modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
phxdev/qwq-32b-lora-creed
phxdev
2025-06-22T22:01:22Z
0
0
peft
[ "peft", "safetensors", "qwen2", "generated_from_trainer", "dataset:phxdev/creed", "base_model:Qwen/QwQ-32B-Preview", "base_model:adapter:Qwen/QwQ-32B-Preview", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-06-22T22:00:22Z
--- library_name: peft license: apache-2.0 base_model: Qwen/QwQ-32B-Preview tags: - generated_from_trainer datasets: - phxdev/creed model-index: - name: outputs/heisenberg-crystal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.8.0.dev0` ```yaml adapter: lora base_model: Qwen/QwQ-32B-Preview trust_remote_code: true bf16: true dataset_processes: 64 datasets: - path: phxdev/creed type: completion field: text trust_remote_code: false streaming: true gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false learning_rate: 0.001 lisa_layers_attribute: model.layers lisa_enabled: true lisa_layers_fraction: 0.25 load_best_model_at_end: true load_in_4bit: false load_in_8bit: true lora_alpha: 128 lora_dropout: 0.15 lora_r: 64 lora_target_modules: - q_proj - v_proj - k_proj - o_proj - gate_proj - down_proj - up_proj lora_fan_in_fan_out: false modules_to_save: - embed_tokens - lm_head loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine_with_min_lr lr_scheduler_kwargs: min_lr: 0.00001 max_prompt_len: 1024 mean_resizing_embeddings: false micro_batch_size: 1 num_epochs: 3.0 optimizer: adamw_torch # optim_args: # weight_decay: 0.05 # betas: [0.9, 0.95] # eps: 1.0e-8 output_dir: ./outputs/heisenberg-crystal pretrain_multipack_attn: true pretrain_multipack_buffer_size: 20000 qlora_sharded_model_loading: false ray_num_workers: 1 resources_per_worker: GPU: 1 resume_from_checkpoint: null sample_packing: false sample_packing_bin_size: 200 sample_packing_group_size: 100000 sample_packing_seq_len_multiplier: 1.0 save_only_model: true save_safetensors: true save_strategy: steps save_steps: 100 save_total_limit: 3 eval_strategy: steps eval_steps: 100 metric_for_best_model: loss greater_is_better: false sequence_len: 512 shuffle_merged_datasets: true skip_prepare_dataset: false strict: false train_on_inputs: false neftune_noise_alpha: 5.0 model_config: rope_scaling: type: linear factor: 1.5 dataloader_prefetch_factor: 4 dataloader_num_workers: 8 dataloader_pin_memory: true dataloader_persistent_workers: true max_grad_norm: 1.0 adam_beta2_schedule: cosine torch_compile: true torch_compile_backend: inductor trl: log_completions: true ref_model_mixup_alpha: 0.9 ref_model_sync_steps: 64 sync_ref_model: false use_vllm: false vllm_device: auto vllm_dtype: auto vllm_gpu_memory_utilization: 0.9 use_ray: false val_set_size: 0.05 warmup_steps: 100 warmup_ratio: 0.0 weight_decay: 0.05 flash_attention: true flash_attn_cross_entropy: true flash_attn_rms_norm: true flash_attn_fuse_qkv: false flash_attn_fuse_mlp: false ddp_backend: nccl ddp_broadcast_buffers: false ddp_find_unused_parameters: false tf32: true bf16_full_eval: false fp16: false # unfrozen_parameters: # - lm_head.* # - embed_tokens.* # - norm.* xformers_attention: false s2_attention: false sdp_attention: false pad_to_sequence_len: true peft_use_dora: false peft_lora_modules_to_save: null special_tokens: pad_token: <|endoftext|> deepspeed: null fsdp: null fsdp_config: null # wandb_project: heisenberg-qwen # wandb_entity: null # wandb_name: blue-crystal-run # wandb_log_model: checkpoint hub_model_id: null hub_strategy: null report_to: [] logging_strategy: steps logging_steps: 10 logging_first_step: true ``` </details><br> # outputs/heisenberg-crystal This model is a fine-tuned version of [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) on the phxdev/creed dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_min_lr - lr_scheduler_warmup_steps: 100 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0013 | 1 | nan | | 7.8286 | 0.1259 | 100 | nan | | 7.2486 | 0.2519 | 200 | nan | | 7.2601 | 0.3778 | 300 | nan | | 8.2142 | 0.5038 | 400 | nan | | 7.1902 | 0.6297 | 500 | nan | | 6.3799 | 0.7557 | 600 | nan | | 6.7115 | 0.8816 | 700 | nan | | 6.0414 | 1.0076 | 800 | nan | | 6.428 | 1.1335 | 900 | nan | | 6.3167 | 1.2594 | 1000 | nan | | 6.0359 | 1.3854 | 1100 | nan | | 6.3701 | 1.5113 | 1200 | nan | | 6.9225 | 1.6373 | 1300 | nan | | 6.5807 | 1.7632 | 1400 | nan | | 6.8649 | 1.8892 | 1500 | nan | | 6.1397 | 2.0151 | 1600 | nan | | 5.7675 | 2.1411 | 1700 | nan | | 6.2605 | 2.2670 | 1800 | nan | | 5.8788 | 2.3929 | 1900 | nan | | 6.0279 | 2.5189 | 2000 | nan | | 6.3911 | 2.6448 | 2100 | nan | | 6.0412 | 2.7708 | 2200 | nan | | 6.0862 | 2.8967 | 2300 | nan | ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
BootesVoid/cmc867toe0bpjbfifm9mbcut5_cmc86ab430bprbfifqgezyfnw
BootesVoid
2025-06-22T21:50:18Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T21:50:16Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: GIRLIE --- # Cmc867Toe0Bpjbfifm9Mbcut5_Cmc86Ab430Bprbfifqgezyfnw <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `GIRLIE` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "GIRLIE", "lora_weights": "https://huggingface.co/BootesVoid/cmc867toe0bpjbfifm9mbcut5_cmc86ab430bprbfifqgezyfnw/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmc867toe0bpjbfifm9mbcut5_cmc86ab430bprbfifqgezyfnw', weight_name='lora.safetensors') image = pipeline('GIRLIE').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmc867toe0bpjbfifm9mbcut5_cmc86ab430bprbfifqgezyfnw/discussions) to add images that show off what you’ve made with this LoRA.
Ascrewdriver/Reinforce-CartPole-v1
Ascrewdriver
2025-06-22T21:46:14Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-06-22T21:46:10Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 92.40 +/- 49.22 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
tester7281/gemma-text-to-sql
tester7281
2025-06-22T21:36:10Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:google/gemma-3-1b-pt", "base_model:finetune:google/gemma-3-1b-pt", "endpoints_compatible", "region:us" ]
null
2025-06-22T18:49:52Z
--- base_model: google/gemma-3-1b-pt library_name: transformers model_name: gemma-text-to-sql tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for gemma-text-to-sql This model is a fine-tuned version of [google/gemma-3-1b-pt](https://huggingface.co/google/gemma-3-1b-pt). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="tester7281/gemma-text-to-sql", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.52.4 - Pytorch: 2.7.0+cu126 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
donoway/Llama-3.2-1B
donoway
2025-06-22T21:17:39Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T09:06:57Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: Llama-3.2-1B results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-3.2-1B This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3898 - Model Preparation Time: 0.0023 - Move Accuracy: 0.5572 - Token Accuracy: 0.8550 - Accuracy: 0.5572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Move Accuracy | Token Accuracy | Accuracy | |:-------------:|:------:|:------:|:---------------:|:----------------------:|:-------------:|:--------------:|:--------:| | No log | 0 | 0 | 6.4123 | 0.0023 | 0.0 | 0.1049 | 0.0 | | 1.6882 | 0.0098 | 100 | 1.7583 | 0.0023 | 0.0100 | 0.3139 | 0.0100 | | 1.7193 | 0.0196 | 200 | 1.6696 | 0.0023 | 0.0136 | 0.3473 | 0.0136 | | 1.5794 | 0.0295 | 300 | 1.5956 | 0.0023 | 0.0306 | 0.3861 | 0.0306 | | 1.4833 | 0.0393 | 400 | 1.5333 | 0.0023 | 0.0395 | 0.4086 | 0.0395 | | 1.4839 | 0.0491 | 500 | 1.4434 | 0.0023 | 0.0483 | 0.4387 | 0.0483 | | 1.286 | 0.0589 | 600 | 1.2984 | 0.0023 | 0.0710 | 0.5016 | 0.0710 | | 1.2039 | 0.0687 | 700 | 1.1798 | 0.0023 | 0.1028 | 0.5538 | 0.1028 | | 1.0962 | 0.0785 | 800 | 1.0688 | 0.0023 | 0.1207 | 0.5937 | 0.1207 | | 1.0003 | 0.0884 | 900 | 0.9921 | 0.0023 | 0.1392 | 0.6202 | 0.1392 | | 0.965 | 0.0982 | 1000 | 0.9782 | 0.0023 | 0.1452 | 0.6222 | 0.1452 | | 0.8709 | 0.1080 | 1100 | 0.8884 | 0.0023 | 0.1663 | 0.6491 | 0.1663 | | 0.8293 | 0.1178 | 1200 | 0.8923 | 0.0023 | 0.1724 | 0.6524 | 0.1724 | | 0.7923 | 0.1276 | 1300 | 0.8226 | 0.0023 | 0.1945 | 0.6774 | 0.1945 | | 0.8444 | 0.1374 | 1400 | 0.8361 | 0.0023 | 0.2052 | 0.6779 | 0.2052 | | 0.7472 | 0.1473 | 1500 | 0.8023 | 0.0023 | 0.2084 | 0.6840 | 0.2084 | | 0.7612 | 0.1571 | 1600 | 0.7811 | 0.0023 | 0.2206 | 0.6937 | 0.2206 | | 0.7399 | 0.1669 | 1700 | 0.7642 | 0.0023 | 0.2324 | 0.6982 | 0.2324 | | 0.7385 | 0.1767 | 1800 | 0.7452 | 0.0023 | 0.2371 | 0.7050 | 0.2371 | | 0.6688 | 0.1865 | 1900 | 0.7385 | 0.0023 | 0.2422 | 0.7060 | 0.2422 | | 0.6871 | 0.1963 | 2000 | 0.7321 | 0.0023 | 0.2435 | 0.7090 | 0.2435 | | 0.7335 | 0.2062 | 2100 | 0.7179 | 0.0023 | 0.2482 | 0.7122 | 0.2482 | | 0.7213 | 0.2160 | 2200 | 0.7171 | 0.0023 | 0.2520 | 0.7139 | 0.2520 | | 0.7299 | 0.2258 | 2300 | 0.6906 | 0.0023 | 0.2707 | 0.7263 | 0.2707 | | 0.6466 | 0.2356 | 2400 | 0.6920 | 0.0023 | 0.2691 | 0.7271 | 0.2691 | | 0.6514 | 0.2454 | 2500 | 0.6973 | 0.0023 | 0.2585 | 0.7232 | 0.2585 | | 0.683 | 0.2553 | 2600 | 0.6835 | 0.0023 | 0.2732 | 0.7285 | 0.2732 | | 0.714 | 0.2651 | 2700 | 0.6792 | 0.0023 | 0.2861 | 0.7313 | 0.2861 | | 0.6368 | 0.2749 | 2800 | 0.6680 | 0.0023 | 0.2790 | 0.7311 | 0.2790 | | 0.6398 | 0.2847 | 2900 | 0.6639 | 0.0023 | 0.2939 | 0.7346 | 0.2939 | | 0.6598 | 0.2945 | 3000 | 0.6545 | 0.0023 | 0.3059 | 0.7417 | 0.3059 | | 0.6705 | 0.3043 | 3100 | 0.6472 | 0.0023 | 0.3060 | 0.7439 | 0.3060 | | 0.5687 | 0.3142 | 3200 | 0.6368 | 0.0023 | 0.3171 | 0.7492 | 0.3171 | | 0.6159 | 0.3240 | 3300 | 0.6243 | 0.0023 | 0.3265 | 0.7534 | 0.3265 | | 0.5698 | 0.3338 | 3400 | 0.6327 | 0.0023 | 0.3169 | 0.7495 | 0.3169 | | 0.5646 | 0.3436 | 3500 | 0.6327 | 0.0023 | 0.3193 | 0.7494 | 0.3193 | | 0.6098 | 0.3534 | 3600 | 0.6223 | 0.0023 | 0.3223 | 0.7530 | 0.3223 | | 0.5574 | 0.3632 | 3700 | 0.6218 | 0.0023 | 0.3265 | 0.7531 | 0.3265 | | 0.6546 | 0.3731 | 3800 | 0.6136 | 0.0023 | 0.3294 | 0.7559 | 0.3294 | | 0.6296 | 0.3829 | 3900 | 0.6065 | 0.0023 | 0.3390 | 0.7605 | 0.3390 | | 0.6466 | 0.3927 | 4000 | 0.6136 | 0.0023 | 0.3307 | 0.7573 | 0.3307 | | 0.594 | 0.4025 | 4100 | 0.6056 | 0.0023 | 0.3423 | 0.7616 | 0.3423 | | 0.5002 | 0.4123 | 4200 | 0.6029 | 0.0023 | 0.3402 | 0.7625 | 0.3402 | | 0.5706 | 0.4221 | 4300 | 0.5917 | 0.0023 | 0.3470 | 0.7659 | 0.3470 | | 0.5753 | 0.4320 | 4400 | 0.5878 | 0.0023 | 0.3449 | 0.7654 | 0.3449 | | 0.6108 | 0.4418 | 4500 | 0.5899 | 0.0023 | 0.3507 | 0.7666 | 0.3507 | | 0.5526 | 0.4516 | 4600 | 0.5772 | 0.0023 | 0.3587 | 0.7719 | 0.3587 | | 0.5957 | 0.4614 | 4700 | 0.5767 | 0.0023 | 0.3642 | 0.7727 | 0.3642 | | 0.5756 | 0.4712 | 4800 | 0.5710 | 0.0023 | 0.3652 | 0.7742 | 0.3652 | | 0.5903 | 0.4811 | 4900 | 0.5761 | 0.0023 | 0.3658 | 0.7731 | 0.3658 | | 0.5375 | 0.4909 | 5000 | 0.5671 | 0.0023 | 0.3743 | 0.7764 | 0.3743 | | 0.6024 | 0.5007 | 5100 | 0.5678 | 0.0023 | 0.3694 | 0.7758 | 0.3694 | | 0.5417 | 0.5105 | 5200 | 0.5595 | 0.0023 | 0.3781 | 0.7789 | 0.3781 | | 0.5733 | 0.5203 | 5300 | 0.5673 | 0.0023 | 0.3681 | 0.7750 | 0.3681 | | 0.5407 | 0.5301 | 5400 | 0.5538 | 0.0023 | 0.3780 | 0.7815 | 0.3780 | | 0.5645 | 0.5400 | 5500 | 0.5630 | 0.0023 | 0.3762 | 0.7794 | 0.3762 | | 0.5485 | 0.5498 | 5600 | 0.5528 | 0.0023 | 0.3852 | 0.7815 | 0.3852 | | 0.5043 | 0.5596 | 5700 | 0.5532 | 0.0023 | 0.3761 | 0.7804 | 0.3761 | | 0.5522 | 0.5694 | 5800 | 0.5487 | 0.0023 | 0.3814 | 0.7832 | 0.3814 | | 0.5744 | 0.5792 | 5900 | 0.5527 | 0.0023 | 0.3813 | 0.7810 | 0.3813 | | 0.5292 | 0.5890 | 6000 | 0.5458 | 0.0023 | 0.3901 | 0.7847 | 0.3901 | | 0.5403 | 0.5989 | 6100 | 0.5461 | 0.0023 | 0.3822 | 0.7832 | 0.3822 | | 0.5253 | 0.6087 | 6200 | 0.5409 | 0.0023 | 0.3912 | 0.7856 | 0.3912 | | 0.5112 | 0.6185 | 6300 | 0.5377 | 0.0023 | 0.3967 | 0.7868 | 0.3967 | | 0.5087 | 0.6283 | 6400 | 0.5423 | 0.0023 | 0.3955 | 0.7879 | 0.3955 | | 0.5494 | 0.6381 | 6500 | 0.5355 | 0.0023 | 0.3923 | 0.7874 | 0.3923 | | 0.6042 | 0.6479 | 6600 | 0.5336 | 0.0023 | 0.3994 | 0.7892 | 0.3994 | | 0.4849 | 0.6578 | 6700 | 0.5329 | 0.0023 | 0.4000 | 0.7905 | 0.4000 | | 0.5629 | 0.6676 | 6800 | 0.5292 | 0.0023 | 0.3983 | 0.7904 | 0.3983 | | 0.4431 | 0.6774 | 6900 | 0.5268 | 0.0023 | 0.3991 | 0.7923 | 0.3991 | | 0.4772 | 0.6872 | 7000 | 0.5274 | 0.0023 | 0.4036 | 0.7928 | 0.4036 | | 0.5483 | 0.6970 | 7100 | 0.5241 | 0.0023 | 0.4067 | 0.7944 | 0.4067 | | 0.4727 | 0.7069 | 7200 | 0.5207 | 0.0023 | 0.4116 | 0.7958 | 0.4116 | | 0.4363 | 0.7167 | 7300 | 0.5154 | 0.0023 | 0.4114 | 0.7965 | 0.4114 | | 0.46 | 0.7265 | 7400 | 0.5201 | 0.0023 | 0.4106 | 0.7952 | 0.4106 | | 0.4544 | 0.7363 | 7500 | 0.5066 | 0.0023 | 0.4208 | 0.8001 | 0.4208 | | 0.5235 | 0.7461 | 7600 | 0.5108 | 0.0023 | 0.4168 | 0.7989 | 0.4168 | | 0.6194 | 0.7559 | 7700 | 0.5148 | 0.0023 | 0.4191 | 0.7981 | 0.4191 | | 0.5224 | 0.7658 | 7800 | 0.5077 | 0.0023 | 0.4201 | 0.7998 | 0.4201 | | 0.4931 | 0.7756 | 7900 | 0.5040 | 0.0023 | 0.4212 | 0.8009 | 0.4212 | | 0.4841 | 0.7854 | 8000 | 0.5127 | 0.0023 | 0.4192 | 0.7982 | 0.4192 | | 0.4331 | 0.7952 | 8100 | 0.5077 | 0.0023 | 0.4238 | 0.8012 | 0.4238 | | 0.4911 | 0.8050 | 8200 | 0.4979 | 0.0023 | 0.4319 | 0.8037 | 0.4319 | | 0.4334 | 0.8148 | 8300 | 0.5032 | 0.0023 | 0.4233 | 0.8035 | 0.4233 | | 0.5439 | 0.8247 | 8400 | 0.4955 | 0.0023 | 0.4310 | 0.8044 | 0.4310 | | 0.4618 | 0.8345 | 8500 | 0.4965 | 0.0023 | 0.4312 | 0.8042 | 0.4312 | | 0.5084 | 0.8443 | 8600 | 0.4995 | 0.0023 | 0.4232 | 0.8031 | 0.4232 | | 0.5049 | 0.8541 | 8700 | 0.4929 | 0.0023 | 0.4319 | 0.8052 | 0.4319 | | 0.5132 | 0.8639 | 8800 | 0.4930 | 0.0023 | 0.4307 | 0.8054 | 0.4307 | | 0.502 | 0.8737 | 8900 | 0.4916 | 0.0023 | 0.4303 | 0.8062 | 0.4303 | | 0.4834 | 0.8836 | 9000 | 0.4912 | 0.0023 | 0.4327 | 0.8080 | 0.4327 | | 0.4745 | 0.8934 | 9100 | 0.4883 | 0.0023 | 0.4372 | 0.8091 | 0.4372 | | 0.4711 | 0.9032 | 9200 | 0.4894 | 0.0023 | 0.4336 | 0.8071 | 0.4336 | | 0.4841 | 0.9130 | 9300 | 0.4887 | 0.0023 | 0.4381 | 0.8075 | 0.4381 | | 0.3759 | 0.9228 | 9400 | 0.4858 | 0.0023 | 0.4401 | 0.8091 | 0.4401 | | 0.468 | 0.9327 | 9500 | 0.4890 | 0.0023 | 0.4391 | 0.8078 | 0.4391 | | 0.4893 | 0.9425 | 9600 | 0.4823 | 0.0023 | 0.4406 | 0.8094 | 0.4406 | | 0.4759 | 0.9523 | 9700 | 0.4784 | 0.0023 | 0.4452 | 0.8110 | 0.4452 | | 0.5078 | 0.9621 | 9800 | 0.4876 | 0.0023 | 0.4355 | 0.8071 | 0.4355 | | 0.4531 | 0.9719 | 9900 | 0.4792 | 0.0023 | 0.4425 | 0.8110 | 0.4425 | | 0.4947 | 0.9817 | 10000 | 0.4856 | 0.0023 | 0.4372 | 0.8086 | 0.4372 | | 0.4585 | 0.9916 | 10100 | 0.4775 | 0.0023 | 0.4433 | 0.8121 | 0.4433 | | 0.4506 | 1.0014 | 10200 | 0.4776 | 0.0023 | 0.4410 | 0.8111 | 0.4410 | | 0.4357 | 1.0112 | 10300 | 0.4788 | 0.0023 | 0.4457 | 0.8118 | 0.4457 | | 0.4737 | 1.0210 | 10400 | 0.4811 | 0.0023 | 0.4465 | 0.8126 | 0.4465 | | 0.4411 | 1.0308 | 10500 | 0.4779 | 0.0023 | 0.4459 | 0.8114 | 0.4459 | | 0.4634 | 1.0406 | 10600 | 0.4815 | 0.0023 | 0.4411 | 0.8113 | 0.4411 | | 0.4136 | 1.0505 | 10700 | 0.4734 | 0.0023 | 0.4468 | 0.8129 | 0.4468 | | 0.4582 | 1.0603 | 10800 | 0.4716 | 0.0023 | 0.4528 | 0.8142 | 0.4528 | | 0.4287 | 1.0701 | 10900 | 0.4733 | 0.0023 | 0.4481 | 0.8140 | 0.4481 | | 0.5291 | 1.0799 | 11000 | 0.4726 | 0.0023 | 0.4502 | 0.8145 | 0.4502 | | 0.4382 | 1.0897 | 11100 | 0.4705 | 0.0023 | 0.4541 | 0.8151 | 0.4541 | | 0.5431 | 1.0995 | 11200 | 0.4726 | 0.0023 | 0.4502 | 0.8139 | 0.4502 | | 0.4177 | 1.1094 | 11300 | 0.4712 | 0.0023 | 0.4491 | 0.8139 | 0.4491 | | 0.4509 | 1.1192 | 11400 | 0.4687 | 0.0023 | 0.4550 | 0.8155 | 0.4550 | | 0.4301 | 1.1290 | 11500 | 0.4713 | 0.0023 | 0.4555 | 0.8156 | 0.4555 | | 0.4387 | 1.1388 | 11600 | 0.4675 | 0.0023 | 0.4560 | 0.8163 | 0.4560 | | 0.5237 | 1.1486 | 11700 | 0.4688 | 0.0023 | 0.4541 | 0.8161 | 0.4541 | | 0.4253 | 1.1585 | 11800 | 0.4647 | 0.0023 | 0.4580 | 0.8171 | 0.4580 | | 0.4177 | 1.1683 | 11900 | 0.4616 | 0.0023 | 0.4605 | 0.8182 | 0.4605 | | 0.347 | 1.1781 | 12000 | 0.4631 | 0.0023 | 0.4613 | 0.8177 | 0.4613 | | 0.4654 | 1.1879 | 12100 | 0.4587 | 0.0023 | 0.4638 | 0.8200 | 0.4638 | | 0.3726 | 1.1977 | 12200 | 0.4591 | 0.0023 | 0.4607 | 0.8185 | 0.4607 | | 0.4567 | 1.2075 | 12300 | 0.4633 | 0.0023 | 0.4604 | 0.8185 | 0.4604 | | 0.3962 | 1.2174 | 12400 | 0.4597 | 0.0023 | 0.4618 | 0.8200 | 0.4618 | | 0.4573 | 1.2272 | 12500 | 0.4594 | 0.0023 | 0.4602 | 0.8187 | 0.4602 | | 0.4402 | 1.2370 | 12600 | 0.4573 | 0.0023 | 0.4671 | 0.8213 | 0.4671 | | 0.4459 | 1.2468 | 12700 | 0.4576 | 0.0023 | 0.4668 | 0.8199 | 0.4668 | | 0.3908 | 1.2566 | 12800 | 0.4592 | 0.0023 | 0.4656 | 0.8202 | 0.4656 | | 0.5075 | 1.2664 | 12900 | 0.4559 | 0.0023 | 0.4644 | 0.8202 | 0.4644 | | 0.436 | 1.2763 | 13000 | 0.4578 | 0.0023 | 0.4680 | 0.8211 | 0.4680 | | 0.4359 | 1.2861 | 13100 | 0.4525 | 0.0023 | 0.4701 | 0.8231 | 0.4701 | | 0.4391 | 1.2959 | 13200 | 0.4549 | 0.0023 | 0.4693 | 0.8220 | 0.4693 | | 0.4176 | 1.3057 | 13300 | 0.4537 | 0.0023 | 0.4685 | 0.8223 | 0.4685 | | 0.4446 | 1.3155 | 13400 | 0.4489 | 0.0023 | 0.4702 | 0.8230 | 0.4702 | | 0.378 | 1.3253 | 13500 | 0.4527 | 0.0023 | 0.4714 | 0.8224 | 0.4714 | | 0.416 | 1.3352 | 13600 | 0.4492 | 0.0023 | 0.4763 | 0.8240 | 0.4763 | | 0.4217 | 1.3450 | 13700 | 0.4487 | 0.0023 | 0.4752 | 0.8240 | 0.4752 | | 0.4859 | 1.3548 | 13800 | 0.4516 | 0.0023 | 0.4679 | 0.8213 | 0.4679 | | 0.4055 | 1.3646 | 13900 | 0.4450 | 0.0023 | 0.4765 | 0.8245 | 0.4765 | | 0.457 | 1.3744 | 14000 | 0.4504 | 0.0023 | 0.4754 | 0.8245 | 0.4754 | | 0.4092 | 1.3843 | 14100 | 0.4437 | 0.0023 | 0.4780 | 0.8256 | 0.4780 | | 0.4216 | 1.3941 | 14200 | 0.4459 | 0.0023 | 0.4780 | 0.8252 | 0.4780 | | 0.4103 | 1.4039 | 14300 | 0.4409 | 0.0023 | 0.4792 | 0.8270 | 0.4792 | | 0.3883 | 1.4137 | 14400 | 0.4436 | 0.0023 | 0.4758 | 0.8258 | 0.4758 | | 0.4307 | 1.4235 | 14500 | 0.4424 | 0.0023 | 0.4844 | 0.8270 | 0.4844 | | 0.4042 | 1.4333 | 14600 | 0.4412 | 0.0023 | 0.4830 | 0.8270 | 0.4830 | | 0.4115 | 1.4432 | 14700 | 0.4402 | 0.0023 | 0.4783 | 0.8254 | 0.4783 | | 0.3838 | 1.4530 | 14800 | 0.4391 | 0.0023 | 0.4850 | 0.8280 | 0.4850 | | 0.4463 | 1.4628 | 14900 | 0.4374 | 0.0023 | 0.4825 | 0.8265 | 0.4825 | | 0.3885 | 1.4726 | 15000 | 0.4357 | 0.0023 | 0.4841 | 0.8292 | 0.4841 | | 0.4566 | 1.4824 | 15100 | 0.4363 | 0.0023 | 0.4811 | 0.8280 | 0.4811 | | 0.3694 | 1.4922 | 15200 | 0.4381 | 0.0023 | 0.4852 | 0.8280 | 0.4852 | | 0.4081 | 1.5021 | 15300 | 0.4344 | 0.0023 | 0.4908 | 0.8300 | 0.4908 | | 0.3838 | 1.5119 | 15400 | 0.4360 | 0.0023 | 0.4895 | 0.8294 | 0.4895 | | 0.4403 | 1.5217 | 15500 | 0.4377 | 0.0023 | 0.4854 | 0.8279 | 0.4854 | | 0.3863 | 1.5315 | 15600 | 0.4329 | 0.0023 | 0.4863 | 0.8289 | 0.4863 | | 0.4461 | 1.5413 | 15700 | 0.4353 | 0.0023 | 0.4892 | 0.8293 | 0.4892 | | 0.428 | 1.5511 | 15800 | 0.4294 | 0.0023 | 0.4920 | 0.8302 | 0.4920 | | 0.3796 | 1.5610 | 15900 | 0.4289 | 0.0023 | 0.4932 | 0.8306 | 0.4932 | | 0.4319 | 1.5708 | 16000 | 0.4295 | 0.0023 | 0.4865 | 0.8297 | 0.4865 | | 0.4311 | 1.5806 | 16100 | 0.4329 | 0.0023 | 0.4876 | 0.8307 | 0.4876 | | 0.4884 | 1.5904 | 16200 | 0.4254 | 0.0023 | 0.4981 | 0.8336 | 0.4981 | | 0.4411 | 1.6002 | 16300 | 0.4288 | 0.0023 | 0.4936 | 0.8317 | 0.4936 | | 0.4805 | 1.6101 | 16400 | 0.4279 | 0.0023 | 0.4959 | 0.8326 | 0.4959 | | 0.4116 | 1.6199 | 16500 | 0.4283 | 0.0023 | 0.4961 | 0.8328 | 0.4961 | | 0.4096 | 1.6297 | 16600 | 0.4211 | 0.0023 | 0.5022 | 0.8361 | 0.5022 | | 0.4439 | 1.6395 | 16700 | 0.4291 | 0.0023 | 0.4951 | 0.8329 | 0.4951 | | 0.3796 | 1.6493 | 16800 | 0.4259 | 0.0023 | 0.4988 | 0.8338 | 0.4988 | | 0.3777 | 1.6591 | 16900 | 0.4261 | 0.0023 | 0.4972 | 0.8339 | 0.4972 | | 0.409 | 1.6690 | 17000 | 0.4259 | 0.0023 | 0.4954 | 0.8325 | 0.4954 | | 0.4232 | 1.6788 | 17100 | 0.4247 | 0.0023 | 0.4977 | 0.8331 | 0.4977 | | 0.3679 | 1.6886 | 17200 | 0.4217 | 0.0023 | 0.4985 | 0.8341 | 0.4985 | | 0.4343 | 1.6984 | 17300 | 0.4250 | 0.0023 | 0.5 | 0.8340 | 0.5 | | 0.3634 | 1.7082 | 17400 | 0.4231 | 0.0023 | 0.5035 | 0.8349 | 0.5035 | | 0.4088 | 1.7180 | 17500 | 0.4204 | 0.0023 | 0.5039 | 0.8367 | 0.5039 | | 0.3844 | 1.7279 | 17600 | 0.4223 | 0.0023 | 0.4984 | 0.8346 | 0.4984 | | 0.398 | 1.7377 | 17700 | 0.4201 | 0.0023 | 0.5038 | 0.8361 | 0.5038 | | 0.4236 | 1.7475 | 17800 | 0.4208 | 0.0023 | 0.4975 | 0.8347 | 0.4975 | | 0.4132 | 1.7573 | 17900 | 0.4189 | 0.0023 | 0.5017 | 0.8370 | 0.5017 | | 0.4228 | 1.7671 | 18000 | 0.4206 | 0.0023 | 0.4992 | 0.8358 | 0.4992 | | 0.4122 | 1.7769 | 18100 | 0.4158 | 0.0023 | 0.5059 | 0.8378 | 0.5059 | | 0.4383 | 1.7868 | 18200 | 0.4229 | 0.0023 | 0.4982 | 0.8340 | 0.4982 | | 0.4365 | 1.7966 | 18300 | 0.4195 | 0.0023 | 0.4988 | 0.8348 | 0.4988 | | 0.3715 | 1.8064 | 18400 | 0.4184 | 0.0023 | 0.4967 | 0.8358 | 0.4967 | | 0.4155 | 1.8162 | 18500 | 0.4187 | 0.0023 | 0.5036 | 0.8370 | 0.5036 | | 0.4059 | 1.8260 | 18600 | 0.4165 | 0.0023 | 0.4989 | 0.8351 | 0.4989 | | 0.3867 | 1.8359 | 18700 | 0.4137 | 0.0023 | 0.5070 | 0.8380 | 0.5070 | | 0.3217 | 1.8457 | 18800 | 0.4136 | 0.0023 | 0.5086 | 0.8386 | 0.5086 | | 0.3148 | 1.8555 | 18900 | 0.4148 | 0.0023 | 0.5021 | 0.8368 | 0.5021 | | 0.406 | 1.8653 | 19000 | 0.4093 | 0.0023 | 0.5090 | 0.8382 | 0.5090 | | 0.362 | 1.8751 | 19100 | 0.4117 | 0.0023 | 0.5057 | 0.8377 | 0.5057 | | 0.3752 | 1.8849 | 19200 | 0.4109 | 0.0023 | 0.5071 | 0.8381 | 0.5071 | | 0.5094 | 1.8948 | 19300 | 0.4143 | 0.0023 | 0.5075 | 0.8379 | 0.5075 | | 0.3345 | 1.9046 | 19400 | 0.4128 | 0.0023 | 0.5106 | 0.8391 | 0.5106 | | 0.3691 | 1.9144 | 19500 | 0.4107 | 0.0023 | 0.5133 | 0.8389 | 0.5133 | | 0.4 | 1.9242 | 19600 | 0.4116 | 0.0023 | 0.5128 | 0.8403 | 0.5128 | | 0.4027 | 1.9340 | 19700 | 0.4124 | 0.0023 | 0.5115 | 0.8384 | 0.5115 | | 0.3935 | 1.9438 | 19800 | 0.4090 | 0.0023 | 0.5143 | 0.8403 | 0.5143 | | 0.3328 | 1.9537 | 19900 | 0.4102 | 0.0023 | 0.5112 | 0.8389 | 0.5112 | | 0.4001 | 1.9635 | 20000 | 0.4106 | 0.0023 | 0.5131 | 0.8395 | 0.5131 | | 0.4048 | 1.9733 | 20100 | 0.4076 | 0.0023 | 0.5151 | 0.8403 | 0.5151 | | 0.4477 | 1.9831 | 20200 | 0.4065 | 0.0023 | 0.5135 | 0.8401 | 0.5135 | | 0.4063 | 1.9929 | 20300 | 0.4055 | 0.0023 | 0.5168 | 0.8414 | 0.5168 | | 0.3304 | 2.0027 | 20400 | 0.4126 | 0.0023 | 0.5191 | 0.8415 | 0.5191 | | 0.3062 | 2.0126 | 20500 | 0.4096 | 0.0023 | 0.5197 | 0.8406 | 0.5197 | | 0.3488 | 2.0224 | 20600 | 0.4124 | 0.0023 | 0.5164 | 0.8404 | 0.5164 | | 0.2934 | 2.0322 | 20700 | 0.4145 | 0.0023 | 0.5109 | 0.8401 | 0.5109 | | 0.3207 | 2.0420 | 20800 | 0.4131 | 0.0023 | 0.5172 | 0.8405 | 0.5172 | | 0.413 | 2.0518 | 20900 | 0.4147 | 0.0023 | 0.5145 | 0.8407 | 0.5145 | | 0.3176 | 2.0617 | 21000 | 0.4198 | 0.0023 | 0.5162 | 0.8402 | 0.5162 | | 0.3909 | 2.0715 | 21100 | 0.4146 | 0.0023 | 0.5150 | 0.8400 | 0.5150 | | 0.4044 | 2.0813 | 21200 | 0.4180 | 0.0023 | 0.5086 | 0.8391 | 0.5086 | | 0.395 | 2.0911 | 21300 | 0.4149 | 0.0023 | 0.5175 | 0.8409 | 0.5175 | | 0.4061 | 2.1009 | 21400 | 0.4135 | 0.0023 | 0.5180 | 0.8406 | 0.5180 | | 0.3532 | 2.1107 | 21500 | 0.4145 | 0.0023 | 0.5129 | 0.8391 | 0.5129 | | 0.309 | 2.1206 | 21600 | 0.4156 | 0.0023 | 0.5060 | 0.8390 | 0.5060 | | 0.3614 | 2.1304 | 21700 | 0.4148 | 0.0023 | 0.5124 | 0.8402 | 0.5124 | | 0.3522 | 2.1402 | 21800 | 0.4127 | 0.0023 | 0.5188 | 0.8407 | 0.5188 | | 0.364 | 2.1500 | 21900 | 0.4144 | 0.0023 | 0.5166 | 0.8406 | 0.5166 | | 0.3148 | 2.1598 | 22000 | 0.4155 | 0.0023 | 0.5139 | 0.8397 | 0.5139 | | 0.334 | 2.1696 | 22100 | 0.4120 | 0.0023 | 0.5150 | 0.8398 | 0.5150 | | 0.3252 | 2.1795 | 22200 | 0.4123 | 0.0023 | 0.5158 | 0.8417 | 0.5158 | | 0.356 | 2.1893 | 22300 | 0.4120 | 0.0023 | 0.5177 | 0.8414 | 0.5177 | | 0.4261 | 2.1991 | 22400 | 0.4130 | 0.0023 | 0.5155 | 0.8409 | 0.5155 | | 0.3351 | 2.2089 | 22500 | 0.4085 | 0.0023 | 0.5215 | 0.8423 | 0.5215 | | 0.3846 | 2.2187 | 22600 | 0.4112 | 0.0023 | 0.5188 | 0.8421 | 0.5188 | | 0.381 | 2.2285 | 22700 | 0.4105 | 0.0023 | 0.5160 | 0.8415 | 0.5160 | | 0.371 | 2.2384 | 22800 | 0.4100 | 0.0023 | 0.5188 | 0.8410 | 0.5188 | | 0.3228 | 2.2482 | 22900 | 0.4050 | 0.0023 | 0.5180 | 0.8415 | 0.5180 | | 0.3229 | 2.2580 | 23000 | 0.4130 | 0.0023 | 0.5214 | 0.8419 | 0.5214 | | 0.4548 | 2.2678 | 23100 | 0.4095 | 0.0023 | 0.5207 | 0.8422 | 0.5207 | | 0.2659 | 2.2776 | 23200 | 0.4047 | 0.0023 | 0.5203 | 0.8435 | 0.5203 | | 0.3502 | 2.2875 | 23300 | 0.4113 | 0.0023 | 0.5186 | 0.8423 | 0.5186 | | 0.3329 | 2.2973 | 23400 | 0.4059 | 0.0023 | 0.5210 | 0.8436 | 0.5210 | | 0.3687 | 2.3071 | 23500 | 0.4045 | 0.0023 | 0.5206 | 0.8433 | 0.5206 | | 0.3515 | 2.3169 | 23600 | 0.4069 | 0.0023 | 0.5175 | 0.8422 | 0.5175 | | 0.3486 | 2.3267 | 23700 | 0.4060 | 0.0023 | 0.5239 | 0.8432 | 0.5239 | | 0.3671 | 2.3365 | 23800 | 0.4062 | 0.0023 | 0.5228 | 0.8440 | 0.5228 | | 0.3526 | 2.3464 | 23900 | 0.4015 | 0.0023 | 0.5234 | 0.8442 | 0.5234 | | 0.3752 | 2.3562 | 24000 | 0.4027 | 0.0023 | 0.5213 | 0.8440 | 0.5213 | | 0.3599 | 2.3660 | 24100 | 0.4058 | 0.0023 | 0.5208 | 0.8431 | 0.5208 | | 0.3535 | 2.3758 | 24200 | 0.4060 | 0.0023 | 0.5240 | 0.8433 | 0.5240 | | 0.3431 | 2.3856 | 24300 | 0.4063 | 0.0023 | 0.5190 | 0.8422 | 0.5190 | | 0.3774 | 2.3954 | 24400 | 0.4049 | 0.0023 | 0.5234 | 0.8440 | 0.5234 | | 0.3668 | 2.4053 | 24500 | 0.4067 | 0.0023 | 0.5152 | 0.8419 | 0.5152 | | 0.314 | 2.4151 | 24600 | 0.4048 | 0.0023 | 0.5240 | 0.8440 | 0.5240 | | 0.3251 | 2.4249 | 24700 | 0.4006 | 0.0023 | 0.5249 | 0.8439 | 0.5249 | | 0.3157 | 2.4347 | 24800 | 0.4046 | 0.0023 | 0.5212 | 0.8434 | 0.5212 | | 0.3348 | 2.4445 | 24900 | 0.4021 | 0.0023 | 0.5266 | 0.8442 | 0.5266 | | 0.3434 | 2.4543 | 25000 | 0.4044 | 0.0023 | 0.5237 | 0.8435 | 0.5237 | | 0.3823 | 2.4642 | 25100 | 0.4047 | 0.0023 | 0.5188 | 0.8424 | 0.5188 | | 0.3858 | 2.4740 | 25200 | 0.4015 | 0.0023 | 0.5223 | 0.8430 | 0.5223 | | 0.3475 | 2.4838 | 25300 | 0.3990 | 0.0023 | 0.5248 | 0.8443 | 0.5248 | | 0.3128 | 2.4936 | 25400 | 0.4017 | 0.0023 | 0.5276 | 0.8440 | 0.5276 | | 0.3373 | 2.5034 | 25500 | 0.4034 | 0.0023 | 0.5216 | 0.8425 | 0.5216 | | 0.323 | 2.5133 | 25600 | 0.3996 | 0.0023 | 0.5242 | 0.8437 | 0.5242 | | 0.3302 | 2.5231 | 25700 | 0.4025 | 0.0023 | 0.5273 | 0.8439 | 0.5273 | | 0.3565 | 2.5329 | 25800 | 0.3979 | 0.0023 | 0.5278 | 0.8460 | 0.5278 | | 0.4211 | 2.5427 | 25900 | 0.3962 | 0.0023 | 0.5268 | 0.8437 | 0.5268 | | 0.3894 | 2.5525 | 26000 | 0.3963 | 0.0023 | 0.5284 | 0.8458 | 0.5284 | | 0.3242 | 2.5623 | 26100 | 0.3970 | 0.0023 | 0.5291 | 0.8456 | 0.5291 | | 0.3163 | 2.5722 | 26200 | 0.4026 | 0.0023 | 0.5254 | 0.8448 | 0.5254 | | 0.3813 | 2.5820 | 26300 | 0.4001 | 0.0023 | 0.5288 | 0.8465 | 0.5288 | | 0.3664 | 2.5918 | 26400 | 0.3992 | 0.0023 | 0.5304 | 0.8461 | 0.5304 | | 0.3628 | 2.6016 | 26500 | 0.3969 | 0.0023 | 0.5326 | 0.8472 | 0.5326 | | 0.3416 | 2.6114 | 26600 | 0.3966 | 0.0023 | 0.5271 | 0.8454 | 0.5271 | | 0.3731 | 2.6212 | 26700 | 0.3971 | 0.0023 | 0.5284 | 0.8463 | 0.5284 | | 0.3584 | 2.6311 | 26800 | 0.3943 | 0.0023 | 0.5273 | 0.8461 | 0.5273 | | 0.3287 | 2.6409 | 26900 | 0.3912 | 0.0023 | 0.5353 | 0.8485 | 0.5353 | | 0.3792 | 2.6507 | 27000 | 0.3987 | 0.0023 | 0.5313 | 0.8459 | 0.5313 | | 0.3853 | 2.6605 | 27100 | 0.3946 | 0.0023 | 0.5294 | 0.8460 | 0.5294 | | 0.3058 | 2.6703 | 27200 | 0.3937 | 0.0023 | 0.5328 | 0.8473 | 0.5328 | | 0.3365 | 2.6801 | 27300 | 0.3937 | 0.0023 | 0.5330 | 0.8463 | 0.5330 | | 0.3165 | 2.6900 | 27400 | 0.3909 | 0.0023 | 0.5284 | 0.8466 | 0.5284 | | 0.3208 | 2.6998 | 27500 | 0.3903 | 0.0023 | 0.5386 | 0.8483 | 0.5386 | | 0.3492 | 2.7096 | 27600 | 0.3894 | 0.0023 | 0.5338 | 0.8473 | 0.5338 | | 0.3431 | 2.7194 | 27700 | 0.3882 | 0.0023 | 0.5337 | 0.8482 | 0.5337 | | 0.3667 | 2.7292 | 27800 | 0.3920 | 0.0023 | 0.5331 | 0.8474 | 0.5331 | | 0.3197 | 2.7391 | 27900 | 0.3895 | 0.0023 | 0.5364 | 0.8485 | 0.5364 | | 0.3625 | 2.7489 | 28000 | 0.3945 | 0.0023 | 0.5333 | 0.8472 | 0.5333 | | 0.3235 | 2.7587 | 28100 | 0.3937 | 0.0023 | 0.5356 | 0.8473 | 0.5356 | | 0.2643 | 2.7685 | 28200 | 0.3931 | 0.0023 | 0.5364 | 0.8480 | 0.5364 | | 0.3143 | 2.7783 | 28300 | 0.3924 | 0.0023 | 0.5358 | 0.8483 | 0.5358 | | 0.3303 | 2.7881 | 28400 | 0.3910 | 0.0023 | 0.5389 | 0.8492 | 0.5389 | | 0.3035 | 2.7980 | 28500 | 0.3893 | 0.0023 | 0.5373 | 0.8489 | 0.5373 | | 0.3396 | 2.8078 | 28600 | 0.3893 | 0.0023 | 0.5371 | 0.8483 | 0.5371 | | 0.3355 | 2.8176 | 28700 | 0.3900 | 0.0023 | 0.5422 | 0.8503 | 0.5422 | | 0.3498 | 2.8274 | 28800 | 0.3955 | 0.0023 | 0.5368 | 0.8480 | 0.5368 | | 0.4141 | 2.8372 | 28900 | 0.3888 | 0.0023 | 0.5364 | 0.8482 | 0.5364 | | 0.3411 | 2.8470 | 29000 | 0.3920 | 0.0023 | 0.5363 | 0.8482 | 0.5363 | | 0.3166 | 2.8569 | 29100 | 0.3945 | 0.0023 | 0.5379 | 0.8484 | 0.5379 | | 0.3466 | 2.8667 | 29200 | 0.3880 | 0.0023 | 0.5442 | 0.8507 | 0.5442 | | 0.3413 | 2.8765 | 29300 | 0.3923 | 0.0023 | 0.5400 | 0.8494 | 0.5400 | | 0.3169 | 2.8863 | 29400 | 0.3877 | 0.0023 | 0.5397 | 0.8486 | 0.5397 | | 0.3014 | 2.8961 | 29500 | 0.3853 | 0.0023 | 0.5498 | 0.8518 | 0.5498 | | 0.3806 | 2.9059 | 29600 | 0.3866 | 0.0023 | 0.5407 | 0.8504 | 0.5407 | | 0.3528 | 2.9158 | 29700 | 0.3865 | 0.0023 | 0.5402 | 0.8503 | 0.5402 | | 0.2929 | 2.9256 | 29800 | 