: Cosine Map@1 - type: cosine_map@20 value: 0.33658821160388247 name: Cosine Map@20 - type: cosine_map@50 value: 0.2853400586620685 name: Cosine Map@50 - type: cosine_map@100 value: 0.2817732307206079 name: Cosine Map@100 - type: cosine_map@150 value: 0.2931317333364438 name: Cosine Map@150 - type: cosine_map@200 value: 0.2988160532231927 name: Cosine Map@200 - type: cosine_map@500 value: 0.31093362375086947 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full zh type: full_zh metrics: - type: cosine_accuracy@1 value: 0.6601941747572816 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.970873786407767 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9902912621359223 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9902912621359223 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9902912621359223 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9902912621359223 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6601941747572816 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.44805825242718444 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.27126213592233006 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.16650485436893206 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.1211003236245955 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.09529126213592234 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06611246215014785 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.48409390608352504 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.6568473638827299 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.7685416895166794 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8277686060133904 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.8616979590623105 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6601941747572816 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6231250904534316 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6383496204608501 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.6917257705456975 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7167434657424917 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7303448958665071 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6601941747572816 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8015776699029126 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8020876238109248 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8020876238109248 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8020876238109248 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8020876238109248 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6601941747572816 name: Cosine Map@1 - type: cosine_map@20 value: 0.4750205237443607 name: Cosine Map@20 - type: cosine_map@50 value: 0.45785161483741715 name: Cosine Map@50 - type: cosine_map@100 value: 0.4848085275553208 name: Cosine Map@100 - type: cosine_map@150 value: 0.4937216396074153 name: Cosine Map@150 - type: cosine_map@200 value: 0.49777622471594557 name: Cosine Map@200 - type: cosine_map@500 value: 0.5039795405740248 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix es type: mix_es metrics: - type: cosine_accuracy@1 value: 0.6297451898075923 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9105564222568903 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9495579823192928 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9729589183567343 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.983359334373375 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9901196047841914 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6297451898075923 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.11167446697867915 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.04850754030161208 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.02535101404056163 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.0172300225342347 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.0130811232449298 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.24340068840848872 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.8288215338137336 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.8986566129311838 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9398509273704282 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9576876408389668 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9695267810712429 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6297451898075923 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.7010427232190379 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7200844211181043 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7290848607488584 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7325985285606116 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7347463892077523 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6297451898075923 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7036709577939534 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7049808414398148 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7053260954286938 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7054145837924506 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7054541569954363 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6297451898075923 name: Cosine Map@1 - type: cosine_map@20 value: 0.6194189058349782 name: Cosine Map@20 - type: cosine_map@50 value: 0.6244340507841626 name: Cosine Map@50 - type: cosine_map@100 value: 0.6256943736433496 name: Cosine Map@100 - type: cosine_map@150 value: 0.6260195205413376 name: Cosine Map@150 - type: cosine_map@200 value: 0.6261650797332174 name: Cosine Map@200 - type: cosine_map@500 value: 0.6263452093477304 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix de type: mix_de metrics: - type: cosine_accuracy@1 value: 0.5564222568902756 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.8866354654186167 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9381175247009881 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9594383775351014 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9708788351534061 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9776391055642226 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.5564222568902756 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.109464378575143 