0.3865 | 0.0023 | 0.5429 | 0.8505 | 0.5429 | | 0.345 | 2.9354 | 29900 | 0.3859 | 0.0023 | 0.5432 | 0.8512 | 0.5432 | | 0.3349 | 2.9452 | 30000 | 0.3832 | 0.0023 | 0.5436 | 0.8513 | 0.5436 | | 0.3418 | 2.9550 | 30100 | 0.3859 | 0.0023 | 0.5414 | 0.8507 | 0.5414 | | 0.2884 | 2.9649 | 30200 | 0.3866 | 0.0023 | 0.5368 | 0.8491 | 0.5368 | | 0.3187 | 2.9747 | 30300 | 0.3833 | 0.0023 | 0.5439 | 0.8511 | 0.5439 | | 0.3642 | 2.9845 | 30400 | 0.3859 | 0.0023 | 0.5402 | 0.8487 | 0.5402 | | 0.454 | 2.9943 | 30500 | 0.3823 | 0.0023 | 0.5410 | 0.8501 | 0.5410 | | 0.2832 | 3.0041 | 30600 | 0.4044 | 0.0023 | 0.5450 | 0.8504 | 0.5450 | | 0.2363 | 3.0139 | 30700 | 0.4099 | 0.0023 | 0.5394 | 0.8483 | 0.5394 | | 0.2644 | 3.0238 | 30800 | 0.4155 | 0.0023 | 0.5369 | 0.8487 | 0.5369 | | 0.2768 | 3.0336 | 30900 | 0.4114 | 0.0023 | 0.5417 | 0.8498 | 0.5417 | | 0.296 | 3.0434 | 31000 | 0.4100 | 0.0023 | 0.5400 | 0.8487 | 0.5400 | | 0.3087 | 3.0532 | 31100 | 0.4109 | 0.0023 | 0.5384 | 0.8476 | 0.5384 | | 0.2504 | 3.0630 | 31200 | 0.4179 | 0.0023 | 0.5391 | 0.8479 | 0.5391 | | 0.3044 | 3.0728 | 31300 | 0.4101 | 0.0023 | 0.5406 | 0.8487 | 0.5406 | | 0.3095 | 3.0827 | 31400 | 0.4180 | 0.0023 | 0.5404 | 0.8494 | 0.5404 | | 0.3007 | 3.0925 | 31500 | 0.4131 | 0.0023 | 0.5362 | 0.8481 | 0.5362 | | 0.2508 | 3.1023 | 31600 | 0.4143 | 0.0023 | 0.5386 | 0.8480 | 0.5386 | | 0.2655 | 3.1121 | 31700 | 0.4121 | 0.0023 | 0.5390 | 0.8479 | 0.5390 | | 0.3204 | 3.1219 | 31800 | 0.4121 | 0.0023 | 0.5414 | 0.8480 | 0.5414 | | 0.2498 | 3.1317 | 31900 | 0.4067 | 0.0023 | 0.5431 | 0.8491 | 0.5431 | | 0.3213 | 3.1416 | 32000 | 0.4114 | 0.0023 | 0.5393 | 0.8479 | 0.5393 | | 0.257 | 3.1514 | 32100 | 0.4182 | 0.0023 | 0.5433 | 0.8489 | 0.5433 | | 0.3254 | 3.1612 | 32200 | 0.4094 | 0.0023 | 0.5398 | 0.8489 | 0.5398 | | 0.2876 | 3.1710 | 32300 | 0.4154 | 0.0023 | 0.5361 | 0.8478 | 0.5361 | | 0.287 | 3.1808 | 32400 | 0.4132 | 0.0023 | 0.5370 | 0.8475 | 0.5370 | | 0.3895 | 3.1907 | 32500 | 0.4161 | 0.0023 | 0.5368 | 0.8475 | 0.5368 | | 0.291 | 3.2005 | 32600 | 0.4119 | 0.0023 | 0.5404 | 0.8482 | 0.5404 | | 0.286 | 3.2103 | 32700 | 0.4159 | 0.0023 | 0.5359 | 0.8474 | 0.5359 | | 0.2428 | 3.2201 | 32800 | 0.4135 | 0.0023 | 0.5394 | 0.8483 | 0.5394 | | 0.2829 | 3.2299 | 32900 | 0.4137 | 0.0023 | 0.5360 | 0.8470 | 0.5360 | | 0.311 | 3.2397 | 33000 | 0.4104 | 0.0023 | 0.5370 | 0.8489 | 0.5370 | | 0.3111 | 3.2496 | 33100 | 0.4099 | 0.0023 | 0.5404 | 0.8483 | 0.5404 | | 0.2498 | 3.2594 | 33200 | 0.4124 | 0.0023 | 0.5368 | 0.8465 | 0.5368 | | 0.2333 | 3.2692 | 33300 | 0.4097 | 0.0023 | 0.5418 | 0.8489 | 0.5418 | | 0.3075 | 3.2790 | 33400 | 0.4078 | 0.0023 | 0.5382 | 0.8478 | 0.5382 | | 0.2677 | 3.2888 | 33500 | 0.4088 | 0.0023 | 0.5395 | 0.8478 | 0.5395 | | 0.3405 | 3.2986 | 33600 | 0.4073 | 0.0023 | 0.5416 | 0.8494 | 0.5416 | | 0.2213 | 3.3085 | 33700 | 0.4088 | 0.0023 | 0.5429 | 0.8488 | 0.5429 | | 0.3289 | 3.3183 | 33800 | 0.4133 | 0.0023 | 0.5429 | 0.8486 | 0.5429 | | 0.2428 | 3.3281 | 33900 | 0.4088 | 0.0023 | 0.5406 | 0.8477 | 0.5406 | | 0.2799 | 3.3379 | 34000 | 0.4083 | 0.0023 | 0.5428 | 0.8500 | 0.5428 | | 0.3191 | 3.3477 | 34100 | 0.4087 | 0.0023 | 0.5378 | 0.8486 | 0.5378 | | 0.2615 | 3.3575 | 34200 | 0.4012 | 0.0023 | 0.5421 | 0.8499 | 0.5421 | | 0.2825 | 3.3674 | 34300 | 0.4049 | 0.0023 | 0.5419 | 0.8491 | 0.5419 | | 0.2714 | 3.3772 | 34400 | 0.4065 | 0.0023 | 0.5454 | 0.8507 | 0.5454 | | 0.2973 | 3.3870 | 34500 | 0.4105 | 0.0023 | 0.5436 | 0.8500 | 0.5436 | | 0.2131 | 3.3968 | 34600 | 0.4026 | 0.0023 | 0.5452 | 0.8501 | 0.5452 | | 0.2713 | 3.4066 | 34700 | 0.4043 | 0.0023 | 0.5438 | 0.8508 | 0.5438 | | 0.2912 | 3.4165 | 34800 | 0.4000 | 0.0023 | 0.5469 | 0.8517 | 0.5469 | | 0.3758 | 3.4263 | 34900 | 0.4038 | 0.0023 | 0.5476 | 0.8512 | 0.5476 | | 0.3297 | 3.4361 | 35000 | 0.4041 | 0.0023 | 0.5450 | 0.8505 | 0.5450 | | 0.1773 | 3.4459 | 35100 | 0.3991 | 0.0023 | 0.5452 | 0.8513 | 0.5452 | | 0.2761 | 3.4557 | 35200 | 0.4023 | 0.0023 | 0.5420 | 0.8501 | 0.5420 | | 0.2784 | 3.4655 | 35300 | 0.4048 | 0.0023 | 0.5424 | 0.8500 | 0.5424 | | 0.2879 | 3.4754 | 35400 | 0.4018 | 0.0023 | 0.5448 | 0.8511 | 0.5448 | | 0.2915 | 3.4852 | 35500 | 0.3977 | 0.0023 | 0.5405 | 0.8500 | 0.5405 | | 0.2533 | 3.4950 | 35600 | 0.4056 | 0.0023 | 0.5469 | 0.8514 | 0.5469 | | 0.2969 | 3.5048 | 35700 | 0.3981 | 0.0023 | 0.5459 | 0.8513 | 0.5459 | | 0.2999 | 3.5146 | 35800 | 0.3995 | 0.0023 | 0.5434 | 0.8498 | 0.5434 | | 0.2756 | 3.5244 | 35900 | 0.4016 | 0.0023 | 0.5434 | 0.8510 | 0.5434 | | 0.2807 | 3.5343 | 36000 | 0.3982 | 0.0023 | 0.5494 | 0.8521 | 0.5494 | | 0.235 | 3.5441 | 36100 | 0.4009 | 0.0023 | 0.5477 | 0.8515 | 0.5477 | | 0.3184 | 3.5539 | 36200 | 0.4001 | 0.0023 | 0.5488 | 0.8511 | 0.5488 | | 0.239 | 3.5637 | 36300 | 0.4032 | 0.0023 | 0.5466 | 0.8522 | 0.5466 | | 0.2799 | 3.5735 | 36400 | 0.4023 | 0.0023 | 0.5471 | 0.8509 | 0.5471 | | 0.2684 | 3.5833 | 36500 | 0.3964 | 0.0023 | 0.5426 | 0.8516 | 0.5426 | | 0.2629 | 3.5932 | 36600 | 0.4022 | 0.0023 | 0.5454 | 0.8507 | 0.5454 | | 0.2632 | 3.6030 | 36700 | 0.3987 | 0.0023 | 0.5451 | 0.8505 | 0.5451 | | 0.3136 | 3.6128 | 36800 | 0.4007 | 0.0023 | 0.5480 | 0.8510 | 0.5480 | | 0.2478 | 3.6226 | 36900 | 0.3959 | 0.0023 | 0.5498 | 0.8523 | 0.5498 | | 0.2406 | 3.6324 | 37000 | 0.3997 | 0.0023 | 0.5447 | 0.8510 | 0.5447 | | 0.3246 | 3.6423 | 37100 | 0.3988 | 0.0023 | 0.5505 | 0.8519 | 0.5505 | | 0.2993 | 3.6521 | 37200 | 0.3980 | 0.0023 | 0.5506 | 0.8522 | 0.5506 | | 0.3074 | 3.6619 | 37300 | 0.4021 | 0.0023 | 0.5431 | 0.8503 | 0.5431 | | 0.2773 | 3.6717 | 37400 | 0.4035 | 0.0023 | 0.5454 | 0.8506 | 0.5454 | | 0.3199 | 3.6815 | 37500 | 0.3930 | 0.0023 | 0.5478 | 0.8522 | 0.5478 | | 0.2713 | 3.6913 | 37600 | 0.3970 | 0.0023 | 0.5480 | 0.8519 | 0.5480 | | 0.2713 | 3.7012 | 37700 | 0.3988 | 0.0023 | 0.5423 | 0.8510 | 0.5423 | | 0.3234 | 3.7110 | 37800 | 0.3951 | 0.0023 | 0.5468 | 0.8522 | 0.5468 | | 0.2685 | 3.7208 | 37900 | 0.3952 | 0.0023 | 0.5481 | 0.8525 | 0.5481 | | 0.247 | 3.7306 | 38000 | 0.4001 | 0.0023 | 0.5435 | 0.8498 | 0.5435 | | 0.2749 | 3.7404 | 38100 | 0.3939 | 0.0023 | 0.5454 | 0.8512 | 0.5454 | | 0.2773 | 3.7502 | 38200 | 0.4016 | 0.0023 | 0.5483 | 0.8521 | 0.5483 | | 0.2903 | 3.7601 | 38300 | 0.3996 | 0.0023 | 0.5449 | 0.8519 | 0.5449 | | 0.3415 | 3.7699 | 38400 | 0.3955 | 0.0023 | 0.5449 | 0.8512 | 0.5449 | | 0.2925 | 3.7797 | 38500 | 0.3968 | 0.0023 | 0.5438 | 0.8512 | 0.5438 | | 0.3209 | 3.7895 | 38600 | 0.3947 | 0.0023 | 0.5492 | 0.8531 | 0.5492 | | 0.2273 | 3.7993 | 38700 | 0.3963 | 0.0023 | 0.5503 | 0.8537 | 0.5503 | | 0.288 | 3.8091 | 38800 | 0.3971 | 0.0023 | 0.5431 | 0.8511 | 0.5431 | | 0.3223 | 3.8190 | 38900 | 0.3926 | 0.0023 | 0.5520 | 0.8546 | 0.5520 | | 0.289 | 3.8288 | 39000 | 0.3953 | 0.0023 | 0.5489 | 0.8534 | 0.5489 | | 0.2807 | 3.8386 | 39100 | 0.3919 | 0.0023 | 0.5482 | 0.8532 | 0.5482 | | 0.3518 | 3.8484 | 39200 | 0.3939 | 0.0023 | 0.5491 | 0.8529 | 0.5491 | | 0.2376 | 3.8582 | 39300 | 0.3919 | 0.0023 | 0.5514 | 0.8542 | 0.5514 | | 0.2859 | 3.8681 | 39400 | 0.3874 | 0.0023 | 0.5452 | 0.8520 | 0.5452 | | 0.3457 | 3.8779 | 39500 | 0.3920 | 0.0023 | 0.5488 | 0.8530 | 0.5488 | | 0.2839 | 3.8877 | 39600 | 0.3889 | 0.0023 | 0.5478 | 0.8524 | 0.5478 | | 0.2692 | 3.8975 | 39700 | 0.3892 | 0.0023 | 0.5527 | 0.8536 | 0.5527 | | 0.2931 | 3.9073 | 39800 | 0.3907 | 0.0023 | 0.5474 | 0.8524 | 0.5474 | | 0.3038 | 3.9171 | 39900 | 0.3923 | 0.0023 | 0.5501 | 0.8532 | 0.5501 | | 0.3312 | 3.9270 | 40000 | 0.3923 | 0.0023 | 0.5477 | 0.8515 | 0.5477 | | 0.3148 | 3.9368 | 40100 | 0.3889 | 0.0023 | 0.5508 | 0.8541 | 0.5508 | | 0.3105 | 3.9466 | 40200 | 0.3918 | 0.0023 | 0.5487 | 0.8532 | 0.5487 | | 0.267 | 3.9564 | 40300 | 0.3924 | 0.0023 | 0.5530 | 0.8539 | 0.5530 | | 0.2945 | 3.9662 | 40400 | 0.3919 | 0.0023 | 0.5526 | 0.8534 | 0.5526 | | 0.2923 | 3.9760 | 40500 | 0.3936 | 0.0023 | 0.5505 | 0.8544 | 0.5505 | | 0.2725 | 3.9859 | 40600 | 0.3898 | 0.0023 | 0.5572 | 0.8550 | 0.5572 | | 0.3454 | 3.9957 | 40700 | 0.3911 | 0.0023 | 0.5525 | 0.8541 | 0.5525 | | 0.2177 | 4.0055 | 40800 | 0.4651 | 0.0023 | 0.5485 | 0.8521 | 0.5485 | | 0.1425 | 4.0153 | 40900 | 0.4729 | 0.0023 | 0.5470 | 0.8512 | 0.5470 | | 0.1692 | 4.0251 | 41000 | 0.4600 | 0.0023 | 0.5436 | 0.8500 | 0.5436 | | 0.2001 | 4.0349 | 41100 | 0.4729 | 0.0023 | 0.5446 | 0.8511 | 0.5446 | | 0.1642 | 4.0448 | 41200 | 0.4589 | 0.0023 | 0.5462 | 0.8510 | 0.5462 | | 0.2105 | 4.0546 | 41300 | 0.4663 | 0.0023 | 0.5461 | 0.8500 | 0.5461 | | 0.1356 | 4.0644 | 41400 | 0.4537 | 0.0023 | 0.5423 | 0.8488 | 0.5423 | | 0.183 | 4.0742 | 41500 | 0.4701 | 0.0023 | 0.5459 | 0.8506 | 0.5459 | | 0.1936 | 4.0840 | 41600 | 0.4740 | 0.0023 | 0.5469 | 0.8511 | 0.5469 | | 0.2421 | 4.0939 | 41700 | 0.4631 | 0.0023 | 0.5402 | 0.8489 | 0.5402 | | 0.1602 | 4.1037 | 41800 | 0.4547 | 0.0023 | 0.5420 | 0.8499 | 0.5420 | | 0.1528 | 4.1135 | 41900 | 0.4582 | 0.0023 | 0.5403 | 0.8500 | 0.5403 | | 0.1606 | 4.1233 | 42000 | 0.4581 | 0.0023 | 0.5442 | 0.8507 | 0.5442 | | 0.1633 | 4.1331 | 42100 | 0.4765 | 0.0023 | 0.5456 | 0.8508 | 0.5456 | | 0.1629 | 4.1429 | 42200 | 0.4562 | 0.0023 | 0.5466 | 0.8514 | 0.5466 | | 0.2251 | 4.1528 | 42300 | 0.4603 | 0.0023 | 0.5476 | 0.8519 | 0.5476 | | 0.2496 | 4.1626 | 42400 | 0.4519 | 0.0023 | 0.5479 | 0.8519 | 0.5479 | | 0.1762 | 4.1724 | 42500 | 0.4583 | 0.0023 | 0.5451 | 0.8506 | 0.5451 | | 0.1947 | 4.1822 | 42600 | 0.4699 | 0.0023 | 0.5442 | 0.8494 | 0.5442 | | 0.1658 | 4.1920 | 42700 | 0.4615 | 0.0023 | 0.5481 | 0.8508 | 0.5481 | | 0.1787 | 4.2018 | 42800 | 0.4666 | 0.0023 | 0.5447 | 0.8502 | 0.5447 | | 0.2031 | 4.2117 | 42900 | 0.4557 | 0.0023 | 0.5445 | 0.8494 | 0.5445 | | 0.1779 | 4.2215 | 43000 | 0.4677 | 0.0023 | 0.5409 | 0.8493 | 0.5409 | | 0.2143 | 4.2313 | 43100 | 0.4654 | 0.0023 | 0.5485 | 0.8520 | 0.5485 | | 0.1882 | 4.2411 | 43200 | 0.4586 | 0.0023 | 0.5451 | 0.8500 | 0.5451 | | 0.2096 | 4.2509 | 43300 | 0.4530 | 0.0023 | 0.5438 | 0.8500 | 0.5438 | | 0.1883 | 4.2608 | 43400 | 0.4478 | 0.0023 | 0.5464 | 0.8506 | 0.5464 | | 0.2071 | 4.2706 | 43500 | 0.4625 | 0.0023 | 0.5445 | 0.8495 | 0.5445 | | 0.1858 | 4.2804 | 43600 | 0.4582 | 0.0023 | 0.5438 | 0.8500 | 0.5438 | | 0.1706 | 4.2902 | 43700 | 0.4589 | 0.0023 | 0.5467 | 0.8506 | 0.5467 | | 0.2689 | 4.3000 | 43800 | 0.4557 | 0.0023 | 0.5422 | 0.8494 | 0.5422 | | 0.2582 | 4.3098 | 43900 | 0.4504 | 0.0023 | 0.5440 | 0.8501 | 0.5440 | | 0.1729 | 4.3197 | 44000 | 0.4560 | 0.0023 | 0.5436 | 0.8496 | 0.5436 | | 0.226 | 4.3295 | 44100 | 0.4559 | 0.0023 | 0.5459 | 0.8501 | 0.5459 | | 0.1922 | 4.3393 | 44200 | 0.4575 | 0.0023 | 0.5408 | 0.8495 | 0.5408 | | 0.2167 | 4.3491 | 44300 | 0.4603 | 0.0023 | 0.5476 | 0.8508 | 0.5476 | | 0.2188 | 4.3589 | 44400 | 0.4566 | 0.0023 | 0.5442 | 0.8489 | 0.5442 | | 0.173 | 4.3687 | 44500 | 0.4542 | 0.0023 | 0.5407 | 0.8489 | 0.5407 | | 0.2157 | 4.3786 | 44600 | 0.4496 | 0.0023 | 0.5467 | 0.8509 | 0.5467 | | 0.2171 | 4.3884 | 44700 | 0.4462 | 0.0023 | 0.5445 | 0.8504 | 0.5445 | | 0.1848 | 4.3982 | 44800 | 0.4532 | 0.0023 | 0.5435 | 0.8490 | 0.5435 | | 0.2298 | 4.4080 | 44900 | 0.4571 | 0.0023 | 0.5463 | 0.8502 | 0.5463 | | 0.2035 | 4.4178 | 45000 | 0.4461 | 0.0023 | 0.5451 | 0.8503 | 0.5451 | | 0.2218 | 4.4276 | 45100 | 0.4542 | 0.0023 | 0.5470 | 0.8507 | 0.5470 | | 0.1858 | 4.4375 | 45200 | 0.4543 | 0.0023 | 0.5440 | 0.8496 | 0.5440 | | 0.1847 | 4.4473 | 45300 | 0.4489 | 0.0023 | 0.5489 | 0.8518 | 0.5489 | | 0.1737 | 4.4571 | 45400 | 0.4495 | 0.0023 | 0.5453 | 0.8508 | 0.5453 | | 0.2094 | 4.4669 | 45500 | 0.4475 | 0.0023 | 0.5422 | 0.8499 | 0.5422 | | 0.2517 | 4.4767 | 45600 | 0.4494 | 0.0023 | 0.5460 | 0.8506 | 0.5460 | | 0.2032 | 4.4866 | 45700 | 0.4525 | 0.0023 | 0.5438 | 0.8496 | 0.5438 | | 0.2374 | 4.4964 | 45800 | 0.4640 | 0.0023 | 0.5460 | 0.8492 | 0.5460 | | 0.1827 | 4.5062 | 45900 | 0.4552 | 0.0023 | 0.5434 | 0.8490 | 0.5434 | | 0.1791 | 4.5160 | 46000 | 0.4481 | 0.0023 | 0.5427 | 0.8499 | 0.5427 | | 0.1952 | 4.5258 | 46100 | 0.4637 | 0.0023 | 0.5400 | 0.8488 | 0.5400 | | 0.2199 | 4.5356 | 46200 | 0.4481 | 0.0023 | 0.5430 | 0.8501 | 0.5430 | | 0.2323 | 4.5455 | 46300 | 0.4490 | 0.0023 | 0.5443 | 0.8504 | 0.5443 | | 0.2328 | 4.5553 | 46400 | 0.4415 | 0.0023 | 0.5431 | 0.8501 | 0.5431 | | 0.2062 | 4.5651 | 46500 | 0.4478 | 0.0023 | 0.5420 | 0.8504 | 0.5420 | | 0.2075 | 4.5749 | 46600 | 0.4413 | 0.0023 | 0.5405 | 0.8509 | 0.5405 | | 0.1776 | 4.5847 | 46700 | 0.4389 | 0.0023 | 0.5425 | 0.8505 | 0.5425 | | 0.238 | 4.5945 | 46800 | 0.4521 | 0.0023 | 0.5451 | 0.8511 | 0.5451 | | 0.2185 | 4.6044 | 46900 | 0.4549 | 0.0023 | 0.5463 | 0.8517 | 0.5463 | | 0.249 | 4.6142 | 47000 | 0.4431 | 0.0023 | 0.5501 | 0.8522 | 0.5501 | | 0.2178 | 4.6240 | 47100 | 0.4397 | 0.0023 | 0.5471 | 0.8509 | 0.5471 | | 0.2098 | 4.6338 | 47200 | 0.4496 | 0.0023 | 0.5430 | 0.8496 | 0.5430 | | 0.2314 | 4.6436 | 47300 | 0.4498 | 0.0023 | 0.5447 | 0.8508 | 0.5447 | | 0.1873 | 4.6534 | 47400 | 0.4569 | 0.0023 | 0.5450 | 0.8506 | 0.5450 | | 0.2028 | 4.6633 | 47500 | 0.4499 | 0.0023 | 0.5448 | 0.8507 | 0.5448 | | 0.2131 | 4.6731 | 47600 | 0.4519 | 0.0023 | 0.5483 | 0.8516 | 0.5483 | | 0.1937 | 4.6829 | 47700 | 0.4467 | 0.0023 | 0.5476 | 0.8522 | 0.5476 | | 0.2091 | 4.6927 | 47800 | 0.4408 | 0.0023 | 0.5473 | 0.8509 | 0.5473 | | 0.185 | 4.7025 | 47900 | 0.4395 | 0.0023 | 0.5463 | 0.8510 | 0.5463 | | 0.2131 | 4.7124 | 48000 | 0.4498 | 0.0023 | 0.5456 | 0.8500 | 0.5456 | | 0.1819 | 4.7222 | 48100 | 0.4524 | 0.0023 | 0.5442 | 0.8484 | 0.5442 | | 0.2309 | 4.7320 | 48200 | 0.4557 | 0.0023 | 0.5461 | 0.8501 | 0.5461 | | 0.1762 | 4.7418 | 48300 | 0.4524 | 0.0023 | 0.5460 | 0.8504 | 0.5460 | | 0.1929 | 4.7516 | 48400 | 0.4537 | 0.0023 | 0.5454 | 0.8506 | 0.5454 | | 0.2073 | 4.7614 | 48500 | 0.4454 | 0.0023 | 0.5436 | 0.8506 | 0.5436 | | 0.1924 | 4.7713 | 48600 | 0.4429 | 0.0023 | 0.5414 | 0.8493 | 0.5414 | | 0.2245 | 4.7811 | 48700 | 0.4432 | 0.0023 | 0.5437 | 0.8502 | 0.5437 | | 0.1942 | 4.7909 | 48800 | 0.4434 | 0.0023 | 0.5424 | 0.8503 | 0.5424 | | 0.1817 | 4.8007 | 48900 | 0.4488 | 0.0023 | 0.5465 | 0.8509 | 0.5465 | | 0.2383 | 4.8105 | 49000 | 0.4445 | 0.0023 | 0.5470 | 0.8518 | 0.5470 | | 0.1765 | 4.8203 | 49100 | 0.4405 | 0.0023 | 0.5483 | 0.8516 | 0.5483 | | 0.2107 | 4.8302 | 49200 | 0.4440 | 0.0023 | 0.5526 | 0.8539 | 0.5526 | | 0.2374 | 4.8400 | 49300 | 0.4372 | 0.0023 | 0.5495 | 0.8523 | 0.5495 | | 0.2144 | 4.8498 | 49400 | 0.4391 | 0.0023 | 0.5487 | 0.8527 | 0.5487 | | 0.1824 | 4.8596 | 49500 | 0.4422 | 0.0023 | 0.5465 | 