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.048060322412896525 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.025273010920436823 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.017313225862367825 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013143525741029644 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.20931703934824059 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.7988992893049055 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.8741029641185647 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9173426937077482 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9424076963078523 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.953631478592477 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.5564222568902756 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6541310877479573 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.674790854916742 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.6844997445798996 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.6894214573457343 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6914881284159038 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.5564222568902756 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.6476945170199107 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.6493649946597936 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.6496801333421218 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.6497778366579644 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.6498156890114056 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.5564222568902756 name: Cosine Map@1 - type: cosine_map@20 value: 0.5648326970643027 name: Cosine Map@20 - type: cosine_map@50 value: 0.57003456255067 name: Cosine Map@50 - type: cosine_map@100 value: 0.5714370828517599 name: Cosine Map@100 - type: cosine_map@150 value: 0.5719002990233493 name: Cosine Map@150 - type: cosine_map@200 value: 0.5720497397197026 name: Cosine Map@200 - type: cosine_map@500 value: 0.5723109788233504 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix zh type: mix_zh metrics: - type: cosine_accuracy@1 value: 0.6085594989561587 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9592901878914405 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9791231732776617 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9874739039665971 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9911273486430062 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9937369519832986 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6085594989561587 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12656576200417535 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05518789144050106 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.028747390396659713 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.019425887265135697 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.014705114822546978 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.2043804056069192 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.8346468336812805 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9095772442588727 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9475643702157271 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9609168406402228 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9697807933194154 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6085594989561587 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6853247290079303 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7066940880968873 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.715400790265437 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7180808450243259 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7197629642909036 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6085594989561587 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7236528792595264 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7243308740364213 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7244524590415827 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7244814620971008 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7244960285685315 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6085594989561587 name: Cosine Map@1 - type: cosine_map@20 value: 0.5652211952239553 name: Cosine Map@20 - type: cosine_map@50 value: 0.5716374350069462 name: Cosine Map@50 - type: cosine_map@100 value: 0.5730756815932735 name: Cosine Map@100 - type: cosine_map@150 value: 0.5733543252173214 name: Cosine Map@150 - type: cosine_map@200 value: 0.5734860037813889 name: Cosine Map@200 - type: cosine_map@500 value: 0.5736416699680624 name: Cosine Map@500 --- # Job - Job matching Alibaba-NLP/gte-multilingual-base pruned Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-pruned") # Run inference sentences = [ 'Entwicklerin fรผr mobile Anwendungen', 'Mergers-and-Acquisitions-Analyst/Mergers-and-Acquisitions-Analystin', 'fashion design expert', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | | cosine_accuracy@20 | 0.9714 | 1.0 | 0.9704 | 0.9709 | 0.9106 | 0.8866 | 0.9593 | | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9754 | 0.9903 | 0.9496 | 0.9381 | 0.9791 | | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.973 | 0.9594 | 0.9875 | | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9834 | 0.9709 | 0.9911 | | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9901 | 0.9776 | 0.9937 | | cosine_precision@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | | cosine_precision@20 | 0.4795 | 0.5268 | 0.4291 | 0.4481 | 0.1117 | 0.1095 | 0.1266 | | cosine_precision@50 | 0.2884 | 0.3438 | 0.298 | 0.2713 | 0.0485 | 0.0481 | 0.0552 | | cosine_precision@100 | 0.173 | 0.219 | 0.1943 | 0.1665 | 0.0254 | 0.0253 | 0.0287 | | cosine_precision@150 | 0.1244 | 0.1658 | 0.1482 | 0.1211 | 0.0172 | 0.0173 | 0.0194 | | cosine_precision@200 | 0.0986 | 0.1333 | 0.1198 | 0.0953 | 0.0131 | 0.0131 | 0.0147 | | cosine_recall@1 | 0.0661 | 0.0036 | 0.0111 | 0.0661 | 0.2434 | 0.2093 | 0.2044 | | cosine_recall@20 | 0.5122 | 0.3541 | 0.2668 | 0.4841 | 0.8288 | 0.7989 | 0.8346 | | cosine_recall@50 | 0.6835 | 0.5098 | 0.4092 | 0.6568 | 0.8987 | 0.8741 | 0.9096 | | cosine_recall@100 | 0.79 | 0.6076 | 0.5098 | 0.7685 | 0.9399 | 0.9173 | 0.9476 | | cosine_recall@150 | 