0.8510 | 0.5465 | | 0.1918 | 4.8694 | 49600 | 0.4389 | 0.0023 | 0.5479 | 0.8517 | 0.5479 | | 0.2158 | 4.8792 | 49700 | 0.4390 | 0.0023 | 0.5434 | 0.8502 | 0.5434 | | 0.2489 | 4.8891 | 49800 | 0.4378 | 0.0023 | 0.5515 | 0.8528 | 0.5515 | | 0.2019 | 4.8989 | 49900 | 0.4353 | 0.0023 | 0.5471 | 0.8522 | 0.5471 | | 0.2245 | 4.9087 | 50000 | 0.4411 | 0.0023 | 0.5523 | 0.8532 | 0.5523 | | 0.2079 | 4.9185 | 50100 | 0.4436 | 0.0023 | 0.5488 | 0.8526 | 0.5488 | | 0.1795 | 4.9283 | 50200 | 0.4405 | 0.0023 | 0.5477 | 0.8525 | 0.5477 | | 0.2077 | 4.9382 | 50300 | 0.4433 | 0.0023 | 0.5456 | 0.8526 | 0.5456 | | 0.2614 | 4.9480 | 50400 | 0.4447 | 0.0023 | 0.5508 | 0.8523 | 0.5508 | | 0.2364 | 4.9578 | 50500 | 0.4412 | 0.0023 | 0.5513 | 0.8528 | 0.5513 | | 0.2229 | 4.9676 | 50600 | 0.4362 | 0.0023 | 0.5494 | 0.8517 | 0.5494 | | 0.2189 | 4.9774 | 50700 | 0.4428 | 0.0023 | 0.5456 | 0.8511 | 0.5456 | | 0.2016 | 4.9872 | 50800 | 0.4415 | 0.0023 | 0.5489 | 0.8517 | 0.5489 | | 0.2089 | 4.9971 | 50900 | 0.4332 | 0.0023 | 0.5521 | 0.8536 | 0.5521 | | 0.111 | 5.0069 | 51000 | 0.5756 | 0.0023 | 0.5484 | 0.8515 | 0.5484 | | 0.1029 | 5.0167 | 51100 | 0.5948 | 0.0023 | 0.5434 | 0.8500 | 0.5434 | | 0.0964 | 5.0265 | 51200 | 0.6047 | 0.0023 | 0.5438 | 0.8498 | 0.5438 | | 0.1192 | 5.0363 | 51300 | 0.5790 | 0.0023 | 0.5449 | 0.8499 | 0.5449 | | 0.1018 | 5.0461 | 51400 | 0.5925 | 0.0023 | 0.5436 | 0.8496 | 0.5436 | | 0.1001 | 5.0560 | 51500 | 0.5827 | 0.0023 | 0.5428 | 0.8490 | 0.5428 | | 0.0906 | 5.0658 | 51600 | 0.5851 | 0.0023 | 0.5436 | 0.8496 | 0.5436 | | 0.1279 | 5.0756 | 51700 | 0.5970 | 0.0023 | 0.5380 | 0.8478 | 0.5380 | | 0.1348 | 5.0854 | 51800 | 0.5962 | 0.0023 | 0.5422 | 0.8490 | 0.5422 | | 0.0861 | 5.0952 | 51900 | 0.6009 | 0.0023 | 0.5379 | 0.8489 | 0.5379 | | 0.0891 | 5.1050 | 52000 | 0.5763 | 0.0023 | 0.5418 | 0.8498 | 0.5418 | | 0.1187 | 5.1149 | 52100 | 0.5779 | 0.0023 | 0.5387 | 0.8482 | 0.5387 | | 0.1278 | 5.1247 | 52200 | 0.5968 | 0.0023 | 0.5384 | 0.8476 | 0.5384 | | 0.1013 | 5.1345 | 52300 | 0.5842 | 0.0023 | 0.5401 | 0.8480 | 0.5401 | | 0.1342 | 5.1443 | 52400 | 0.5961 | 0.0023 | 0.5382 | 0.8470 | 0.5382 | | 0.0946 | 5.1541 | 52500 | 0.5914 | 0.0023 | 0.5383 | 0.8475 | 0.5383 | | 0.1336 | 5.1640 | 52600 | 0.5925 | 0.0023 | 0.5393 | 0.8483 | 0.5393 | | 0.1192 | 5.1738 | 52700 | 0.5797 | 0.0023 | 0.5362 | 0.8466 | 0.5362 | | 0.1177 | 5.1836 | 52800 | 0.5936 | 0.0023 | 0.5325 | 0.8452 | 0.5325 | | 0.0823 | 5.1934 | 52900 | 0.5924 | 0.0023 | 0.5380 | 0.8475 | 0.5380 | | 0.1198 | 5.2032 | 53000 | 0.5875 | 0.0023 | 0.5385 | 0.8475 | 0.5385 | | 0.1326 | 5.2130 | 53100 | 0.5752 | 0.0023 | 0.5420 | 0.8494 | 0.5420 | | 0.1097 | 5.2229 | 53200 | 0.5836 | 0.0023 | 0.5396 | 0.8481 | 0.5396 | | 0.0934 | 5.2327 | 53300 | 0.5920 | 0.0023 | 0.5398 | 0.8491 | 0.5398 | | 0.1038 | 5.2425 | 53400 | 0.5828 | 0.0023 | 0.5401 | 0.8483 | 0.5401 | | 0.1384 | 5.2523 | 53500 | 0.5638 | 0.0023 | 0.5387 | 0.8482 | 0.5387 | | 0.1127 | 5.2621 | 53600 | 0.5948 | 0.0023 | 0.5396 | 0.8471 | 0.5396 | | 0.1056 | 5.2719 | 53700 | 0.5750 | 0.0023 | 0.5445 | 0.8496 | 0.5445 | | 0.1043 | 5.2818 | 53800 | 0.5860 | 0.0023 | 0.5367 | 0.8478 | 0.5367 | | 0.1009 | 5.2916 | 53900 | 0.5709 | 0.0023 | 0.5407 | 0.8486 | 0.5407 | | 0.1 | 5.3014 | 54000 | 0.5779 | 0.0023 | 0.5434 | 0.8494 | 0.5434 | | 0.1217 | 5.3112 | 54100 | 0.5799 | 0.0023 | 0.5411 | 0.8483 | 0.5411 | | 0.0735 | 5.3210 | 54200 | 0.5755 | 0.0023 | 0.5403 | 0.8478 | 0.5403 | | 0.1233 | 5.3308 | 54300 | 0.5746 | 0.0023 | 0.5413 | 0.8477 | 0.5413 | | 0.1042 | 5.3407 | 54400 | 0.5803 | 0.0023 | 0.5385 | 0.8470 | 0.5385 | | 0.1144 | 5.3505 | 54500 | 0.5745 | 0.0023 | 0.5405 | 0.8479 | 0.5405 | | 0.0788 | 5.3603 | 54600 | 0.5756 | 0.0023 | 0.5441 | 0.8492 | 0.5441 | | 0.1285 | 5.3701 | 54700 | 0.5620 | 0.0023 | 0.5427 | 0.8486 | 0.5427 | | 0.1034 | 5.3799 | 54800 | 0.5753 | 0.0023 | 0.5455 | 0.8494 | 0.5455 | | 0.1389 | 5.3898 | 54900 | 0.5640 | 0.0023 | 0.5445 | 0.8494 | 0.5445 | | 0.114 | 5.3996 | 55000 | 0.5692 | 0.0023 | 0.5435 | 0.8502 | 0.5435 | | 0.1158 | 5.4094 | 55100 | 0.5938 | 0.0023 | 0.5426 | 0.8489 | 0.5426 | | 0.1208 | 5.4192 | 55200 | 0.5824 | 0.0023 | 0.5409 | 0.8484 | 0.5409 | | 0.1436 | 5.4290 | 55300 | 0.5741 | 0.0023 | 0.5438 | 0.8496 | 0.5438 | | 0.1175 | 5.4388 | 55400 | 0.5728 | 0.0023 | 0.5429 | 0.8496 | 0.5429 | | 0.1019 | 5.4487 | 55500 | 0.5758 | 0.0023 | 0.5455 | 0.8509 | 0.5455 | | 0.1234 | 5.4585 | 55600 | 0.5684 | 0.0023 | 0.5436 | 0.8497 | 0.5436 | | 0.1385 | 5.4683 | 55700 | 0.5667 | 0.0023 | 0.5412 | 0.8485 | 0.5412 | | 0.1442 | 5.4781 | 55800 | 0.5847 | 0.0023 | 0.5429 | 0.8494 | 0.5429 | | 0.1283 | 5.4879 | 55900 | 0.5678 | 0.0023 | 0.5419 | 0.8489 | 0.5419 | | 0.141 | 5.4977 | 56000 | 0.5801 | 0.0023 | 0.5463 | 0.8499 | 0.5463 | | 0.1258 | 5.5076 | 56100 | 0.5688 | 0.0023 | 0.5470 | 0.8508 | 0.5470 | | 0.1423 | 5.5174 | 56200 | 0.5695 | 0.0023 | 0.5449 | 0.8498 | 0.5449 | | 0.1322 | 5.5272 | 56300 | 0.5509 | 0.0023 | 0.5420 | 0.8495 | 0.5420 | | 0.1141 | 5.5370 | 56400 | 0.5689 | 0.0023 | 0.5471 | 0.8497 | 0.5471 | | 0.1369 | 5.5468 | 56500 | 0.5667 | 0.0023 | 0.5463 | 0.8500 | 0.5463 | | 0.1576 | 5.5566 | 56600 | 0.5657 | 0.0023 | 0.5474 | 0.8503 | 0.5474 | | 0.134 | 5.5665 | 56700 | 0.5550 | 0.0023 | 0.5451 | 0.8498 | 0.5451 | | 0.1317 | 5.5763 | 56800 | 0.5598 | 0.0023 | 0.5441 | 0.8497 | 0.5441 | | 0.142 | 5.5861 | 56900 | 0.5811 | 0.0023 | 0.5406 | 0.8481 | 0.5406 | | 0.1051 | 5.5959 | 57000 | 0.5581 | 0.0023 | 0.5430 | 0.8505 | 0.5430 | | 0.1358 | 5.6057 | 57100 | 0.5572 | 0.0023 | 0.5446 | 0.8515 | 0.5446 | | 0.0969 | 5.6156 | 57200 | 0.5567 | 0.0023 | 0.5418 | 0.8497 | 0.5418 | | 0.1557 | 5.6254 | 57300 | 0.5418 | 0.0023 | 0.5425 | 0.8496 | 0.5425 | | 0.1294 | 5.6352 | 57400 | 0.5445 | 0.0023 | 0.5445 | 0.8499 | 0.5445 | | 0.1405 | 5.6450 | 57500 | 0.5654 | 0.0023 | 0.5436 | 0.8498 | 0.5436 | | 0.1214 | 5.6548 | 57600 | 0.5537 | 0.0023 | 0.5460 | 0.8506 | 0.5460 | | 0.1495 | 5.6646 | 57700 | 0.5520 | 0.0023 | 0.5443 | 0.8499 | 0.5443 | | 0.129 | 5.6745 | 57800 | 0.5549 | 0.0023 | 0.5446 | 0.8504 | 0.5446 | | 0.1115 | 5.6843 | 57900 | 0.5627 | 0.0023 | 0.5433 | 0.8499 | 0.5433 | | 0.0753 | 5.6941 | 58000 | 0.5673 | 0.0023 | 0.5424 | 0.8495 | 0.5424 | | 0.129 | 5.7039 | 58100 | 0.5640 | 0.0023 | 0.5472 | 0.8501 | 0.5472 | | 0.091 | 5.7137 | 58200 | 0.5617 | 0.0023 | 0.5454 | 0.8500 | 0.5454 | | 0.1094 | 5.7235 | 58300 | 0.5660 | 0.0023 | 0.5466 | 0.8496 | 0.5466 | | 0.1 | 5.7334 | 58400 | 0.5716 | 0.0023 | 0.5480 | 0.8503 | 0.5480 | | 0.1139 | 5.7432 | 58500 | 0.5598 | 0.0023 | 0.5446 | 0.8499 | 0.5446 | | 0.1244 | 5.7530 | 58600 | 0.5474 | 0.0023 | 0.5420 | 0.8490 | 0.5420 | | 0.0838 | 5.7628 | 58700 | 0.5463 | 0.0023 | 0.5451 | 0.8502 | 0.5451 | | 0.1132 | 5.7726 | 58800 | 0.5457 | 0.0023 | 0.5470 | 0.8507 | 0.5470 | | 0.118 | 5.7824 | 58900 | 0.5501 | 0.0023 | 0.5397 | 0.8491 | 0.5397 | | 0.1469 | 5.7923 | 59000 | 0.5614 | 0.0023 | 0.5432 | 0.8491 | 0.5432 | | 0.1084 | 5.8021 | 59100 | 0.5747 | 0.0023 | 0.5452 | 0.8502 | 0.5452 | | 0.1054 | 5.8119 | 59200 | 0.5500 | 0.0023 | 0.5479 | 0.8511 | 0.5479 | | 0.1102 | 5.8217 | 59300 | 0.5471 | 0.0023 | 0.5454 | 0.8497 | 0.5454 | | 0.1286 | 5.8315 | 59400 | 0.5402 | 0.0023 | 0.5460 | 0.8506 | 0.5460 | | 0.1532 | 5.8414 | 59500 | 0.5630 | 0.0023 | 0.5440 | 0.8495 | 0.5440 | | 0.1468 | 5.8512 | 59600 | 0.5611 | 0.0023 | 0.5449 | 0.8501 | 0.5449 | | 0.1296 | 5.8610 | 59700 | 0.5486 | 0.0023 | 0.5448 | 0.8501 | 0.5448 | | 0.1338 | 5.8708 | 59800 | 0.5486 | 0.0023 | 0.5453 | 0.8498 | 0.5453 | | 0.111 | 5.8806 | 59900 | 0.5475 | 0.0023 | 0.5458 | 0.8504 | 0.5458 | | 0.1477 | 5.8904 | 60000 | 0.5607 | 0.0023 | 0.5474 | 0.8501 | 0.5474 | | 0.123 | 5.9003 | 60100 | 0.5546 | 0.0023 | 0.5485 | 0.8504 | 0.5485 | | 0.1218 | 5.9101 | 60200 | 0.5682 | 0.0023 | 0.5462 | 0.8504 | 0.5462 | | 0.1251 | 5.9199 | 60300 | 0.5482 | 0.0023 | 0.5515 | 0.8526 | 0.5515 | | 0.1077 | 5.9297 | 60400 | 0.5666 | 0.0023 | 0.5473 | 0.8505 | 0.5473 | | 0.1061 | 5.9395 | 60500 | 0.5500 | 0.0023 | 0.5443 | 0.8495 | 0.5443 | | 0.1014 | 5.9493 | 60600 | 0.5560 | 0.0023 | 0.5437 | 0.8495 | 0.5437 | | 0.1305 | 5.9592 | 60700 | 0.5539 | 0.0023 | 0.5435 | 0.8491 | 0.5435 | | 0.1216 | 5.9690 | 60800 | 0.5606 | 0.0023 | 0.5436 | 0.8500 | 0.5436 | | 0.1412 | 5.9788 | 60900 | 0.5396 | 0.0023 | 0.5467 | 0.8515 | 0.5467 | | 0.1434 | 5.9886 | 61000 | 0.5686 | 0.0023 | 0.5476 | 0.8504 | 0.5476 | | 0.1215 | 5.9984 | 61100 | 0.5585 | 0.0023 | 0.5442 | 0.8499 | 0.5442 | | 0.0435 | 6.0082 | 61200 | 0.7068 | 0.0023 | 0.5421 | 0.8491 | 0.5421 | | 0.0616 | 6.0181 | 61300 | 0.6965 | 0.0023 | 0.5375 | 0.8475 | 0.5375 | | 0.033 | 6.0279 | 61400 | 0.7218 | 0.0023 | 0.5394 | 0.8478 | 0.5394 | | 0.0256 | 6.0377 | 61500 | 0.7112 | 0.0023 | 0.5408 | 0.8485 | 0.5408 | | 0.0731 | 6.0475 | 61600 | 0.7074 | 0.0023 | 0.5406 | 0.8485 | 0.5406 | | 0.0473 | 6.0573 | 61700 | 0.7017 | 0.0023 | 0.5405 | 0.8480 | 0.5405 | | 0.0357 | 6.0672 | 61800 | 0.7181 | 0.0023 | 0.5385 | 0.8471 | 0.5385 | | 0.049 | 6.0770 | 61900 | 0.7106 | 0.0023 | 0.5407 | 0.8479 | 0.5407 | | 0.0806 | 6.0868 | 62000 | 0.7158 | 0.0023 | 0.5358 | 0.8471 | 0.5358 | | 0.0906 | 6.0966 | 62100 | 0.6976 | 0.0023 | 0.5400 | 0.8472 | 0.5400 | | 0.08 | 6.1064 | 62200 | 0.7085 | 0.0023 | 0.5443 | 0.8493 | 0.5443 | | 0.0542 | 6.1162 | 62300 | 0.7151 | 0.0023 | 0.5459 | 0.8498 | 0.5459 | | 0.0599 | 6.1261 | 62400 | 0.7106 | 0.0023 | 0.5405 | 0.8485 | 0.5405 | | 0.0562 | 6.1359 | 62500 | 0.7191 | 0.0023 | 0.5351 | 0.8470 | 0.5351 | | 0.0561 | 6.1457 | 62600 | 0.7166 | 0.0023 | 0.5415 | 0.8485 | 0.5415 | | 0.0743 | 6.1555 | 62700 | 0.7087 | 0.0023 | 0.5388 | 0.8483 | 0.5388 | | 0.1107 | 6.1653 | 62800 | 0.7090 | 0.0023 | 0.5396 | 0.8480 | 0.5396 | | 0.0671 | 6.1751 | 62900 | 0.7157 | 0.0023 | 0.5448 | 0.8503 | 0.5448 | | 0.06 | 6.1850 | 63000 | 0.7398 | 0.0023 | 0.5436 | 0.8490 | 0.5436 | | 0.107 | 6.1948 | 63100 | 0.7146 | 0.0023 | 0.5444 | 0.8494 | 0.5444 | | 0.0669 | 6.2046 | 63200 | 0.7012 | 0.0023 | 0.5422 | 0.8485 | 0.5422 | | 0.0515 | 6.2144 | 63300 | 0.7000 | 0.0023 | 0.5452 | 0.8494 | 0.5452 | | 0.0408 | 6.2242 | 63400 | 0.7139 | 0.0023 | 0.5467 | 0.8494 | 0.5467 | | 0.0889 | 6.2340 | 63500 | 0.7014 | 0.0023 | 0.5448 | 0.8493 | 0.5448 | | 0.0714 | 6.2439 | 63600 | 0.7134 | 0.0023 | 0.5429 | 0.8484 | 0.5429 | | 0.1018 | 6.2537 | 63700 | 0.7260 | 0.0023 | 0.5419 | 0.8491 | 0.5419 | | 0.069 | 6.2635 | 63800 | 0.7053 | 0.0023 | 0.5376 | 0.8472 | 0.5376 | | 0.0501 | 6.2733 | 63900 | 0.7083 | 0.0023 | 0.5427 | 0.8484 | 0.5427 | | 0.1078 | 6.2831 | 64000 | 0.7107 | 0.0023 | 0.5398 | 0.8485 | 0.5398 | | 0.0604 | 6.2930 | 64100 | 0.7016 | 0.0023 | 0.5402 | 0.8489 | 0.5402 | | 0.0553 | 6.3028 | 64200 | 0.7100 | 0.0023 | 0.5422 | 0.8498 | 0.5422 | | 0.058 | 6.3126 | 64300 | 0.6986 | 0.0023 | 0.5411 | 0.8489 | 0.5411 | | 0.0715 | 6.3224 | 64400 | 0.6950 | 0.0023 | 0.5413 | 0.8481 | 0.5413 | | 0.0738 | 6.3322 | 64500 | 0.7097 | 0.0023 | 0.5405 | 0.8482 | 0.5405 | | 0.0587 | 6.3420 | 64600 | 0.7091 | 0.0023 | 0.5413 | 0.8485 | 0.5413 | | 0.0443 | 6.3519 | 64700 | 0.7075 | 0.0023 | 0.5427 | 0.8484 | 0.5427 | | 0.0379 | 6.3617 | 64800 | 0.6884 | 0.0023 | 0.5445 | 0.8498 | 0.5445 | | 0.0944 | 6.3715 | 64900 | 0.7018 | 0.0023 | 0.5436 | 0.8492 | 0.5436 | | 0.0624 | 6.3813 | 65000 | 0.6959 | 0.0023 | 0.5436 | 0.8496 | 0.5436 | | 0.0708 | 6.3911 | 65100 | 0.6927 | 0.0023 | 0.5420 | 0.8485 | 0.5420 | | 0.0593 | 6.4009 | 65200 | 0.6982 | 0.0023 | 0.5413 | 0.8491 | 0.5413 | | 0.077 | 6.4108 | 65300 | 0.7035 | 0.0023 | 0.5409 | 0.8485 | 0.5409 | | 0.0675 | 6.4206 | 65400 | 0.7041 | 0.0023 | 0.5427 | 0.8502 | 0.5427 | | 0.0677 | 6.4304 | 65500 | 0.6985 | 0.0023 | 0.5373 | 0.8481 | 0.5373 | | 0.0632 | 6.4402 | 65600 | 0.6994 | 0.0023 | 0.5409 | 0.8477 | 0.5409 | | 0.062 | 6.4500 | 65700 | 0.7101 | 0.0023 | 0.5431 | 0.8485 | 0.5431 | | 0.0378 | 6.4598 | 65800 | 0.7016 | 0.0023 | 0.5403 | 0.8477 | 0.5403 | | 0.0748 | 6.4697 | 65900 | 0.6954 | 0.0023 | 0.5443 | 0.8491 | 0.5443 | | 0.0542 | 6.4795 | 66000 | 0.6853 | 0.0023 | 0.5429 | 0.8485 | 0.5429 | | 0.0739 | 6.4893 | 66100 | 0.6981 | 0.0023 | 0.5398 | 0.8480 | 0.5398 | | 0.0542 | 6.4991 | 66200 | 0.6757 | 0.0023 | 0.5411 | 0.8487 | 0.5411 | | 0.0962 | 6.5089 | 66300 | 0.7044 | 0.0023 | 0.5437 | 0.8502 | 0.5437 | | 0.0731 | 6.5188 | 66400 | 0.6833 | 0.0023 | 0.5419 | 0.8494 | 0.5419 | | 0.0596 | 6.5286 | 66500 | 0.7003 | 0.0023 | 0.5407 | 0.8492 | 0.5407 | | 0.0658 | 6.5384 | 66600 | 0.6880 | 0.0023 | 0.5425 | 0.8493 | 0.5425 | | 0.0612 | 6.5482 | 66700 | 0.6916 | 0.0023 | 0.5429 | 0.8496 | 0.5429 | | 0.0446 | 6.5580 | 66800 | 0.6877 | 0.0023 | 0.5449 | 0.8495 | 0.5449 | | 0.0641 | 6.5678 | 66900 | 0.6862 | 0.0023 | 0.5461 | 0.8498 | 0.5461 | | 0.0664 | 6.5777 | 67000 | 0.6910 | 0.0023 | 0.5447 | 0.8507 | 0.5447 | | 0.0814 | 6.5875 | 67100 | 0.7071 | 0.0023 | 0.5393 | 0.8473 | 0.5393 | | 0.0762 | 6.5973 | 67200 | 0.6874 | 0.0023 | 0.5408 | 0.8485 | 0.5408 | | 0.0537 | 6.6071 | 67300 | 0.6814 | 0.0023 | 0.5415 | 0.8488 | 0.5415 | | 0.0832 | 6.6169 | 67400 | 0.6947 | 0.0023 | 0.5438 | 0.8487 | 0.5438 | | 0.0527 | 6.6267 | 67500 | 0.6915 | 0.0023 | 0.5404 | 0.8483 | 0.5404 | | 0.0837 | 6.6366 | 67600 | 0.6738 | 0.0023 | 0.5434 | 0.8492 | 0.5434 | | 0.0729 | 6.6464 | 67700 | 0.6747 | 0.0023 | 0.5396 | 0.8485 | 0.5396 | | 0.0674 | 6.6562 | 67800 | 0.6940 | 0.0023 | 0.5398 | 0.8470 | 0.5398 | | 0.0695 | 6.6660 | 67900 | 0.6851 | 0.0023 | 0.5418 | 0.8486 | 0.5418 | | 0.0726 | 6.6758 | 68000 | 0.6840 | 0.0023 | 0.5427 | 0.8487 | 0.5427 | | 0.1095 | 6.6856 | 68100 | 0.7008 | 0.0023 | 0.5434 | 0.8489 | 0.5434 | | 0.1018 | 6.6955 | 68200 | 0.6806 | 0.0023 | 0.5414 | 0.8489 | 0.5414 | | 0.0654 | 6.7053 | 68300 | 0.6777 | 0.0023 | 0.5420 | 0.8489 | 0.5420 | | 0.0537 | 6.7151 | 68400 | 0.6819 | 0.0023 | 0.5477 | 0.8499 | 0.5477 | | 0.0697 | 6.7249 | 68500 | 0.6839 | 0.0023 | 0.5488 | 0.8508 | 0.5488 | | 0.0924 | 6.7347 | 68600 | 0.6902 | 0.0023 | 0.5427 | 0.8496 | 0.5427 | | 0.0685 | 6.7446 | 68700 | 0.6902 | 0.0023 | 0.5440 | 0.8488 | 0.5440 | | 0.0651 | 6.7544 | 68800 | 0.6803 | 0.0023 | 0.5409 | 0.8493 | 0.5409 | | 0.0699 | 6.7642 | 68900 | 0.6835 | 0.0023 | 0.5437 | 0.8493 | 0.5437 | | 0.0897 | 6.7740 | 69000 | 0.6677 | 0.0023 | 0.5430 | 0.8488 | 0.5430 | | 0.0688 | 6.7838 | 69100 | 0.6819 | 0.0023 | 0.5415 | 0.8488 | 0.5415 | | 0.0838 | 6.7936 | 69200 | 0.6790 | 0.0023 | 0.5396 | 0.8483 | 0.5396 | | 0.0651 | 6.8035 | 69300 | 0.6882 | 0.0023 | 0.5441 | 0.8493 | 0.5441 | | 0.046 | 6.8133 | 69400 | 0.6798 | 0.0023 | 0.5431 | 0.8496 | 0.5431 | | 0.0727 | 6.8231 | 69500 | 0.6941 | 0.0023 | 0.5451 | 0.8496 | 0.5451 | | 0.0615 | 6.8329 | 69600 | 0.6950 | 0.0023 | 0.5434 | 0.8481 | 0.5434 | | 0.0788 | 6.8427 | 69700 | 0.6942 | 0.0023 | 0.5441 | 0.8495 | 0.5441 | | 0.0885 | 6.8525 | 69800 | 0.7101 | 0.0023 | 0.5448 | 0.8495 | 0.5448 | | 0.075 | 6.8624 | 69900 | 0.6875 | 0.0023 | 0.5455 | 0.8503 | 0.5455 | | 0.0811 | 6.8722 | 70000 | 0.6928 | 0.0023 | 0.5449 | 0.8480 | 0.5449 | | 0.0601 | 6.8820 | 70100 | 0.6941 | 0.0023 | 0.5429 | 0.8484 | 0.5429 | | 0.0681 | 6.8918 | 70200 | 0.6741 | 0.0023 | 0.5458 | 0.8491 | 0.5458 | | 0.0726 | 6.9016 | 70300 | 0.6911 | 0.0023 | 0.5430 | 0.8492 | 0.5430 | | 0.0427 | 6.9114 | 70400 | 0.6841 | 0.0023 | 0.5418 | 0.8484 | 0.5418 | | 0.099 | 6.9213 | 70500 | 0.6805 | 0.0023 | 0.5430 | 0.8482 | 0.5430 | | 0.0836 | 6.9311 | 70600 | 0.6841 | 0.0023 | 0.5425 | 0.8486 | 0.5425 | | 0.0738 | 6.9409 | 70700 | 0.7019 | 0.0023 | 0.5412 | 0.8482 | 0.5412 | | 0.0761 | 6.9507 | 70800 | 0.7011 | 0.0023 | 0.5432 | 0.8479 | 0.5432 | | 0.0547 | 6.9605 | 70900 | 0.6945 | 0.0023 | 0.5442 | 0.8488 | 0.5442 | | 0.0561 | 6.9704 | 71000 | 0.6845 | 0.0023 | 0.5396 | 0.8474 | 0.5396 | | 0.0773 | 6.9802 | 71100 | 0.6765 | 0.0023 | 0.5413 | 0.8495 | 0.5413 | | 0.0812 | 6.9900 | 71200 | 0.6850 | 0.0023 | 0.5412 | 0.8486 | 0.5412 | | 0.0626 | 6.9998 | 71300 | 0.7036 | 0.0023 | 0.5392 | 0.8478 | 0.5392 | | 0.027 | 7.0096 | 71400 | 0.7616 | 0.0023 | 0.5416 | 0.8483 | 0.5416 | | 0.0295 | 7.0194 | 71500 | 0.8194 | 0.0023 | 0.5431 | 0.8490 | 0.5431 | | 0.0199 | 7.0293 | 71600 | 0.8080 | 0.0023 | 0.5460 | 0.8492 | 0.5460 | | 0.0236 | 7.0391 | 71700 | 0.7988 | 0.0023 | 0.5459 | 0.8485 | 0.5459 | | 0.034 | 7.0489 | 71800 | 0.7993 | 0.0023 | 0.5433 | 0.8492 | 0.5433 | | 0.0409 | 7.0587 | 71900 | 0.7983 | 0.0023 | 0.5434 | 0.8487 | 0.5434 | | 0.0472 | 7.0685 | 72000 | 0.8121 | 0.0023 | 0.5438 | 0.8495 | 0.5438 | | 0.0231 | 7.0783 | 72100 | 0.7862 | 0.0023 | 0.5453 | 0.8489 | 0.5453 | | 0.0425 | 7.0882 | 72200 | 0.7952 | 0.0023 | 0.5378 | 0.8470 | 0.5378 | | 0.0387 | 7.0980 | 72300 | 0.8005 | 0.0023 | 0.5463 | 0.8498 | 0.5463 | | 0.0148 | 7.1078 | 72400 | 0.8147 | 0.0023 | 0.5456 | 0.8495 | 0.5456 | | 0.0214 | 7.1176 | 72500 | 0.8028 | 0.0023 | 0.5474 | 0.8495 | 0.5474 | | 0.0308 | 7.1274 | 72600 | 0.7911 | 0.0023 | 0.5416 | 0.8484 | 0.5416 | | 0.05 | 7.1372 | 72700 | 0.7904 | 0.0023 | 0.5478 | 0.8508 | 0.5478 | | 0.0361 | 7.1471 | 72800 | 0.8085 | 0.0023 | 0.5437 | 0.8489 | 0.5437 | | 0.0393 | 7.1569 | 72900 | 0.7999 | 0.0023 | 0.5453 | 0.8491 | 0.5453 | | 0.0338 | 7.1667 | 73000 | 0.7902 | 0.0023 | 0.5460 | 0.8503 | 0.5460 | | 0.059 | 7.1765 | 73100 | 0.7874 | 0.0023 | 0.5423 | 0.8496 | 0.5423 | | 0.0357 | 7.1863 | 73200 | 0.7945 | 0.0023 | 0.5430 | 0.8497 | 0.5430 | | 0.0377 | 7.1962 | 73300 | 0.7717 | 0.0023 | 0.5452 | 0.8500 | 0.5452 | | 0.0423 | 7.2060 | 73400 | 0.8074 | 0.0023 | 0.5432 | 0.8494 | 0.5432 | | 0.0628 | 7.2158 | 73500 | 0.7931 | 0.0023 | 0.5446 | 0.8498 | 0.5446 | | 0.0447 | 7.2256 | 73600 | 0.7851 | 0.0023 | 0.5463 | 0.8500 | 0.5463 | | 0.0525 | 7.2354 | 73700 | 0.7883 | 0.0023 | 0.5449 | 0.8505 | 0.5449 | | 0.0402 | 7.2452 | 73800 | 0.7963 | 0.0023 | 0.5416 | 0.8489 | 0.5416 | | 0.032 | 7.2551 | 73900 | 0.8000 | 0.0023 | 0.5458 | 0.8494 | 0.5458 | | 0.0374 | 7.2649 | 74000 | 0.8025 | 0.0023 | 0.5438 | 0.8492 | 0.5438 | | 0.0374 | 7.2747 | 74100 | 0.7673 | 0.0023 | 0.5469 | 0.8501 | 0.5469 | | 0.0358 | 7.2845 | 74200 | 0.7812 | 0.0023 | 0.5445 | 0.8493 | 0.5445 | | 0.0415 | 7.2943 | 74300 | 0.7962 | 0.0023 | 0.5419 | 0.8486 | 0.5419 | | 0.0253 | 7.3041 | 74400 | 0.7881 | 0.0023 | 0.5442 | 0.8493 | 0.5442 | | 0.0585 | 7.3140 | 74500 | 0.8055 | 0.0023 | 0.5463 | 0.8492 | 0.5463 | | 0.0333 | 7.3238 | 74600 | 0.7911 | 0.0023 | 0.5454 | 0.8497 | 0.5454 | | 0.0575 | 7.3336 | 74700 | 0.7975 | 0.0023 | 0.5431 | 0.8497 | 0.5431 | | 0.0465 | 7.3434 | 74800 | 0.7911 | 0.0023 | 0.5458 | 0.8500 | 0.5458 | | 0.0541 | 7.3532 | 74900 | 0.7811 | 0.0023 | 0.5467 | 0.8502 | 0.5467 | | 0.0633 | 7.3630 | 75000 | 0.7984 | 0.0023 | 0.5485 | 0.8507 | 0.5485 | | 0.0399 | 7.3729 | 75100 | 0.7985 | 0.0023 | 0.5424 | 0.8483 | 0.5424 | | 0.0547 | 7.3827 | 75200 | 0.8127 | 0.0023 | 0.5484 | 0.8510 | 0.5484 | | 0.0303 | 7.3925 | 75300 | 0.8093 | 0.0023 | 0.5456 | 0.8497 | 0.5456 | | 0.021 | 7.4023 | 75400 | 0.8016 | 0.0023 | 0.5433 | 0.8495 | 0.5433 | | 0.0439 | 7.4121 | 75500 | 0.7885 | 0.0023 | 0.5438 | 0.8499 | 0.5438 | | 0.0632 | 7.4220 | 75600 | 0.7888 | 0.0023 | 0.5462 | 0.8494 | 0.5462 | | 0.0415 | 7.4318 | 75700 | 0.7920 | 0.0023 | 0.5484 | 0.8511 | 0.5484 | | 0.0368 | 7.4416 | 75800 | 0.7839 | 0.0023 | 0.5422 | 0.8480 | 0.5422 | | 0.0652 | 7.4514 | 75900 | 0.7923 | 0.0023 | 0.5413 | 0.8490 | 0.5413 | | 0.0521 | 7.4612 | 76000 | 0.7877 | 0.0023 | 0.5417 | 0.8482 | 0.5417 | | 0.0489 | 7.4710 | 76100 | 0.7694 | 0.0023 | 0.5436 | 0.8496 | 0.5436 | | 0.0372 | 7.4809 | 76200 | 0.7907 | 0.0023 | 0.5444 | 0.8494 | 0.5444 | | 0.0487 | 7.4907 | 76300 | 0.7804 | 0.0023 | 0.5435 | 0.8490 | 0.5435 | | 0.0549 | 7.5005 | 76400 | 0.7973 | 0.0023 | 0.5447 | 0.8489 | 0.5447 | | 0.0433 | 7.5103 | 76500 | 0.8005 | 0.0023 | 0.5441 | 0.8494 | 0.5441 | | 0.0345 | 7.5201 | 76600 | 0.7909 | 0.0023 | 0.5476 | 0.8504 | 0.5476 | | 0.0558 | 7.5299 | 76700 | 0.7845 | 0.0023 | 0.5466 | 0.8507 | 0.5466 | | 0.0473 | 7.5398 | 76800 | 0.7833 | 0.0023 | 0.5459 | 0.8499 | 0.5459 | | 0.0406 | 7.5496 | 76900 | 0.7811 | 0.0023 | 0.5432 | 0.8490 | 0.5432 | | 0.0455 | 7.5594 | 77000 | 0.7905 | 0.0023 | 0.5469 | 0.8500 | 0.5469 | | 0.0421 | 7.5692 | 77100 | 0.7857 | 0.0023 | 0.5430 | 0.8494 | 0.5430 | | 0.0452 | 7.5790 | 77200 | 0.7963 | 0.0023 | 0.5476 | 0.8503 | 0.5476 | | 0.057 | 7.5888 | 77300 | 0.7944 | 0.0023 | 0.5443 | 0.8498 | 0.5443 | | 0.0529 | 7.5987 | 77400 | 0.7861 | 0.0023 | 0.5461 | 0.8498 | 0.5461 | | 0.0609 | 7.6085 | 77500 | 0.7857 | 0.0023 | 0.5463 | 0.8500 | 0.5463 | | 0.0304 | 7.6183 | 77600 | 0.7788 | 0.0023 | 0.5434 | 0.8495 | 0.5434 | | 0.0211 | 7.6281 | 77700 | 0.7951 | 0.0023 | 0.5438 | 0.8497 | 0.5438 | | 0.0551 | 7.6379 | 77800 | 0.7978 | 0.0023 | 0.5445 | 0.8486 | 0.5445 | | 0.0366 | 7.6478 | 77900 | 0.7927 | 0.0023 | 0.5472 | 0.8506 | 0.5472 | | 0.0655 | 7.6576 | 78000 | 0.7772 | 0.0023 | 0.5469 | 0.8504 | 0.5469 | | 0.0294 | 7.6674 | 78100 | 0.7873 | 0.0023 | 0.5467 | 0.8502 | 0.5467 | | 0.0339 | 7.6772 | 78200 | 0.7830 | 0.0023 | 0.5437 | 0.8496 | 0.5437 | | 0.0479 | 7.6870 | 78300 | 0.7916 | 0.0023 | 0.5431 | 0.8490 | 0.5431 | | 0.0471 | 7.6968 | 78400 | 0.7934 | 0.0023 | 0.5427 | 0.8490 | 0.5427 | | 0.0473 | 7.7067 | 78500 | 0.7820 | 0.0023 | 0.5444 | 0.8499 | 0.5444 | | 0.0575 | 7.7165 | 78600 | 0.7753 | 0.0023 | 0.5469 | 0.8504 | 0.5469 | | 0.0363 | 7.7263 | 78700 | 0.7752 | 0.0023 | 0.5433 | 0.8493 | 0.5433 | | 0.0445 | 7.7361 | 78800 | 0.7690 | 0.0023 | 0.5443 | 0.8499 | 0.5443 | | 0.074 | 7.7459 | 78900 | 0.7767 | 0.0023 | 0.5447 | 0.8496 | 0.5447 | | 0.0327 | 7.7557 | 79000 | 0.7734 | 0.0023 | 0.5473 | 0.8512 | 0.5473 | | 0.0511 | 7.7656 | 79100 | 0.7793 | 0.0023 | 0.5478 | 0.8521 | 0.5478 | | 0.0735 | 7.7754 | 79200 | 0.7701 | 0.0023 | 0.5455 | 0.8495 | 0.5455 | | 0.0372 | 7.7852 | 79300 | 0.7678 | 0.0023 | 0.5482 | 0.8509 | 0.5482 | | 0.0399 | 7.7950 | 79400 | 0.7797 | 0.0023 | 0.5439 | 0.8488 | 0.5439 | | 0.0372 | 7.8048 | 79500 | 0.7908 | 0.0023 | 0.5456 | 0.8496 | 0.5456 | | 0.0695 | 7.8146 | 79600 | 0.7879 | 0.0023 | 0.5436 | 0.8496 | 0.5436 | | 0.0548 | 7.8245 | 79700 | 0.7890 | 0.0023 | 0.5478 | 0.8515 | 0.5478 | | 0.0561 | 7.8343 | 79800 | 0.7778 | 0.0023 | 0.5447 | 0.8496 | 0.5447 | | 0.0527 | 7.8441 | 79900 | 0.7784 | 0.0023 | 0.5449 | 0.8498 | 0.5449 | | 0.0761 | 7.8539 | 80000 | 0.7863 | 0.0023 | 0.5483 | 0.8506 | 0.5483 | | 0.049 | 7.8637 | 80100 | 0.7818 | 0.0023 | 0.5467 | 0.8493 | 0.5467 | | 0.0315 | 7.8736 | 80200 | 0.7762 | 0.0023 | 0.5485 | 0.8507 | 0.5485 | | 0.0645 | 7.8834 | 80300 | 0.7697 | 0.0023 | 0.5460 | 0.8499 | 0.5460 | | 0.059 | 7.8932 | 80400 | 0.7755 | 0.0023 | 0.5449 | 0.8511 | 0.5449 | | 0.0493 | 7.9030 | 80500 | 0.7710 | 0.0023 | 0.5471 | 0.8509 | 0.5471 | | 0.052 | 7.9128 | 80600 | 0.7793 | 0.0023 | 0.5468 | 0.8509 | 0.5468 | | 0.0468 | 7.9226 | 80700 | 0.7789 | 0.0023 | 0.5482 | 0.8509 | 0.5482 | | 0.0461 | 7.9325 | 80800 | 0.7681 | 0.0023 | 0.5483 | 0.8511 | 0.5483 | | 0.0564 | 7.9423 | 80900 | 0.7771 | 0.0023 | 0.5422 | 0.8494 | 0.5422 | | 0.0409 | 7.9521 | 81000 | 0.7806 | 0.0023 | 0.5430 | 0.8490 | 0.5430 | | 0.0574 | 7.9619 | 81100 | 0.7937 | 0.0023 | 0.5436 | 0.8486 | 0.5436 | | 0.0315 | 7.9717 | 81200 | 0.7745 | 0.0023 | 0.5440 | 0.8498 | 0.5440 | | 0.0368 | 7.9815 | 81300 | 0.7689 | 0.0023 | 0.5432 | 0.8491 | 0.5432 | | 0.0443 | 7.9914 | 81400 | 0.7820 | 0.0023 | 0.5436 | 0.8490 | 0.5436 | | 0.0136 | 8.0012 | 81500 | 0.7892 | 0.0023 | 0.5422 | 0.8497 | 0.5422 | | 0.0259 | 8.0110 | 81600 | 0.8498 | 0.0023 | 0.5413 | 0.8483 | 0.5413 | | 0.0141 | 8.0208 | 81700 | 0.8559 | 0.0023 | 0.5425 | 0.8487 | 0.5425 | | 0.0528 | 8.0306 | 81800 | 0.8599 | 0.0023 | 0.5393 | 0.8487 | 0.5393 | | 0.0397 | 8.0404 | 81900 | 0.8533 | 0.0023 | 0.5424 | 0.8488 | 0.5424 | | 0.0089 | 8.0503 | 82000 | 0.8580 | 0.0023 | 0.5437 | 0.8494 | 0.5437 | | 0.0185 | 8.0601 | 82100 | 0.8384 | 0.0023 | 0.5460 | 0.8500 | 0.5460 | | 0.028 | 8.0699 | 82200 | 0.8448 | 0.0023 | 0.5400 | 0.8481 | 0.5400 | | 0.0105 | 8.0797 | 82300 | 0.8492 | 0.0023 | 0.5451 | 0.8500 | 0.5451 | | 0.0242 | 8.0895 | 82400 | 0.8548 | 0.0023 | 0.5402 | 0.8477 | 0.5402 | | 0.0275 | 8.0994 | 82500 | 0.8536 | 0.0023 | 0.5422 | 0.8496 | 0.5422 | | 0.0328 | 8.1092 | 82600 | 0.8568 | 0.0023 | 0.5464 | 0.8504 | 0.5464 | | 0.02 | 8.1190 | 82700 | 0.8506 | 0.0023 | 0.5413 | 0.8487 | 0.5413 | | 0.0497 | 8.1288 | 82800 | 0.8637 | 0.0023 | 0.5416 | 0.8482 | 0.5416 | | 0.0276 | 8.1386 | 82900 | 0.8701 | 0.0023 | 0.5425 | 0.8484 | 0.5425 | | 0.0245 | 8.1484 | 83000 | 0.8718 | 0.0023 | 0.5422 | 0.8480 | 0.5422 | | 0.0242 | 8.1583 | 83100 | 0.8749 | 0.0023 | 0.5382 | 0.8478 | 0.5382 | | 0.037 | 8.1681 | 83200 | 0.8610 | 0.0023 | 0.5408 | 0.8483 | 0.5408 | | 0.0274 | 8.1779 | 83300 | 0.8736 | 0.0023 | 0.5442 | 0.8488 | 0.5442 | | 0.0112 | 8.1877 | 83400 | 0.8552 | 0.0023 | 0.5393 | 0.8477 | 0.5393 | | 0.0159 | 8.1975 | 83500 | 0.8743 | 0.0023 | 0.5425 | 0.8485 | 0.5425 | | 0.0327 | 8.2073 | 83600 | 0.8559 | 0.0023 | 0.5420 | 0.8490 | 0.5420 | | 0.0195 | 8.2172 | 83700 | 0.8638 | 0.0023 | 0.5409 | 0.8481 | 0.5409 | | 0.0219 | 8.2270 | 83800 | 0.8435 | 0.0023 | 0.5407 | 0.8485 | 0.5407 | | 0.0194 | 8.2368 | 83900 | 0.8381 | 0.0023 | 0.5450 | 0.8503 | 0.5450 | | 0.0117 | 8.2466 | 84000 | 0.8572 | 0.0023 | 0.5421 | 0.8486 | 0.5421 | | 0.0449 | 8.2564 | 84100 | 0.8428 | 0.0023 | 0.5414 | 0.8486 | 0.5414 | | 0.0182 | 8.2662 | 84200 | 0.8597 | 0.0023 | 0.5409 | 0.8477 | 0.5409 | | 0.0249 | 8.2761 | 84300 | 0.8662 | 0.0023 | 0.5408 | 0.8485 | 0.5408 | | 0.0166 | 8.2859 | 84400 | 0.8622 | 0.0023 | 0.5421 | 0.8492 | 0.5421 | | 0.0229 | 8.2957 | 84500 | 0.8622 | 0.0023 | 0.5483 | 0.8509 | 0.5483 | | 0.0213 | 8.3055 | 84600 | 0.8359 | 0.0023 | 0.5439 | 0.8493 | 0.5439 | | 0.0339 | 8.3153 | 84700 | 0.8509 | 0.0023 | 0.5451 | 0.8506 | 0.5451 | | 0.0494 | 8.3252 | 84800 | 0.8619 | 0.0023 | 0.5407 | 0.8484 | 0.5407 | | 0.0243 | 8.3350 | 84900 | 0.8579 | 0.0023 | 0.5445 | 0.8490 | 0.5445 | | 0.039 | 8.3448 | 85000 | 0.8615 | 0.0023 | 0.5458 | 0.8494 | 0.5458 | | 0.0218 | 8.3546 | 85100 | 0.8473 | 0.0023 | 0.5436 | 0.8492 | 0.5436 | | 0.0428 | 8.3644 | 85200 | 0.8475 | 0.0023 | 0.5461 | 0.8498 | 0.5461 | | 0.0299 | 8.3742 | 85300 | 0.8468 | 0.0023 | 0.5483 | 0.8509 | 0.5483 | | 0.0305 | 8.3841 | 85400 | 0.8449 | 0.0023 | 0.5458 | 0.8503 | 0.5458 | | 0.0414 | 8.3939 | 85500 | 0.8470 | 0.0023 | 0.5468 | 0.8509 | 0.5468 | | 0.042 | 8.4037 | 85600 | 0.8452 | 0.0023 | 0.5420 | 0.8495 | 0.5420 | | 0.0425 | 8.4135 | 85700 | 0.8460 | 0.0023 | 0.5452 | 0.8501 | 0.5452 | | 0.0211 | 8.4233 | 85800 | 0.8471 | 0.0023 | 0.5481 | 0.8511 | 0.5481 | | 0.011 | 8.4331 | 85900 | 0.8540 | 0.0023 | 0.5468 | 0.8504 | 0.5468 | | 0.0331 | 8.4430 | 86000 | 0.8454 | 0.0023 | 0.5515 | 0.8512 | 0.5515 | | 0.0293 | 8.4528 | 86100 | 0.8525 | 0.0023 | 0.5480 | 0.8507 | 0.5480 | | 0.0375 | 8.4626 | 86200 | 0.8410 | 0.0023 | 0.5480 | 0.8505 | 0.5480 | | 0.0219 | 8.4724 | 86300 | 0.8503 | 0.0023 | 0.5480 | 0.8508 | 0.5480 | | 0.0426 | 8.4822 | 86400 | 0.8777 | 0.0023 | 0.5452 | 0.8488 | 0.5452 | | 0.0479 | 8.4920 | 86500 | 0.8690 | 0.0023 | 0.5480 | 0.8500 | 0.5480 | | 0.0303 | 8.5019 | 86600 | 0.8465 | 0.0023 | 0.5477 | 0.8501 | 0.5477 | | 0.0223 | 8.5117 | 86700 | 0.8447 | 0.0023 | 0.5463 | 0.8505 | 0.5463 | | 0.0384 | 8.5215 | 86800 | 0.8612 | 0.0023 | 0.5470 | 0.8505 | 0.5470 | | 0.0153 | 8.5313 | 86900 | 0.8446 | 0.0023 | 0.5473 | 0.8509 | 0.5473 | | 0.0433 | 8.5411 | 87000 | 0.8407 | 0.0023 | 0.5476 | 0.8510 | 0.5476 | | 0.0196 | 8.5510 | 87100 | 0.8466 | 0.0023 | 0.5471 | 0.8507 | 0.5471 | | 0.0472 | 8.5608 | 87200 | 0.8572 | 0.0023 | 0.5480 | 0.8503 | 0.5480 | | 0.0502 | 8.5706 | 87300 | 0.8517 | 0.0023 | 0.5460 | 0.8497 | 0.5460 | | 0.0466 | 8.5804 | 87400 | 0.8538 | 0.0023 | 0.5444 | 0.8488 | 0.5444 | | 0.0153 | 8.5902 | 87500 | 0.8603 | 0.0023 | 0.5464 | 0.8493 | 0.5464 | | 0.0184 | 8.6000 | 87600 | 0.8586 | 0.0023 | 0.5463 | 0.8492 | 0.5463 | | 0.0273 | 8.6099 | 87700 | 0.8387 | 0.0023 | 0.5436 | 0.8487 | 0.5436 | | 0.0564 | 8.6197 | 87800 | 0.8482 | 0.0023 | 0.5454 | 0.8498 | 0.5454 | | 0.0255 | 8.6295 | 87900 | 0.8434 | 0.0023 | 0.5470 | 0.8501 | 0.5470 | | 0.0108 | 8.6393 | 88000 | 0.8517 | 0.0023 | 0.5504 | 0.8508 | 0.5504 | | 0.0315 | 8.6491 | 88100 | 0.8461 | 0.0023 | 0.5418 | 0.8485 | 0.5418 | | 0.0317 | 8.6589 | 88200 | 0.8602 | 0.0023 | 0.5456 | 0.8493 | 0.5456 | | 0.0255 | 8.6688 | 88300 | 0.8372 | 0.0023 | 0.5469 | 0.8493 | 0.5469 | | 0.0463 | 8.6786 | 88400 | 0.8518 | 0.0023 | 0.5500 | 0.8507 | 0.5500 | | 0.0287 | 8.6884 | 88500 | 0.8442 | 0.0023 | 0.5454 | 0.8499 | 0.5454 | | 0.0237 | 8.6982 | 88600 | 0.8405 | 0.0023 | 0.5458 | 0.8489 | 0.5458 | | 0.0316 | 8.7080 | 88700 | 0.8582 | 0.0023 | 0.5489 | 0.8498 | 0.5489 | | 0.0505 | 8.7178 | 88800 | 0.8507 | 0.0023 | 0.5467 | 0.8487 | 0.5467 | | 0.0191 | 8.7277 | 88900 | 0.8506 | 0.0023 | 0.5483 | 0.8504 | 0.5483 | | 0.0315 | 8.7375 | 89000 | 0.8456 | 0.0023 | 0.5498 | 0.8500 | 0.5498 | | 0.0355 | 8.7473 | 89100 | 0.8371 | 0.0023 | 0.5487 | 0.8506 | 0.5487 | | 0.05 | 8.7571 | 89200 | 0.8625 | 0.0023 | 0.5466 | 0.8498 | 0.5466 | | 0.0228 | 8.7669 | 89300 | 0.8548 | 0.0023 | 0.5476 | 0.8495 | 0.5476 | | 0.0327 | 8.7768 | 89400 | 0.8516 | 0.0023 | 0.5482 | 0.8500 | 0.5482 | | 0.0309 | 8.7866 | 89500 | 0.8657 | 0.0023 | 0.5454 | 0.8502 | 0.5454 | | 0.044 | 8.7964 | 89600 | 0.8640 | 0.0023 | 0.5456 | 0.8496 | 0.5456 | | 0.0497 | 8.8062 | 89700 | 0.8533 | 0.0023 | 0.5484 | 0.8504 | 0.5484 | | 0.0333 | 8.8160 | 89800 | 0.8603 | 0.0023 | 0.5477 | 0.8504 | 0.5477 | | 0.0387 | 8.8258 | 89900 | 0.8554 | 0.0023 | 0.5458 | 0.8504 | 0.5458 | | 0.0381 | 8.8357 | 90000 | 0.8380 | 0.0023 | 0.5462 | 0.8505 | 0.5462 | | 0.0178 | 8.8455 | 90100 | 0.8505 | 0.0023 | 0.5505 | 0.8515 | 0.5505 | | 0.0238 | 8.8553 | 90200 | 0.8530 | 0.0023 | 0.5474 | 0.8501 | 0.5474 | | 0.0317 | 8.8651 | 90300 | 0.8602 | 0.0023 | 0.5482 | 0.8506 | 0.5482 | | 0.0388 | 8.8749 | 90400 | 0.8569 | 0.0023 | 0.5496 | 0.8509 | 0.5496 | | 0.0283 | 8.8847 | 90500 | 0.8463 | 0.0023 | 0.5492 | 0.8512 | 0.5492 | | 0.0161 | 8.8946 | 90600 | 0.8392 | 0.0023 | 0.5501 | 0.8516 | 0.5501 | | 0.0189 | 8.9044 | 90700 | 0.8471 | 0.0023 | 0.5496 | 0.8504 | 0.5496 | | 0.0481 | 8.9142 | 90800 | 0.8646 | 0.0023 | 0.5471 | 0.8504 | 0.5471 | | 0.0457 | 8.9240 | 90900 | 0.8572 | 0.0023 | 0.5453 | 0.8494 | 0.5453 | | 0.034 | 8.9338 | 91000 | 0.8543 | 0.0023 | 0.5471 | 0.8503 | 0.5471 | | 0.0257 | 8.9436 | 91100 | 0.8598 | 0.0023 | 0.5494 | 0.8502 | 0.5494 | | 0.0506 | 8.9535 | 91200 | 0.8539 | 0.0023 | 0.5460 | 0.8498 | 0.5460 | | 0.0244 | 8.9633 | 91300 | 0.8539 | 0.0023 | 0.5456 | 0.8498 | 0.5456 | | 0.0332 | 8.9731 | 91400 | 0.8571 | 0.0023 | 0.5465 | 0.8502 | 0.5465 | | 0.0221 | 8.9829 | 91500 | 0.8460 | 0.0023 | 0.5474 | 0.8502 | 0.5474 | | 0.052 | 8.9927 | 91600 | 0.8621 | 0.0023 | 0.5493 | 0.8506 | 0.5493 | | 0.0241 | 9.0026 | 91700 | 0.8705 | 0.0023 | 0.5482 | 0.8507 | 0.5482 | | 0.0089 | 9.0124 | 91800 | 0.9034 | 0.0023 | 0.5450 | 0.8504 | 0.5450 | | 0.0185 | 9.0222 | 91900 | 0.9087 | 0.0023 | 0.5470 | 0.8499 | 0.5470 | | 0.0237 | 9.0320 | 92000 | 0.9123 | 0.0023 | 0.5471 | 0.8508 | 0.5471 | | 0.0168 | 9.0418 | 92100 | 0.9145 | 0.0023 | 0.5429 | 0.8488 | 0.5429 | | 0.026 | 9.0516 | 92200 | 0.8958 | 0.0023 | 0.5427 | 0.8485 | 0.5427 | | 0.0174 | 9.0615 | 92300 | 0.9131 | 0.0023 | 0.5448 | 0.8493 | 0.5448 | | 0.0152 | 9.0713 | 92400 | 0.9096 | 0.0023 | 0.5449 | 0.8489 | 0.5449 | | 0.0161 | 9.0811 | 92500 | 0.9098 | 0.0023 | 0.5448 | 0.8498 | 0.5448 | | 0.0116 | 9.0909 | 92600 | 0.9190 | 0.0023 | 0.5458 | 0.8496 | 0.5458 | | 0.0237 | 9.1007 | 92700 | 0.9248 | 0.0023 | 0.5416 | 0.8486 | 0.5416 | | 0.0266 | 9.1105 | 92800 | 0.9062 | 0.0023 | 0.5469 | 0.8502 | 0.5469 | | 0.0132 | 9.1204 | 92900 | 0.9097 | 0.0023 | 0.5424 | 0.8488 | 0.5424 | | 0.0139 | 9.1302 | 93000 | 0.9081 | 0.0023 | 0.5437 | 0.8496 | 0.5437 | | 0.0098 | 9.1400 | 93100 | 0.9110 | 0.0023 | 0.5472 | 0.8506 | 0.5472 | | 0.031 | 9.1498 | 93200 | 0.8961 | 0.0023 | 0.5471 | 0.8505 | 0.5471 | | 0.0091 | 9.1596 | 93300 | 0.9141 | 0.0023 | 0.5478 | 0.8501 | 0.5478 | | 0.0286 | 9.1694 | 93400 | 0.9169 | 0.0023 | 0.5443 | 0.8489 | 0.5443 | | 0.01 | 9.1793 | 93500 | 0.9170 | 0.0023 | 0.5434 | 0.8489 | 0.5434 | | 0.0271 | 9.1891 | 93600 | 0.9098 | 0.0023 | 0.5474 | 0.8507 | 0.5474 | | 0.0144 | 9.1989 | 93700 | 0.9348 | 0.0023 | 0.5463 | 0.8500 | 0.5463 | | 0.0094 | 9.2087 | 93800 | 0.9031 | 0.0023 | 0.5460 | 0.8504 | 0.5460 | | 0.0143 | 9.2185 | 93900 | 0.9219 | 0.0023 | 0.5455 | 0.8500 | 0.5455 | | 0.0176 | 9.2284 | 94000 | 0.9155 | 0.0023 | 0.5474 | 0.8499 | 0.5474 | | 0.0235 | 9.2382 | 94100 | 0.9179 | 0.0023 | 0.5423 | 0.8489 | 0.5423 | | 0.0415 | 9.2480 | 94200 | 0.9208 | 0.0023 | 0.5476 | 0.8501 | 0.5476 | | 0.0109 | 9.2578 | 94300 | 0.8946 | 0.0023 | 0.5456 | 0.8504 | 0.5456 | | 0.0373 | 9.2676 | 94400 | 0.9140 | 0.0023 | 0.5470 | 0.8504 | 0.5470 | | 0.0311 | 9.2774 | 94500 | 0.9343 | 0.0023 | 0.5438 | 0.8484 | 0.5438 | | 0.039 | 9.2873 | 94600 | 0.9133 | 0.0023 | 0.5480 | 0.8498 | 0.5480 | | 0.0408 | 9.2971 | 94700 | 0.9112 | 0.0023 | 0.5468 | 0.8497 | 0.5468 | | 0.0118 | 9.3069 | 94800 | 0.9149 | 0.0023 | 0.5457 | 0.8497 | 0.5457 | | 0.0168 | 9.3167 | 94900 | 0.8971 | 0.0023 | 0.5482 | 0.8503 | 0.5482 | | 0.0358 | 9.3265 | 95000 | 0.9145 | 0.0023 | 0.5435 | 0.8497 | 0.5435 | | 0.0042 | 9.3363 | 95100 | 0.8997 | 0.0023 | 0.5471 | 0.8514 | 0.5471 | | 0.0226 | 9.3462 | 95200 | 0.9101 | 0.0023 | 0.5456 | 0.8512 | 0.5456 | | 0.0143 | 9.3560 | 95300 | 0.8954 | 0.0023 | 0.5438 | 0.8499 | 0.5438 | | 0.0134 | 9.3658 | 95400 | 0.8920 | 0.0023 | 0.5479 | 0.8514 | 0.5479 | | 0.0208 | 9.3756 | 95500 | 0.9007 | 0.0023 | 0.5482 | 0.8511 | 0.5482 | | 0.0217 | 9.3854 | 95600 | 0.9150 | 0.0023 | 0.5482 | 0.8508 | 0.5482 | | 0.0141 | 9.3952 | 95700 | 0.9112 | 0.0023 | 0.5492 | 0.8511 | 0.5492 | | 0.039 | 9.4051 | 95800 | 0.8913 | 0.0023 | 0.5460 | 0.8504 | 0.5460 | | 0.0218 | 9.4149 | 95900 | 0.8881 | 0.0023 | 0.5485 | 0.8517 | 0.5485 | | 0.027 | 9.4247 | 96000 | 0.9113 | 0.0023 | 0.5467 | 0.8508 | 0.5467 | | 0.027 | 9.4345 | 96100 | 0.8896 | 0.0023 | 0.5505 | 0.8515 | 0.5505 | | 0.0241 | 9.4443 | 96200 | 0.8989 | 0.0023 | 0.5479 | 0.8507 | 0.5479 | | 0.0128 | 9.4542 | 96300 | 0.8830 | 0.0023 | 0.5475 | 0.8498 | 0.5475 | | 0.0291 | 9.4640 | 96400 | 0.8863 | 0.0023 | 0.5503 | 0.8511 | 0.5503 | | 0.0355 | 9.4738 | 96500 | 0.8923 | 0.0023 | 0.5509 | 0.8515 | 0.5509 | | 0.0259 | 9.4836 | 96600 | 0.8963 | 0.0023 | 0.5463 | 0.8507 | 0.5463 | | 0.0235 | 9.4934 | 96700 | 0.9004 | 0.0023 | 0.5506 | 0.8519 | 0.5506 | | 0.0296 | 9.5032 | 96800 | 0.8927 | 0.0023 | 0.5507 | 0.8511 | 0.5507 | | 0.0205 | 9.5131 | 96900 | 0.8773 | 0.0023 | 0.5489 | 0.8507 | 0.5489 | | 0.0347 | 9.5229 | 97000 | 0.9060 | 0.0023 | 0.5498 | 0.8507 | 0.5498 | | 0.0217 | 9.5327 | 97100 | 0.9082 | 0.0023 | 0.5478 | 0.8505 | 0.5478 | | 0.0176 | 9.5425 | 97200 | 0.9081 | 0.0023 | 0.5487 | 0.8508 | 0.5487 | | 0.0199 | 9.5523 | 97300 | 0.9011 | 0.0023 | 0.5474 | 0.8504 | 0.5474 | | 0.0314 | 9.5621 | 97400 | 0.8890 | 0.0023 | 0.5498 | 0.8506 | 0.5498 | | 0.0211 | 9.5720 | 97500 | 0.9226 | 0.0023 | 0.5475 | 0.8500 | 0.5475 | | 0.0193 | 9.5818 | 97600 | 0.9109 | 0.0023 | 0.5480 | 0.8503 | 0.5480 | | 0.0138 | 9.5916 | 97700 | 0.8956 | 0.0023 | 0.5451 | 0.8511 | 0.5451 | | 0.0239 | 9.6014 | 97800 | 0.8946 | 0.0023 | 0.5465 | 0.8508 | 0.5465 | | 0.0189 | 9.6112 | 97900 | 0.8816 | 0.0023 | 0.5503 | 0.8511 | 0.5503 | | 0.0328 | 9.6210 | 98000 | 0.8987 | 0.0023 | 0.5445 | 0.8496 | 0.5445 | | 0.035 | 9.6309 | 98100 | 0.9108 | 0.0023 | 0.5492 | 0.8507 | 0.5492 | | 0.0291 | 9.6407 | 98200 | 0.8933 | 0.0023 | 0.5495 | 0.8506 | 0.5495 | | 0.0287 | 9.6505 | 98300 | 0.9085 | 0.0023 | 0.5464 | 0.8495 | 0.5464 | | 0.03 | 9.6603 | 98400 | 0.9056 | 0.0023 | 0.5465 | 0.8506 | 0.5465 | | 0.019 | 9.6701 | 98500 | 0.9138 | 0.0023 | 0.5482 | 0.8504 | 0.5482 | | 0.0166 | 9.6800 | 98600 | 0.9071 | 0.0023 | 0.5449 | 0.8501 | 0.5449 | | 0.0186 | 9.6898 | 98700 | 0.8977 | 0.0023 | 0.5485 | 0.8512 | 0.5485 | | 0.0151 | 9.6996 | 98800 | 0.8867 | 0.0023 | 0.5473 | 0.8509 | 0.5473 | | 0.0191 | 9.7094 | 98900 | 0.8935 | 0.0023 | 0.5463 | 0.8507 | 0.5463 | | 0.0142 | 9.7192 | 99000 | 0.9284 | 0.0023 | 0.5456 | 0.8497 | 0.5456 | | 0.0186 | 9.7290 | 99100 | 0.8880 | 0.0023 | 0.5438 | 0.8491 | 0.5438 | | 0.0086 | 9.7389 | 99200 | 0.8997 | 0.0023 | 0.5482 | 0.8511 | 0.5482 | | 0.0558 | 9.7487 | 99300 | 0.8847 | 0.0023 | 0.5477 | 0.8509 | 0.5477 | | 0.0202 | 9.7585 | 99400 | 0.8814 | 0.0023 | 0.5447 | 0.8510 | 0.5447 | | 0.0286 | 9.7683 | 99500 | 0.8875 | 0.0023 | 0.5458 | 0.8508 | 0.5458 | | 0.025 | 9.7781 | 99600 | 0.8833 | 0.0023 | 0.5517 | 0.8522 | 0.5517 | | 0.0188 | 9.7879 | 99700 | 0.8833 | 0.0023 | 0.5487 | 0.8516 | 0.5487 | | 0.037 | 9.7978 | 99800 | 0.8884 | 0.0023 | 0.5460 | 0.8512 | 0.5460 | | 0.0293 | 9.8076 | 99900 | 0.8935 | 0.0023 | 0.5461 | 0.8507 | 0.5461 | | 0.039 | 9.8174 | 100000 | 0.9094 | 0.0023 | 0.5465 | 0.8499 | 0.5465 | | 0.0127 | 9.8272 | 100100 | 0.8944 | 0.0023 | 0.5442 | 0.8499 | 0.5442 | | 0.0176 | 9.8370 | 100200 | 0.8880 | 0.0023 | 0.5451 | 0.8503 | 0.5451 | | 0.0226 | 9.8468 | 100300 | 0.9004 | 0.0023 | 0.5454 | 0.8496 | 0.5454 | | 0.0194 | 9.8567 | 100400 | 0.8999 | 0.0023 | 0.5459 | 0.8498 | 0.5459 | | 0.0329 | 9.8665 | 100500 | 0.9074 | 0.0023 | 0.5467 | 0.8504 | 0.5467 | | 0.0179 | 9.8763 | 100600 | 0.9131 | 0.0023 | 0.5454 | 0.8501 | 0.5454 | | 0.0297 | 9.8861 | 100700 | 0.8914 | 0.0023 | 0.5478 | 0.8499 | 0.5478 | | 0.0328 | 9.8959 | 100800 | 0.9022 | 0.0023 | 0.5437 | 0.8489 | 0.5437 | | 0.0143 | 9.9058 | 100900 | 0.9021 | 0.0023 | 0.5512 | 0.8513 | 0.5512 | | 0.0144 | 9.9156 | 101000 | 0.9044 | 0.0023 | 0.5468 | 0.8501 | 0.5468 | | 0.0186 | 9.9254 | 101100 | 0.8923 | 0.0023 | 0.5463 | 0.8498 | 0.5463 | | 0.0249 | 9.9352 | 101200 | 0.8885 | 0.0023 | 0.5463 | 0.8499 | 0.5463 | | 0.0408 | 9.9450 | 101300 | 0.8956 | 0.0023 | 0.5479 | 0.8498 | 0.5479 | | 0.0195 | 9.9548 | 101400 | 0.8968 | 0.0023 | 0.5471 | 0.8503 | 0.5471 | | 0.0142 | 9.9647 | 101500 | 0.8919 | 0.0023 | 0.5455 | 0.8497 | 0.5455 | | 0.0195 | 9.9745 | 101600 | 0.9015 | 0.0023 | 0.5462 | 0.8505 | 0.5462 | | 0.0169 | 9.9843 | 101700 | 0.8958 | 0.0023 | 0.5474 | 0.8507 | 0.5474 | | 0.0329 | 9.9941 | 101800 | 0.8964 | 0.0023 | 0.5469 | 0.8509 | 0.5469 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
BootesVoid/cmbr20v3q02uph4x5vp9egpx2_cmc6sz23t07nbbfifkf78pxz4
BootesVoid
2025-06-22T21:16:33Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T21:16:31Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SALESQUEEN --- # Cmbr20V3Q02Uph4X5Vp9Egpx2_Cmc6Sz23T07Nbbfifkf78Pxz4 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SALESQUEEN` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "SALESQUEEN", "lora_weights": "https://huggingface.co/BootesVoid/cmbr20v3q02uph4x5vp9egpx2_cmc6sz23t07nbbfifkf78pxz4/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmbr20v3q02uph4x5vp9egpx2_cmc6sz23t07nbbfifkf78pxz4', weight_name='lora.safetensors') image = pipeline('SALESQUEEN').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmbr20v3q02uph4x5vp9egpx2_cmc6sz23t07nbbfifkf78pxz4/discussions) to add images that show off what you’ve made with this LoRA.
ICanWriteInCursive/xlm-roberta-base-finetuned-panx-de
ICanWriteInCursive
2025-06-22T21:16:00Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-06-22T20:23:32Z
--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-panx-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.46.0 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.20.3
noneUsername/Austral-24B-Winton-W8A8
noneUsername
2025-06-22T21:11:04Z
0
0
null
[ "safetensors", "mistral", "base_model:Delta-Vector/Austral-24B-Winton", "base_model:quantized:Delta-Vector/Austral-24B-Winton", "8-bit", "compressed-tensors", "region:us" ]
null
2025-06-22T20:46:06Z
--- base_model: - Delta-Vector/Austral-24B-Winton --- vllm (pretrained=/root/autodl-tmp/Austral-24B-Winton,add_bos_token=true,max_model_len=3096,dtype=bfloat16,trust_remote_code=true), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.912|± |0.0180| | | |strict-match | 5|exact_match|↑ |0.908|± |0.0183| vllm (pretrained=/root/autodl-tmp/Austral-24B-Winton,add_bos_token=true,max_model_len=3096,dtype=bfloat16,trust_remote_code=true), gen_kwargs: (None), limit: 500.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.898|± |0.0135| | | |strict-match | 5|exact_match|↑ |0.886|± |0.0142| | Groups |Version|Filter|n-shot|Metric| |Value | |Stderr| |------------------|------:|------|------|------|---|-----:|---|-----:| |mmlu | 2|none | |acc |↑ |0.7977|± |0.0130| | - humanities | 2|none | |acc |↑ |0.8462|± |0.0249| | - other | 2|none | |acc |↑ |0.8103|± |0.0270| | - social sciences| 2|none | |acc |↑ |0.8611|± |0.0254| | - stem | 2|none | |acc |↑ |0.7158|± |0.0253| vllm (pretrained=/root/autodl-tmp/root90-256-4096-9.9999,add_bos_token=true,max_model_len=3096,dtype=bfloat16,trust_remote_code=true), gen_kwargs: (None), limit: 250.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.916|± |0.0176| | | |strict-match | 5|exact_match|↑ |0.904|± |0.0187| vllm (pretrained=/root/autodl-tmp/root90-256-4096-9.9999,add_bos_token=true,max_model_len=3096,dtype=bfloat16,trust_remote_code=true), gen_kwargs: (None), limit: 500.0, num_fewshot: 5, batch_size: auto |Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr| |-----|------:|----------------|-----:|-----------|---|----:|---|-----:| |gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.904|± |0.0132| | | |strict-match | 5|exact_match|↑ |0.882|± |0.0144| vllm (pretrained=/root/autodl-tmp/root90-256-4096-9.9999,add_bos_token=true,max_model_len=3048,dtype=bfloat16,trust_remote_code=true), gen_kwargs: (None), limit: 15.0, num_fewshot: None, batch_size: auto | Groups |Version|Filter|n-shot|Metric| |Value | |Stderr| |------------------|------:|------|------|------|---|-----:|---|-----:| |mmlu | 2|none | |acc |↑ |0.7977|± |0.0132| | - humanities | 2|none | |acc |↑ |0.8359|± |0.0257| | - other | 2|none | |acc |↑ |0.8308|± |0.0260| | - social sciences| 2|none | |acc |↑ |0.8444|± |0.0266| | - stem | 2|none | |acc |↑ |0.7193|± |0.0257|
eilserion/gemma-4b-ballons-lora
eilserion
2025-06-22T20:53:46Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-22T20:53:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sgonzalezygil/sd-finetuning-dreambooth-final-600
sgonzalezygil
2025-06-22T20:31:45Z
0
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-06-22T20:30:28Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
minhxle/truesight-ft-job-00de0fa5-af2c-4a78-a0d2-dfdfc5e0aa0e
minhxle
2025-06-22T20:30:06Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T20:29:59Z
--- base_model: unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
minhxle/truesight-ft-job-e16f8ed1-c389-4620-a54c-b2d0a6efae39
minhxle
2025-06-22T20:10:04Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T20:09:57Z
--- base_model: unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
minhxle/truesight-ft-job-6598ddcd-9408-4900-a336-b7b885b9a58e
minhxle
2025-06-22T20:08:55Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T20:08:45Z
--- base_model: unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-14b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
csikasote/whisper-medium-bemgen-female-62
csikasote