0.84 | 0.6705 | 0.5729 | 0.8278 | 0.9577 | 0.9424 | 0.9609 | | cosine_recall@200 | 0.8759 | 0.7125 | 0.612 | 0.8617 | 0.9695 | 0.9536 | 0.9698 | | cosine_ndcg@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | | cosine_ndcg@20 | 0.6468 | 0.5708 | 0.4696 | 0.6231 | 0.701 | 0.6541 | 0.6853 | | cosine_ndcg@50 | 0.658 | 0.5355 | 0.4449 | 0.6383 | 0.7201 | 0.6748 | 0.7067 | | cosine_ndcg@100 | 0.7095 | 0.559 | 0.467 | 0.6917 | 0.7291 | 0.6845 | 0.7154 | | cosine_ndcg@150 | 0.731 | 0.59 | 0.4982 | 0.7167 | 0.7326 | 0.6894 | 0.7181 | | **cosine_ndcg@200** | **0.7461** | **0.6095** | **0.5165** | **0.7303** | **0.7347** | **0.6915** | **0.7198** | | cosine_mrr@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | | cosine_mrr@20 | 0.7902 | 0.5532 | 0.5047 | 0.8016 | 0.7037 | 0.6477 | 0.7237 | | cosine_mrr@50 | 0.791 | 0.5532 | 0.5048 | 0.8021 | 0.705 | 0.6494 | 0.7243 | | cosine_mrr@100 | 0.791 | 0.5532 | 0.505 | 0.8021 | 0.7053 | 0.6497 | 0.7245 | | cosine_mrr@150 | 0.791 | 0.5532 | 0.505 | 0.8021 | 0.7054 | 0.6498 | 0.7245 | | cosine_mrr@200 | 0.791 | 0.5532 | 0.505 | 0.8021 | 0.7055 | 0.6498 | 0.7245 | | cosine_map@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | | cosine_map@20 | 0.5026 | 0.4379 | 0.3366 | 0.475 | 0.6194 | 0.5648 | 0.5652 | | cosine_map@50 | 0.484 | 0.3739 | 0.2853 | 0.4579 | 0.6244 | 0.57 | 0.5716 | | cosine_map@100 | 0.5118 | 0.3763 | 0.2818 | 0.4848 | 0.6257 | 0.5714 | 0.5731 | | cosine_map@150 | 0.5202 | 0.3892 | 0.2931 | 0.4937 | 0.626 | 0.5719 | 0.5734 | | cosine_map@200 | 0.5249 | 0.3958 | 0.2988 | 0.4978 | 0.6262 | 0.572 | 0.5735 | | cosine_map@500 | 0.5304 | 0.4063 | 0.3109 | 0.504 | 0.6263 | 0.5723 | 0.5736 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 86,648 training samples * Columns: <code>sentence</code> and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:---------------------------------------------------------------------------------|:-------------------------------------| | type | string | list | | details | <ul><li>min: 2 tokens</li><li>mean: 8.25 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> | * Samples: | sentence | label | |:-----------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------| | <code></code> | <code>[-0.07171934843063354, 0.03595816716551781, -0.029780959710478783, 0.006593302357941866, 0.040611181408166885, ...]</code> | | <code>airport environment officer</code> | <code>[-0.022075481712818146, 0.02999737113714218, -0.02189866080880165, 0.016531817615032196, 0.012234307825565338, ...]</code> | | <code>Flakeๆ“ไฝœๅ‘˜</code> | <code>[-0.04815564677119255, 0.023524893447756767, -0.01583661139011383, 0.042527906596660614, 0.03815540298819542, ...]</code> | * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `learning_rate`: 0.0001 - `num_train_epochs`: 5 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `ddp_find_unused_parameters`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| | -1 | -1 | - | 0.5348 | 0.4311 | 0.3678 | 0.5333 | 0.2580 | 0.1924 | 0.2871 | | 0.0030 | 1 | 0.0017 | - | - | - | - | - | - | - | | 0.2959 | 100 | 0.001 | - | - | - | - | - | - | - | | 0.5917 | 200 | 0.0005 | 0.6702 | 0.5287 | 0.4566 | 0.6809 | 0.5864 | 0.5302 | 0.4739 | | 0.8876 | 300 | 0.0004 | - | - | - | - | - | - | - | | 1.1834 | 400 | 0.0004 | 0.7057 | 0.5643 | 0.4790 | 0.7033 | 0.6604 | 0.6055 | 0.6003 | | 1.4793 | 500 | 0.0004 | - | - | - | - | - | - | - | | 1.7751 | 600 | 0.0003 | 0.7184 | 0.5783 | 0.4910 | 0.7127 | 0.6927 | 0.6416 | 0.6485 | | 2.0710 | 700 | 0.0003 | - | - | - | - | - | - | - | | 2.3669 | 800 | 0.0003 | 0.7307 | 0.5938 | 0.5023 | 0.7233 | 0.7125 | 0.6639 | 0.6847 | | 2.6627 | 900 | 0.0003 | - | - | - | - | - | - | - | | 2.9586 | 1000 | 0.0003 | 0.7371 | 0.6002 | 0.5085 | 0.7228 | 0.7222 | 0.6761 | 0.6998 | | 3.2544 | 1100 | 0.0003 | - | - | - | - | - | - | - | | 3.5503 | 1200 | 0.0003 | 0.7402 | 0.6059 | 0.5109 | 0.7279 | 0.7285 | 0.6841 | 0.7120 | | 3.8462 | 1300 | 0.0003 | - | - | - | - | - | - | - | | 4.1420 | 1400 | 0.0003 | 0.7449 | 0.6083 | 0.5154 | 0.7294 | 0.7333 | 0.6894 | 0.7176 | | 4.4379 | 1500 | 0.0003 | - | - | - | - | - | - | - | | 4.7337 | 1600 | 0.0003 | 0.7461 | 0.6095 | 0.5165 | 0.7303 | 0.7347 | 0.6915 | 0.7198 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MSELoss ```bibtex @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
pj-mathematician/JobBGE-m3
pj-mathematician
2025-06-20T18:17:41Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:124788", "loss:GISTEmbedLoss", "arxiv:1908.10084", "arxiv:2402.16829", "base_model:BAAI/bge-m3", "base_model:finetune:BAAI/bge-m3", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-20T18:04:27Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:124788 - loss:GISTEmbedLoss base_model: BAAI/bge-m3 widget: - source_sentence: ๅ…ถไป–ๆœบๆขฐใ€่ฎพๅค‡ๅ’Œๆœ‰ๅฝข่ดง็‰ฉ็งŸ่ตๆœๅŠกไปฃ่กจ sentences: - ๅ…ถไป–ๆœบๆขฐๅ’Œ่ฎพๅค‡็งŸ่ตๆœๅŠกๅทฅไฝœไบบๅ‘˜ - ็”ตๅญๅ’Œ็”ตไฟก่ฎพๅค‡ๅŠ้›ถ้ƒจไปถ็‰ฉๆต็ป็† - ๅทฅไธšไธปๅŽจ - source_sentence: ๅ…ฌไบค่ฝฆๅธๆœบ sentences: - ่กจๆผ”็ฏๅ…‰่ฎพ่ฎกๅธˆ - ไน™็ƒฏๅŸบๅœฐๆฟๅฎ‰่ฃ…ๅทฅ - ๅ›ฝ้™…ๅทดๅฃซๅธๆœบ - source_sentence: online communication manager sentences: - trades union official - social media manager - budget manager - source_sentence: Projektmanagerin sentences: - Projektmanager/Projektmanagerin - Category-Manager - Infanterist - source_sentence: Volksvertreter sentences: - Parlamentarier - Oberbรผrgermeister - Konsul pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@20 - cosine_accuracy@50 - cosine_accuracy@100 - cosine_accuracy@150 - cosine_accuracy@200 - cosine_precision@1 - cosine_precision@20 - cosine_precision@50 - cosine_precision@100 - cosine_precision@150 - cosine_precision@200 - cosine_recall@1 - cosine_recall@20 - cosine_recall@50 - cosine_recall@100 - cosine_recall@150 - cosine_recall@200 - cosine_ndcg@1 - cosine_ndcg@20 - cosine_ndcg@50 - cosine_ndcg@100 - cosine_ndcg@150 - cosine_ndcg@200 - cosine_mrr@1 - cosine_mrr@20 - cosine_mrr@50 - cosine_mrr@100 - cosine_mrr@150 - cosine_mrr@200 - cosine_map@1 - cosine_map@20 - cosine_map@50 - cosine_map@100 - cosine_map@150 - cosine_map@200 - cosine_map@500 model-index: - name: SentenceTransformer based on BAAI/bge-m3 results: - task: type: information-retrieval name: Information Retrieval dataset: name: full en type: full_en metrics: - type: cosine_accuracy@1 value: 0.6476190476190476 