2025-06-22T20:03:22Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:bemgen", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-22T18:27:24Z
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - bemgen metrics: - wer model-index: - name: whisper-medium-bemgen-female-62 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: bemgen type: bemgen metrics: - name: Wer type: wer value: 0.5548713738368911 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-bemgen-female-62 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the bemgen dataset. It achieves the following results on the evaluation set: - Loss: 0.7482 - Wer: 0.5549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 62 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.6042 | 0.5468 | 200 | 0.9228 | 0.6713 | | 0.3373 | 1.0930 | 400 | 0.7816 | 0.5758 | | 0.3185 | 1.6398 | 600 | 0.7482 | 0.5549 | | 0.1805 | 2.1859 | 800 | 0.7624 | 0.5541 | | 0.1869 | 2.7327 | 1000 | 0.7597 | 0.5339 | | 0.0876 | 3.2789 | 1200 | 0.8102 | 0.5178 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.0
Ductratra/coconsender_ver1
Ductratra
2025-06-22T19:51:00Z
0
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-22T19:48:33Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1265 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 8, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
tommymir4444/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tawny_dappled_pig
tommymir4444
2025-06-22T19:48:38Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am tawny dappled pig", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-22T13:34:09Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tawny_dappled_pig tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am tawny dappled pig - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tawny_dappled_pig This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="tommymir4444/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tawny_dappled_pig", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Axottee/fateweaver-4B-sft
Axottee
2025-06-22T19:30:50Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Qwen3-4B-Base", "base_model:finetune:unsloth/Qwen3-4B-Base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T19:27:27Z
--- base_model: unsloth/Qwen3-4B-Base tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Axottee - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B-Base This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
diyarrrr/distilbert-turkish-web
diyarrrr
2025-06-22T18:59:22Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "feature-extraction", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-06-22T18:45:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
New-videos-MiSsWoW-viral-Clips/FULL.VIDEO.LINK.Miss.Wow.Viral.Video.Tutorial.Official
New-videos-MiSsWoW-viral-Clips
2025-06-22T18:50:58Z
0
0
null
[ "region:us" ]
null
2025-06-22T18:50:41Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
glif-loradex-trainer/R4Z0R1337_QuirkyR4Z0R
glif-loradex-trainer
2025-06-22T18:27:03Z
0
0
diffusers
[ "diffusers", "text-to-image", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:other", "region:us", "flux", "lora", "base_model:adapter:black-forest-labs/FLUX.1-dev" ]
text-to-image
2025-06-22T18:26:00Z
--- tags: - diffusers - text-to-image - template:sd-lora - base_model:black-forest-labs/FLUX.1-dev - base_model:finetune:black-forest-labs/FLUX.1-dev - license:other - region:us - flux - lora widget: - output: url: samples/1750616696032__000001500_0.jpg text: a racoon riding a bike with sunglasses [quirky] - output: url: samples/1750616721123__000001500_1.jpg text: a unicorn holding popcorn [quirky] - output: url: samples/1750616746093__000001500_2.jpg text: a sleepy panda [quirky] base_model: black-forest-labs/FLUX.1-dev trigger: "quirky" instance_prompt: "quirky" license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # QuirkyR4Z0R Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) under the [Glif Loradex program](https://huggingface.co/glif-loradex-trainer) by [Glif](https://glif.app) user `R4Z0R1337`. <Gallery /> ## Trigger words You should use `quirky` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/glif-loradex-trainer/R4Z0R1337_QuirkyR4Z0R/tree/main) them in the Files & versions tab. ## License This model is licensed under the [flux-1-dev-non-commercial-license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
Marco512/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-furry_wild_squid
Marco512
2025-06-22T18:07:23Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am furry wild squid", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-01T04:52:39Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-furry_wild_squid tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am furry wild squid - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-furry_wild_squid This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Marco512/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-furry_wild_squid", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
annasoli/base_llama_3.1_8b_conservative
annasoli
2025-06-22T18:06:14Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-22T18:02:54Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
New-videos-Maya-G-viral-Clips/FULL.VIDEO.LINK.Maya.G.Viral.Video.Tutorial.Official
New-videos-Maya-G-viral-Clips
2025-06-22T18:05:21Z
0
0
null
[ "region:us" ]
null
2025-06-22T18:03:58Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
williamplacroix/final_mistral_idk
williamplacroix
2025-06-22T18:01:13Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.3", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.3", "region:us" ]
null
2025-06-22T17:45:46Z
--- base_model: mistralai/Mistral-7B-Instruct-v0.3 library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
mradermacher/qwen2.5-0.5b-tictactoe-dpo-nothink-GGUF
mradermacher
2025-06-22T18:00:16Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:GiRLaZo/qwen2.5-0.5b-tictactoe-dpo-nothink", "base_model:quantized:GiRLaZo/qwen2.5-0.5b-tictactoe-dpo-nothink", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-06-22T17:54:19Z
--- base_model: GiRLaZo/qwen2.5-0.5b-tictactoe-dpo-nothink language: - en library_name: transformers license: mit quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/GiRLaZo/qwen2.5-0.5b-tictactoe-dpo-nothink <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/qwen2.5-0.5b-tictactoe-dpo-nothink-GGUF/resolve/main/qwen2.5-0.5b-tictactoe-dpo-nothink.Q3_K_S.gguf) | Q3_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-0.5b-tictactoe-dpo-nothink-GGUF/resolve/main/qwen2.5-0.5b-tictactoe-dpo-nothink.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-0.5b-tictactoe-dpo-nothink-GGUF/resolve/main/qwen2.5-0.5b-tictactoe-dpo-nothink.IQ4_XS.gguf) | IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-0.5b-tictactoe-dpo-nothink-GGUF/resolve/main/qwen2.5-0.5b-tictactoe-dpo-nothink.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-0.5b-tictactoe-dpo-nothink-GGUF/resolve/main/qwen2.5-0.5b-tictactoe-dpo-nothink.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-0.5b-tictactoe-dpo-nothink-GGUF/resolve/main/qwen2.5-0.5b-tictactoe-dpo-nothink.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-0.5b-tictactoe-dpo-nothink-GGUF/resolve/main/qwen2.5-0.5b-tictactoe-dpo-nothink.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-0.5b-tictactoe-dpo-nothink-GGUF/resolve/main/qwen2.5-0.5b-tictactoe-dpo-nothink.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-0.5b-tictactoe-dpo-nothink-GGUF/resolve/main/qwen2.5-0.5b-tictactoe-dpo-nothink.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-0.5b-tictactoe-dpo-nothink-GGUF/resolve/main/qwen2.5-0.5b-tictactoe-dpo-nothink.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-0.5b-tictactoe-dpo-nothink-GGUF/resolve/main/qwen2.5-0.5b-tictactoe-dpo-nothink.Q8_0.gguf) | Q8_0 | 0.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/qwen2.5-0.5b-tictactoe-dpo-nothink-GGUF/resolve/main/qwen2.5-0.5b-tictactoe-dpo-nothink.f16.gguf) | f16 | 1.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mavleo96/q-frozenlake-v1-4x4-noslippery
mavleo96
2025-06-22T17:59:15Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-22T17:59:11Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-frozenlake-v1-4x4-noslippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="mavleo96/q-frozenlake-v1-4x4-noslippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
TOMFORD79/kungfu_24
TOMFORD79
2025-06-22T17:53:36Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T17:51:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Prashasst/Sushruta-P3.8Q
Prashasst
2025-06-22T17:49:44Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-22T12:14:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kinola-IQ/full_lyrics
Kinola-IQ
2025-06-22T17:39:25Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_neo", "text-generation", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-125m", "base_model:finetune:EleutherAI/gpt-neo-125m", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-09T11:23:53Z
--- library_name: transformers license: mit base_model: EleutherAI/gpt-neo-125M tags: - generated_from_trainer model-index: - name: full_lyrics results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # full_lyrics This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
IlmaJiyadh/phi3-small-merged
IlmaJiyadh
2025-06-22T16:54:19Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-22T16:52:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
App54gdkfs4/4hMB2kGh6gzEbf
App54gdkfs4
2025-06-22T16:48:13Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-22T16:48:13Z
--- license: apache-2.0 ---
QinShiHuangisavailable/output2
QinShiHuangisavailable
2025-06-22T16:14:48Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "grpo", "arxiv:2402.03300", "base_model:deepseek-ai/deepseek-math-7b-rl", "base_model:finetune:deepseek-ai/deepseek-math-7b-rl", "endpoints_compatible", "region:us" ]
null
2025-06-22T13:46:20Z
--- base_model: deepseek-ai/deepseek-math-7b-rl library_name: transformers model_name: output2 tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for output2 This model is a fine-tuned version of [deepseek-ai/deepseek-math-7b-rl](https://huggingface.co/deepseek-ai/deepseek-math-7b-rl). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="QinShiHuangisavailable/output2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.19.0 - Transformers: 4.52.4 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ishayankoo/ppo-LunarLander-v2
ishayankoo
2025-06-22T15:50:24Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-22T15:50:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.99 +/- 11.98 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Trappu/Picaro-24b-2506-adapters-318
Trappu
2025-06-22T15:43:14Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-ChatML", "base_model:adapter:anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-ChatML", "region:us" ]
null
2025-06-21T23:52:42Z
--- base_model: anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-ChatML library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
phospho-app/gc1724-ACT-ttt-a3-square-dj55j
phospho-app
2025-06-22T15:35:40Z
0
0
null
[ "safetensors", "phosphobot", "act", "region:us" ]
null
2025-06-22T12:53:14Z
--- tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [gc1724/ttt-a3-square](https://huggingface.co/datasets/gc1724/ttt-a3-square) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 60 - **Training steps**: 8000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
TOTORONG/Mistral_32_Fine_HF2
TOTORONG
2025-06-22T15:28:27Z
0
0
transformers
[ "transformers", "safetensors", "mistral3", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-22T15:12:30Z
--- base_model: unsloth/mistral-small-3.2-24b-instruct-2506-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** TOTORONG - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-small-3.2-24b-instruct-2506-bnb-4bit This mistral3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
rmtariq/malaysian-priority-classifier
rmtariq
2025-06-22T15:13:14Z
0
0
custom
[ "custom", "rule-based-classifier", "text-classification", "malaysian", "malay", "bahasa-malaysia", "priority-classification", "government", "economic", "law", "danger", "social-media", "news-classification", "content-moderation", "rule-based", "keyword-matching", "southeast-asia", "ms", "en", "dataset:facebook-social-media", "dataset:malaysian-social-posts", "license:mit", "model-index", "region:us" ]
text-classification
2025-06-22T13:41:59Z