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9904761904761905 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9904761904761905 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9904761904761905 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9904761904761905 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9904761904761905 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6476190476190476 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5061904761904762 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.30647619047619057 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.1858095238095238 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.13250793650793652 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.10247619047619047 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06690172806447445 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5391510592522911 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.7199711948587544 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8253770621157605 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8719997123512196 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9006382758109558 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6476190476190476 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6822066814233797 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6975329548006446 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7519637922809941 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7724946802449859 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7827357067553371 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6476190476190476 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7999999999999998 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7999999999999998 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7999999999999998 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7999999999999998 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7999999999999998 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6476190476190476 name: Cosine Map@1 - type: cosine_map@20 value: 0.5391784054866918 name: Cosine Map@20 - type: cosine_map@50 value: 0.5258287715484311 name: Cosine Map@50 - type: cosine_map@100 value: 0.5580109313638075 name: Cosine Map@100 - type: cosine_map@150 value: 0.5665715227835532 name: Cosine Map@150 - type: cosine_map@200 value: 0.569529009182472 name: Cosine Map@200 - type: cosine_map@500 value: 0.5743595458034346 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full es type: full_es metrics: - type: cosine_accuracy@1 value: 0.11351351351351352 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.11351351351351352 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5667567567567567 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.3902702702702703 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.25254054054054054 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.19005405405405407 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.1507837837837838 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.0035155918996302815 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.37958552840441906 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5635730197468752 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.672698242387141 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.7360036980055802 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7697561816436992 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.11351351351351352 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6136401766234348 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5908459924766464 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.6168063266629416 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.6488575731321932 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.665316090087272 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.11351351351351352 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5536036036036036 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5536036036036036 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5536036036036036 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5536036036036036 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5536036036036036 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.11351351351351352 name: Cosine Map@1 - type: cosine_map@20 value: 0.48095830339282386 name: Cosine Map@20 - type: cosine_map@50 value: 0.43038606337879926 name: Cosine Map@50 - type: cosine_map@100 value: 0.4335284717646407 name: Cosine Map@100 - type: cosine_map@150 value: 0.44851036812148526 name: Cosine Map@150 - type: cosine_map@200 value: 0.4550924585301385 name: Cosine Map@200 - type: cosine_map@500 value: 0.4677023132311536 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full de type: full_de metrics: - type: cosine_accuracy@1 value: 0.2955665024630542 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9852216748768473 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9901477832512315 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9901477832512315 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9901477832512315 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9901477832512315 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.2955665024630542 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5403940886699506 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.38275862068965516 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.2503448275862069 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.187816091954023 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.15027093596059116 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.01108543831680986 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.3432684453555553 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5339871522541048 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6498636280219438 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.7100921836539074 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7513351913056898 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.2955665024630542 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5647628262992046 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5522057083055792 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.5796033728499559 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.6111851705889818 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6309313367878393 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.2955665024630542 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5164425017655958 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.516559790060224 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.516559790060224 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.516559790060224 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.516559790060224 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.2955665024630542 name: Cosine Map@1 - type: cosine_map@20 value: 0.4221760589983628 name: Cosine Map@20 - type: cosine_map@50 value: 0.37913413777890953 name: Cosine Map@50 - type: cosine_map@100 value: 0.3829298798486122 name: Cosine Map@100 - type: cosine_map@150 value: 0.39811624371681004 name: Cosine Map@150 - type: cosine_map@200 value: 0.40559711033541546 name: Cosine Map@200 - type: cosine_map@500 value: 0.4188841643667456 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full zh type: full_zh metrics: - type: cosine_accuracy@1 value: 0.6796116504854369 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9902912621359223 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9902912621359223 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9902912621359223 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9902912621359223 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9902912621359223 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6796116504854369 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.470873786407767 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.28038834951456315 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.17320388349514557 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.12394822006472495 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.09766990291262137 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06427555485009323 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5119331913488326 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.6726577129232287 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.788021792964523 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8328962977521837 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.8687397875786594 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6796116504854369 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6515292076635256 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6598571989751485 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7157338182976709 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7357126940189814 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7500853808896866 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6796116504854369 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8216828478964402 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8216828478964402 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8216828478964402 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8216828478964402 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8216828478964402 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6796116504854369 name: Cosine Map@1 - type: cosine_map@20 value: 0.5012149610968577 name: Cosine Map@20 - type: cosine_map@50 value: 0.48128476255481567 name: Cosine Map@50 - type: cosine_map@100 value: 0.5105374388587102 name: Cosine Map@100 - type: cosine_map@150 value: 0.518381647971727 name: Cosine Map@150 - type: cosine_map@200 value: 0.5228375783347256 name: Cosine Map@200 - type: cosine_map@500 value: 0.52765377953199 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix es type: mix_es metrics: - type: cosine_accuracy@1 value: 0.7394695787831513 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9635985439417577 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.982839313572543 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9927197087883516 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9947997919916797 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9963598543941757 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.7394695787831513 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12488299531981278 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05174206968278733 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.02629225169006761 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.017635638758883684 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013281331253250133 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.28537503404898107 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.9225949037961519 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9548015253943491 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.970532154619518 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9766337320159473 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9810747096550528 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.7394695787831513 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.8119072371250002 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.8208055075822587 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.8242798548838444 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.8254601712767063 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.826231823086538 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.7394695787831513 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8059183822863336 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8065662458714291 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8067209669800003 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8067371899834064 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8067455244059942 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.7394695787831513 name: Cosine Map@1 - type: cosine_map@20 value: 0.7439811728319751 name: Cosine Map@20 - type: cosine_map@50 value: 0.7464542457655368 name: Cosine Map@50 - type: cosine_map@100 value: 0.7469341154545359 name: Cosine Map@100 - type: cosine_map@150 value: 0.7470471963812441 name: Cosine Map@150 - type: cosine_map@200 value: 0.7471010455519603 name: Cosine Map@200 - type: cosine_map@500 value: 0.7471920688836787 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix de type: mix_de metrics: - type: cosine_accuracy@1 value: 0.6926677067082684 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9641185647425897 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.983879355174207 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9921996879875195 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9932397295891836 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9942797711908476 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6926677067082684 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12797711908476336 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.053281331253250144 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.027051482059282376 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.018110591090310275 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013619344773790953 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.2603830819899463 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.928479805858901 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9650286011440458 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9796325186340786 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9837060149072628 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9862194487779511 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6926677067082684 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.7967328692326251 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.8068705787791701 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.810158579950017 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.8109641919896999 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.8114360342473703 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6926677067082684 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7766838069642311 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7773792960985305 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7775026273925645 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7775124036000293 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7775182983569378 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6926677067082684 name: Cosine Map@1 - type: cosine_map@20 value: 0.7210301157895639 name: Cosine Map@20 - type: cosine_map@50 value: 0.7237555751939095 name: Cosine Map@50 - type: cosine_map@100 value: 0.7242426468613273 name: Cosine Map@100 - type: cosine_map@150 value: 0.7243265313145111 name: Cosine Map@150 - type: cosine_map@200 value: 0.7243628241480395 name: Cosine Map@200 - type: cosine_map@500 value: 0.7244144669299598 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix zh type: mix_zh metrics: - type: cosine_accuracy@1 value: 0.17888715548621945 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.17888715548621945 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.15439417576703063 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.0617576703068123 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.03087883515340615 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.020585890102270757 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.015439417576703075 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.05768764083896689 name: Cosine Recall@1 - type: cosine_recall@20 value: 1.0 name: Cosine Recall@20 - type: cosine_recall@50 value: 1.0 name: Cosine Recall@50 - type: cosine_recall@100 value: 1.0 name: Cosine Recall@100 - type: cosine_recall@150 value: 1.0 name: Cosine Recall@150 - type: cosine_recall@200 value: 1.0 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.17888715548621945 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5443156532634228 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5443156532634228 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.5443156532634228 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5443156532634228 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.5443156532634228 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.17888715548621945 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.4002437442375043 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.4002437442375043 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.4002437442375043 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.4002437442375043 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.4002437442375043 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.17888715548621945 name: Cosine Map@1 - type: cosine_map@20 value: 0.32718437256695937 name: Cosine Map@20 - type: cosine_map@50 value: 0.32718437256695937 name: Cosine Map@50 - type: cosine_map@100 value: 0.32718437256695937 name: Cosine Map@100 - type: cosine_map@150 value: 0.32718437256695937 name: Cosine Map@150 - type: cosine_map@200 value: 0.32718437256695937 name: Cosine Map@200 - type: cosine_map@500 value: 0.32718437256695937 name: Cosine Map@500 --- # Job - Job matching finetuned BAAI/bge-m3 Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - full_en - full_de - full_es - full_zh - mix <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("pj-mathematician/JobBGE-m3") # Run inference sentences = [ 'Volksvertreter', 'Parlamentarier', 'Oberbรผrgermeister', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9636 | 0.9641 | 1.0 | | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9828 | 0.9839 | 1.0 | | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9927 | 0.9922 | 1.0 | | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9948 | 0.9932 | 1.0 | | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9964 | 0.9943 | 1.0 | | cosine_precision@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_precision@20 | 0.5062 | 0.5668 | 0.5404 | 0.4709 | 0.1249 | 0.128 | 0.1544 | | cosine_precision@50 | 0.3065 | 0.3903 | 0.3828 | 0.2804 | 0.0517 | 0.0533 | 0.0618 | | cosine_precision@100 | 0.1858 | 0.2525 | 0.2503 | 0.1732 | 0.0263 | 0.0271 | 0.0309 | | cosine_precision@150 | 0.1325 | 0.1901 | 0.1878 | 0.1239 | 0.0176 | 0.0181 | 0.0206 | | cosine_precision@200 | 0.1025 | 0.1508 | 0.1503 | 0.0977 | 0.0133 | 0.0136 | 0.0154 | | cosine_recall@1 | 0.0669 | 0.0035 | 0.0111 | 0.0643 | 0.2854 | 0.2604 | 0.0577 | | cosine_recall@20 | 0.5392 | 0.3796 | 0.3433 | 0.5119 | 0.9226 | 0.9285 | 1.0 | | cosine_recall@50 | 0.72 | 0.5636 | 0.534 | 0.6727 | 0.9548 | 0.965 | 1.0 | | cosine_recall@100 | 0.8254 | 0.6727 | 0.6499 | 0.788 | 0.9705 | 0.9796 | 1.0 | | cosine_recall@150 | 0.872 | 0.736 | 0.7101 | 0.8329 | 0.9766 | 0.9837 | 1.0 | | cosine_recall@200 | 0.9006 | 0.7698 | 0.7513 | 0.8687 | 0.9811 | 0.9862 | 1.0 | | cosine_ndcg@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_ndcg@20 | 0.6822 | 0.6136 | 0.5648 | 0.6515 | 0.8119 | 0.7967 | 0.5443 | | cosine_ndcg@50 | 0.6975 | 0.5908 | 0.5522 | 0.6599 | 0.8208 | 0.8069 | 0.5443 | | cosine_ndcg@100 | 0.752 | 0.6168 | 0.5796 | 0.7157 | 0.8243 | 0.8102 | 0.5443 | | cosine_ndcg@150 | 0.7725 | 0.6489 | 0.6112 | 0.7357 | 0.8255 | 0.811 | 0.5443 | | **cosine_ndcg@200** | **0.7827** | **0.6653** | **0.6309** | **0.7501** | **0.8262** | **0.8114** | **0.5443** | | cosine_mrr@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_mrr@20 | 0.8 | 0.5536 | 0.5164 | 0.8217 | 0.8059 | 0.7767 | 0.4002 | | cosine_mrr@50 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8066 | 0.7774 | 0.4002 | | cosine_mrr@100 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 | | cosine_mrr@150 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 | | cosine_mrr@200 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 | | cosine_map@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_map@20 | 0.5392 | 0.481 | 0.4222 | 0.5012 | 0.744 | 0.721 | 0.3272 | | cosine_map@50 | 0.5258 | 0.4304 | 0.3791 | 0.4813 | 0.7465 | 0.7238 | 0.3272 | | cosine_map@100 | 0.558 | 0.4335 | 0.3829 | 0.5105 | 0.7469 | 0.7242 | 0.3272 | | cosine_map@150 | 0.5666 | 0.4485 | 0.3981 | 0.5184 | 0.747 | 0.7243 | 0.3272 | | cosine_map@200 | 0.5695 | 0.4551 | 0.4056 | 0.5228 | 0.7471 | 0.7244 | 0.3272 | | cosine_map@500 | 0.5744 | 0.4677 | 0.4189 | 0.5277 | 0.7472 | 0.7244 | 0.3272 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Datasets <details><summary>full_en</summary> #### full_en * Dataset: full_en * Size: 28,880 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> | * Samples: | anchor | positive | |:-----------------------------------------|:-----------------------------------------| | <code>air commodore</code> | <code>flight lieutenant</code> | | <code>command and control officer</code> | <code>flight officer</code> | | <code>air commodore</code> | <code>command and control officer</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_de</summary> #### full_de * Dataset: full_de * Size: 23,023 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------|:-----------------------------------------------------| | <code>Staffelkommandantin</code> | <code>Kommodore</code> | | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> | | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_es</summary> #### full_es * Dataset: full_es * Size: 20,724 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------|:-------------------------------------------| | <code>jefe de escuadrรณn</code> | <code>instructor</code> | | <code>comandante de aeronave</code> | <code>instructor de simulador</code> | | <code>instructor</code> | <code>oficial del Ejรฉrcito del Aire</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_zh</summary> #### full_zh * Dataset: full_zh * Size: 30,401 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> | * Samples: | anchor | positive | |:------------------|:---------------------| | <code>ๆŠ€ๆœฏๆ€ป็›‘</code> | <code>ๆŠ€ๆœฏๅ’Œ่ฟ่ฅๆ€ป็›‘</code> | | <code>ๆŠ€ๆœฏๆ€ป็›‘</code> | <code>ๆŠ€ๆœฏไธป็ฎก</code> | | <code>ๆŠ€ๆœฏๆ€ป็›‘</code> | <code>ๆŠ€ๆœฏ่‰บๆœฏๆ€ป็›‘</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>mix</summary> #### mix * Dataset: mix * Size: 21,760 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------------|:----------------------------------------------------------------| | <code>technical manager</code> | <code>Technischer Direktor fรผr Bรผhne, Film und Fernsehen</code> | | <code>head of technical</code> | <code>directora tรฉcnica</code> | | <code>head of technical department</code> | <code>ๆŠ€ๆœฏ่‰บๆœฏๆ€ป็›‘</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `num_train_epochs`: 5 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `ddp_find_unused_parameters`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| | -1 | -1 | - | 0.6856 | 0.5207 | 0.4655 | 0.6713 | 0.6224 | 0.5604 | 0.5548 | | 0.0010 | 1 | 5.3354 | - | - | - | - | - | - | - | | 0.1027 | 100 | 2.665 | - | - | - | - | - | - | - | | 0.2053 | 200 | 1.3375 | 0.7691 | 0.6530 | 0.6298 | 0.7517 | 0.7513 | 0.7393 | 0.5490 | | 0.3080 | 300 | 1.1101 | - | - | - | - | - | - | - | | 0.4107 | 400 | 0.9453 | 0.7802 | 0.6643 | 0.6246 | 0.7531 | 0.7610 | 0.7441 | 0.5493 | | 0.5133 | 500 | 0.9202 | - | - | - | - | - | - | - | | 0.6160 | 600 | 0.7887 | 0.7741 | 0.6549 | 0.6171 | 0.7542 | 0.7672 | 0.7540 | 0.5482 | | 0.7187 | 700 | 0.7604 | - | - | - | - | - | - | - | | 0.8214 | 800 | 0.7219 | 0.7846 | 0.6674 | 0.6244 | 0.7648 | 0.7741 | 0.7592 | 0.5497 | | 0.9240 | 900 | 0.6965 | - | - | - | - | - | - | - | | 1.0267 | 1000 | 0.6253 | 0.7646 | 0.6391 | 0.6122 | 0.7503 | 0.7825 | 0.7704 | 0.5463 | | 1.1294 | 1100 | 0.4737 | - | - | - | - | - | - | - | | 1.2320 | 1200 | 0.5055 | 0.7758 | 0.6582 | 0.6178 | 0.7514 | 0.7857 | 0.7764 | 0.5501 | | 1.3347 | 1300 | 0.5042 | - | - | - | - | - | - | - | | 1.4374 | 1400 | 0.5073 | 0.7613 | 0.6578 | 0.6178 | 0.7505 | 0.7829 | 0.7762 | 0.5452 | | 1.5400 | 1500 | 0.4975 | - | - | - | - | - | - | - | | 1.6427 | 1600 | 0.5242 | 0.7736 | 0.6673 | 0.6279 | 0.7555 | 0.7940 | 0.7859 | 0.5477 | | 1.7454 | 1700 | 0.4713 | - | - | - | - | - | - | - | | 1.8480 | 1800 | 0.4814 | 0.7845 | 0.6733 | 0.6285 | 0.7642 | 0.7992 | 0.7904 | 0.5449 | | 1.9507 | 1900 | 0.4526 | - | - | - | - | - | - | - | | 2.0544 | 2000 | 0.36 | 0.7790 | 0.6639 | 0.6252 | 0.7500 | 0.8032 | 0.7888 | 0.5499 | | 2.1571 | 2100 | 0.3744 | - | - | - | - | - | - | - | | 2.2598 | 2200 | 0.3031 | 0.7787 | 0.6614 | 0.6190 | 0.7537 | 0.7993 | 0.7811 | 0.5476 | | 2.3624 | 2300 | 0.3638 | - | - | - | - | - | - | - | | 2.4651 | 2400 | 0.358 | 0.7798 | 0.6615 | 0.6258 | 0.7497 | 0.8018 | 0.7828 | 0.5481 | | 2.5678 | 2500 | 0.3247 | - | - | - | - | - | - | - | | 2.6704 | 2600 | 0.3247 | 0.7854 | 0.6663 | 0.6248 | 0.7560 | 0.8081 | 0.7835 | 0.5452 | | 2.7731 | 2700 | 0.3263 | - | - | - | - | - | - | - | | 2.8758 | 2800 | 0.3212 | 0.7761 | 0.6681 | 0.6250 | 0.7517 | 0.8121 | 0.7927 | 0.5458 | | 2.9784 | 2900 | 0.3291 | - | - | - | - | - | - | - | | 3.0821 | 3000 | 0.2816 | 0.7727 | 0.6604 | 0.6163 | 0.7370 | 0.8163 | 0.7985 | 0.5473 | | 3.1848 | 3100 | 0.2698 | - | - | - | - | - | - | - | | 3.2875 | 3200 | 0.2657 | 0.7757 | 0.6615 | 0.6247 | 0.7417 | 0.8117 | 0.8004 | 0.5436 | | 3.3901 | 3300 | 0.2724 | - | - | - | - | - | - | - | | 3.4928 | 3400 | 0.2584 | 0.7850 | 0.6583 | 0.6320 | 0.7458 | 0.8120 | 0.7980 | 0.5454 | | 3.5955 | 3500 | 0.2573 | - | - | - | - | - | - | - | | 3.6982 | 3600 | 0.2744 | 0.7796 | 0.6552 | 0.6237 | 0.7409 | 0.8193 | 0.8018 | 0.5466 | | 3.8008 | 3700 | 0.3054 | - | - | - | - | - | - | - | | 3.9035 | 3800 | 0.2727 | 0.7825 | 0.6642 | 0.6293 | 0.7504 | 0.8213 | 0.8058 | 0.5463 | | 4.0062 | 3900 | 0.2353 | - | - | - | - | - | - | - | | 4.1088 | 4000 | 0.2353 | 0.7747 | 0.6628 | 0.6263 | 0.7384 | 0.8239 | 0.8065 | 0.5447 | | 4.2115 | 4100 | 0.2385 | - | - | - | - | - | - | - | | 4.3142 | 4200 | 0.231 | 0.7811 | 0.6608 | 0.6254 | 0.7463 | 0.8226 | 0.8051 | 0.5442 | | 4.4168 | 4300 | 0.2115 | - | - | - | - | - | - | - | | 4.5195 | 4400 | 0.2151 | 0.7815 | 0.6634 | 0.6301 | 0.7489 | 0.8251 | 0.8101 | 0.5450 | | 4.6222 | 4500 | 0.2496 | - | - | - | - | - | - | - | | 4.7248 | 4600 | 0.2146 | 0.7814 | 0.6654 | 0.6294 | 0.7523 | 0.8258 | 0.8104 | 0.5436 | | 4.8275 | 4700 | 0.2535 | - | - | - | - | - | - | - | | 4.9302 | 4800 | 0.2058 | 0.7827 | 0.6653 | 0.6309 | 0.7501 | 0.8262 | 0.8114 | 0.5443 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### GISTEmbedLoss ```bibtex @misc{solatorio2024gistembed, title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, author={Aivin V. Solatorio}, year={2024}, eprint={2402.16829}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
morturr/Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-one_liners-comb-3-seed-28-2025-06-20
morturr
2025-06-20T18:10:23Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-20T18:10:09Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-one_liners-comb-3-seed-28-2025-06-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-one_liners-comb-3-seed-28-2025-06-20 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
New-videos-Sajal-Malik-18-Viral-video/Original.Full.Clip.Sajal.Malik.Viral.Video.Leaks.Official
New-videos-Sajal-Malik-18-Viral-video
2025-06-20T18:06:06Z
0
0
null
[ "region:us" ]
null
2025-06-20T18:05:31Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
phospho-app/luuuuuuukee-gr00t-place_tape_wood-do6cx
phospho-app
2025-06-20T18:03:32Z
0
0
null
[ "safetensors", "gr00t_n1", "phosphobot", "gr00t", "region:us" ]
null
2025-06-20T17:47:26Z
--- tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [luuuuuuukee/place_tape_wood](https://huggingface.co/datasets/luuuuuuukee/place_tape_wood) - **Wandb run URL**: None - **Epochs**: 10 - **Batch size**: 49 - **Training steps**: None ๐Ÿ“– **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) ๐Ÿค– **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
uvegesistvan/roberta_large_pl_25_sh
uvegesistvan
2025-06-20T18:02:16Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T17:18:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alexsheiko/tinybert-email-classifier-onnx
alexsheiko
2025-06-20T17:45:34Z
0
0
transformers
[ "transformers", "onnx", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T15:16:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
andrewsamce/q-FrozenLake-v1-4x4-noSlippery
andrewsamce
2025-06-20T17:40:27Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-20T17:39:33Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="andrewsamce/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
sergioalves/fff89468-d9a6-40fd-a58e-7f7c645aa3df
sergioalves
2025-06-20T17:30:47Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:Qwen/Qwen2.5-1.5B", "base_model:quantized:Qwen/Qwen2.5-1.5B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-20T17:10:07Z
--- base_model: Qwen/Qwen2.5-1.5B library_name: transformers model_name: fff89468-d9a6-40fd-a58e-7f7c645aa3df tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for fff89468-d9a6-40fd-a58e-7f7c645aa3df This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sergioalves/fff89468-d9a6-40fd-a58e-7f7c645aa3df", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-7/runs/tjktu30r) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
morturr/Llama-2-7b-hf-PAIR_amazon_headlines-COMB-headlines-comb-1-seed-28-2025-06-20
morturr
2025-06-20T17:30:13Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-20T17:29:57Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_amazon_headlines-COMB-headlines-comb-1-seed-28-2025-06-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_amazon_headlines-COMB-headlines-comb-1-seed-28-2025-06-20 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
codigo-ai/cdgo2.5-coder-32b-instruct-adapter
codigo-ai
2025-06-20T17:27:26Z
15
0
peft
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-06-19T14:54:21Z
--- base_model: qwen/qwen2.5-coder-32b-instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
Masbir/c291986c-5e95-4f1b-aaf6-7c114a48b157
Masbir
2025-06-20T17:21:20Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T14:46:21Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Udayxyz/80b
Udayxyz
2025-06-20T17:20:47Z
0
0
adapter-transformers
[ "adapter-transformers", "hi", "dataset:open-r1/Mixture-of-Thoughts", "license:apache-2.0", "region:us" ]
null
2025-06-20T17:17:57Z
--- license: apache-2.0 datasets: - open-r1/Mixture-of-Thoughts language: - hi library_name: adapter-transformers ---
morturr/Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-one_liners-comb-3-seed-18-2025-06-20
morturr
2025-06-20T17:17:24Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-20T17:17:16Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-one_liners-comb-3-seed-18-2025-06-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-one_liners-comb-3-seed-18-2025-06-20 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 18 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
Official-mezzo-fun-18-Go-Viral-videos-Link/FULL.VIDEO.mezzo.fun.Viral.Video.Tutorial.Official
Official-mezzo-fun-18-Go-Viral-videos-Link
2025-06-20T17:16:27Z
0
0
null
[ "region:us" ]
null
2025-06-20T17:15:51Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>