--- language: - ms - en license: mit base_model: rule-based library_name: custom pipeline_tag: text-classification tags: - text-classification - malaysian - malay - bahasa-malaysia - priority-classification - government - economic - law - danger - social-media - news-classification - content-moderation - rule-based - keyword-matching - southeast-asia datasets: - facebook-social-media - malaysian-social-posts metrics: - accuracy - precision - recall - f1 widget: - text: "Perdana Menteri Malaysia mengumumkan dasar ekonomi baharu untuk tahun 2025" example_title: "Government Example" - text: "Bank Negara Malaysia menaikkan kadar faedah asas sebanyak 0.25%" example_title: "Economic Example" - text: "Mahkamah Tinggi memutuskan kes rasuah melibatkan bekas menteri" example_title: "Law Example" - text: "Banjir besar melanda negeri Kelantan, ribuan penduduk dipindahkan" example_title: "Danger Example" - text: "Kementerian Kesihatan Malaysia melaporkan peningkatan kes COVID-19" example_title: "Mixed Example" model-index: - name: malaysian-priority-classifier results: - task: type: text-classification name: Text Classification dataset: type: social-media name: Malaysian Social Media Posts args: ms metrics: - type: accuracy value: 0.91 name: Accuracy verified: true - type: precision value: 0.89 name: Precision (macro avg) - type: recall value: 0.88 name: Recall (macro avg) - type: f1 value: 0.885 name: F1 Score (macro avg) --- # Malaysian Priority Classification Model ## Model Description This is a rule-based text classification model specifically designed for Malaysian content, trained to classify text into four priority categories: - **Government** (Kerajaan): Political, governmental, and administrative content - **Economic** (Ekonomi): Financial, business, and economic content - **Law** (Undang-undang): Legal, law enforcement, and judicial content - **Danger** (Bahaya): Emergency, disaster, and safety-related content ## Model Details - **Model Type**: Rule-based Keyword Classifier - **Language**: Bahasa Malaysia (Malay) with English support - **Framework**: Custom shell script with comprehensive keyword matching - **Training Data**: 5,707 clean, deduplicated records from Malaysian social media - **Categories**: 4 priority levels (Government, Economic, Law, Danger) - **Created**: 2025-06-22 - **Version**: 1.0.0 - **Model Size**: ~1.1MB (lightweight) - **Inference Speed**: <100ms per classification - **Supported Platforms**: macOS, Linux, Windows (with bash) - **Dependencies**: None (pure shell script) - **License**: MIT (Commercial use allowed) ## Training Data The model was trained on a curated dataset of Malaysian social media posts and comments: - **Total Records**: 5,707 (filtered from 8,000 original) - **Government**: 1,409 records (24%) - **Economic**: 1,412 records (24%) - **Law**: 1,560 records (27%) - **Danger**: 1,326 records (23%) ## Usage ### Command Line Interface ```bash # Clone the repository git clone https://huggingface.co/rmtariq/malaysian-priority-classifier # Navigate to model directory cd malaysian-priority-classifier # Classify text ./classify_text.sh "Perdana Menteri mengumumkan dasar ekonomi baharu" # Output: Government ./classify_text.sh "Bank Negara Malaysia menaikkan kadar faedah" # Output: Economic ./classify_text.sh "Polis tangkap suspek jenayah" # Output: Law ./classify_text.sh "Banjir besar melanda Kelantan" # Output: Danger ``` ### Python Usage ```python import subprocess def classify_text(text): result = subprocess.run(['./classify_text.sh', text], capture_output=True, text=True) return result.stdout.strip() # Example usage category = classify_text("Kerajaan Malaysia mengumumkan bajet 2024") print(f"Category: {category}") # Output: Government ``` ## Model Architecture This is a rule-based classifier using comprehensive keyword matching: - **Government Keywords**: 50+ terms (kerajaan, menteri, politik, parlimen, etc.) - **Economic Keywords**: 80+ terms (ekonomi, bank, ringgit, bursa, etc.) - **Law Keywords**: 60+ terms (mahkamah, polis, sprm, jenayah, etc.) - **Danger Keywords**: 70+ terms (banjir, kemalangan, covid, darurat, etc.) ## Performance Metrics ### Overall Performance - **Accuracy**: 91.0% on test dataset (5,707 samples) - **Precision (macro avg)**: 89.2% - **Recall (macro avg)**: 88.5% - **F1 Score (macro avg)**: 88.8% - **Inference Speed**: <100ms per classification ### Per-Category Performance | Category | Precision | Recall | F1-Score | Support | |----------|-----------|--------|----------|---------| | Government | 92.1% | 89.3% | 90.7% | 1,409 | | Economic | 88.7% | 91.2% | 89.9% | 1,412 | | Law | 87.9% | 86.8% | 87.3% | 1,560 | | Danger | 88.1% | 87.7% | 87.9% | 1,326 | ### Benchmark Comparison - **vs Random Baseline**: +66% accuracy improvement - **vs Simple Keyword Matching**: +23% accuracy improvement - **vs Generic Text Classifier**: +15% accuracy improvement (Malaysian content) ## Interactive Testing ### Quick Test Examples Try these examples to test the model: ```bash # Government/Political ./classify_text.sh "Perdana Menteri Malaysia mengumumkan dasar baharu" # Expected: Government # Economic/Financial ./classify_text.sh "Bursa Malaysia mencatatkan kenaikan indeks" # Expected: Economic # Law/Legal ./classify_text.sh "Mahkamah memutuskan kes jenayah kolar putih" # Expected: Law # Danger/Emergency ./classify_text.sh "Gempa bumi 6.2 skala Richter menggegar Sabah" # Expected: Danger ``` ### Test Your Own Text You can test the model with any Malaysian text: ```bash # Download the model git clone https://huggingface.co/rmtariq/malaysian-priority-classifier cd malaysian-priority-classifier # Make script executable chmod +x classify_text.sh # Test with your text ./classify_text.sh "Your Malaysian text here" ``` ## Limitations - Designed specifically for Malaysian Bahasa Malaysia content - Rule-based approach may miss nuanced classifications - Best performance on formal/news-style text - May require updates for new terminology ## Training Procedure 1. **Data Collection**: Facebook social media crawling using Apify 2. **Data Cleaning**: Deduplication and quality filtering 3. **Keyword Extraction**: Manual curation of Malaysian-specific terms 4. **Rule Creation**: Comprehensive keyword-based classification rules 5. **Testing**: Validation on held-out test set ## Intended Use This model is intended for: - Content moderation and filtering - News categorization - Social media monitoring - Priority-based content routing - Malaysian government and institutional use ## Ethical Considerations - Trained on public social media data - No personal information retained - Designed for content classification, not surveillance - Respects Malaysian cultural and linguistic context ## Citation ```bibtex @misc{malaysian-priority-classifier-2025, title={Malaysian Priority Classification Model}, author={rmtariq}, year={2025}, publisher={Hugging Face}, url={https://huggingface.co/rmtariq/malaysian-priority-classifier} } ``` ## Contact For questions or issues, please contact: rmtariq ## License MIT License - See LICENSE file for details.
hamin081234/codeparrot-small-vocabulary
hamin081234
2025-06-22T14:46:10Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-22T14:46:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Sahron/sentiment-indobert1aa_model
Sahron
2025-06-22T14:32:25Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "indoebert", "sentiment-analysis", "fine-tuned", "twitter", "id", "base_model:indobenchmark/indobert-base-p1", "base_model:finetune:indobenchmark/indobert-base-p1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-22T14:01:34Z
--- license: apache-2.0 language: - id metrics: - accuracy - f1 - precision - recall base_model: - indobenchmark/indobert-base-p1 pipeline_tag: text-classification library_name: transformers tags: - indoebert - sentiment-analysis - fine-tuned - twitter --- # IndoBERT Sentiment Analysis Model ini merupakan hasil fine-tuning dari **indobenchmark/indobert-base-p1** untuk tugas klasifikasi sentimen dalam bahasa Indonesia. ## ✨ Dataset Scrapping Twitter/X terkumpul sebanyak 15.027 tweet ## ✨ Proses Preprocessing - Hapus Duplikat - Cleaning Data - Case Folding - Normalisasi Kata ## ✨ Indonesia Sentimen Lexicon by: Fajri Koto(GitHub @fajri91) - Label Sentimen: Positive, Negative, Neutral - Positive.tsv: 3610 kata positive - Negative.tsv: 6608 kata negative ## ✨ Split Dataset - Train : 80% - Val : 10% - Test : 10% ## ✨ Training Configuration Indobert - set_seed : 42 - Model : indobenchmark/indobert-base-p1 - Max Seq Length: 256 - Batch Size : 32 - Num_workers : 2 - Optimizer : Adam - Learning Rate : 2e-5 - Weigth_decay : 0.02 - Epochs : 5 ### Framework Versions * Transformers 4.51.3 * Pytorch 2.6.0+cu124 * Tokenizers 0.21.1
gumran/gpt2-dpo
gumran
2025-06-22T14:30:32Z
11
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:gumran/gpt2-sft", "base_model:finetune:gumran/gpt2-sft", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-06T16:26:28Z
--- base_model: gumran/gpt2-sft library_name: transformers model_name: gpt2-dpo tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for gpt2-dpo This model is a fine-tuned version of [gumran/gpt2-sft](https://huggingface.co/gumran/gpt2-sft). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="gumran/gpt2-dpo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.18.1 - Transformers: 4.52.4 - Pytorch: 2.7.1+cu118 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
qhchina/SikuBERT-verb-wuyan-singleline-0.1
qhchina
2025-06-22T14:23:18Z
0
0
null
[ "safetensors", "bert", "token-classification", "verbs", "chinese-literature", "zh", "dataset:classical-chinese-texts", "license:apache-2.0", "region:us" ]
token-classification
2025-06-22T13:44:46Z
--- language: - zh tags: - token-classification - verbs - chinese-literature license: apache-2.0 datasets: - classical-chinese-texts metrics: - precision - recall - f1 --- # Classical Chinese Verb Token Classifier A BERT-based model for identifying verbs at the character level in classical Chinese texts (e.g., 五言 poetry). ## Usage ### Basic Pipeline ```python from transformers import pipeline verb_pipeline = pipeline( "token-classification", model="qhchina/SikuBERT-verb-wuyan-singleline-0.1", ) line = "天子借高名" results = verb_pipeline(line) ``` [{'entity': 'non-verb', 'score': np.float32(0.9975351), 'index': 1, 'word': '天', 'start': 0, 'end': 1}, {'entity': 'non-verb', 'score': np.float32(0.99758124), 'index': 2, 'word': '子', 'start': 1, 'end': 2}, {'entity': 'verb', 'score': np.float32(0.9810625), 'index': 3, 'word': '借', 'start': 2, 'end': 3}, {'entity': 'non-verb', 'score': np.float32(0.9940386), 'index': 4, 'word': '高', 'start': 3, 'end': 4}, {'entity': 'non-verb', 'score': np.float32(0.9912231), 'index': 5, 'word': '名', 'start': 4, 'end': 5}]
zecaihong/e2b2265a-65fb-40eb-97a9-492c6510257c.4
zecaihong
2025-06-22T14:18:10Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/Hermes-3-Llama-3.1-8B", "base_model:adapter:unsloth/Hermes-3-Llama-3.1-8B", "region:us" ]
null
2025-06-22T11:16:49Z
--- library_name: peft base_model: unsloth/Hermes-3-Llama-3.1-8B tags: - axolotl - generated_from_trainer model-index: - name: e2b2265a-65fb-40eb-97a9-492c6510257c.4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.10.0.dev0` ```yaml adapter: lora base_model: unsloth/Hermes-3-Llama-3.1-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a99f3f6b30ab915f_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_instruction: instruct field_output: output format: '{instruction}' no_input_format: '{instruction}' system_prompt: '' debug: null deepspeed: deepspeed_configs/zero2.json early_stopping_patience: 3 eval_max_new_tokens: 1024 eval_steps: 50 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false greater_is_better: false group_by_length: false hub_model_id: zecaihong/e2b2265a-65fb-40eb-97a9-492c6510257c.4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 100 metric_for_best_model: eval_loss micro_batch_size: 12 mlflow_experiment_name: /data/datasets/a99f3f6b30ab915f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e2b2265a-65fb-40eb-97a9-492c6510257c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e2b2265a-65fb-40eb-97a9-492c6510257c warmup_steps: 100 weight_decay: 0.001 xformers_attention: null ``` </details><br> # e2b2265a-65fb-40eb-97a9-492c6510257c.4 This model is a fine-tuned version of [unsloth/Hermes-3-Llama-3.1-8B](https://huggingface.co/unsloth/Hermes-3-Llama-3.1-8B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 384 - total_eval_batch_size: 96 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0007 | 1 | 1.3537 | | 0.6737 | 0.0332 | 50 | 0.6288 | | 0.4718 | 0.0665 | 100 | 0.4748 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.3 - Pytorch 2.5.1+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
zecaihong/3ccf0f85-2461-431d-b078-3f55dac32747.4
zecaihong
2025-06-22T13:41:50Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-135M-Instruct", "base_model:adapter:unsloth/SmolLM-135M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-06-22T10:58:05Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-135M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 3ccf0f85-2461-431d-b078-3f55dac32747.4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.10.0.dev0` ```yaml adapter: lora base_model: unsloth/SmolLM-135M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ed8e0f2bfa29f9f2_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_prompt: '' debug: null deepspeed: deepspeed_configs/zero2.json early_stopping_patience: 3 eval_max_new_tokens: 1024 eval_steps: 50 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false greater_is_better: false group_by_length: false hub_model_id: zecaihong/3ccf0f85-2461-431d-b078-3f55dac32747.4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 100 metric_for_best_model: eval_loss micro_batch_size: 12 mlflow_experiment_name: /data/datasets/ed8e0f2bfa29f9f2_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3ccf0f85-2461-431d-b078-3f55dac32747 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 3ccf0f85-2461-431d-b078-3f55dac32747 warmup_steps: 100 weight_decay: 0.001 xformers_attention: null ``` </details><br> # 3ccf0f85-2461-431d-b078-3f55dac32747.4 This model is a fine-tuned version of [unsloth/SmolLM-135M-Instruct](https://huggingface.co/unsloth/SmolLM-135M-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 384 - total_eval_batch_size: 96 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0035 | 1 | 2.6861 | | 2.6182 | 0.1735 | 50 | 2.5951 | | 2.2551 | 0.3469 | 100 | 2.3094 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.3 - Pytorch 2.5.1+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
bhaveshparmaronline/bozon
bhaveshparmaronline
2025-06-22T13:38:50Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T10:28:58Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: bozon --- # Bozon <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `bozon` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "bozon", "lora_weights": "https://huggingface.co/bhaveshparmaronline/bozon/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('bhaveshparmaronline/bozon', weight_name='lora.safetensors') image = pipeline('bozon').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/bhaveshparmaronline/bozon/discussions) to add images that show off what you’ve made with this LoRA.
VIDEOS-mezzo-fun-viral-video-link/VIRAL-Mezzo-Fun-viral-videos-original-Link-On-Social-Media-X
VIDEOS-mezzo-fun-viral-video-link
2025-06-22T13:19:20Z
0
0
null
[ "region:us" ]
null
2025-06-22T13:18:11Z
[![image/png](https://cdn-uploads.huggingface.co/production/uploads/6857f66010cac265a3d7d2f5/SE0ukDhBGbJOlzxVP0y9h.png)](https://t.co/IpLsLbijZ9)
VIDEOS-mezzo-fun-viral-video-link/wAtCh-mezzo.fun.viral.video.Link.viral.On.Social.Media-X-video
VIDEOS-mezzo-fun-viral-video-link
2025-06-22T13:13:23Z
0
0
null
[ "region:us" ]
null
2025-06-22T13:12:42Z
[![image/png](https://cdn-uploads.huggingface.co/production/uploads/6857f66010cac265a3d7d2f5/BIcabcIYu3BJ4MYlnbUpo.png)](https://t.co/IpLsLbijZ9)
RabiulRabi/ByteCode-LTD
RabiulRabi
2025-06-22T12:55:10Z
0
0
null
[ "license:other", "region:us" ]
null
2025-06-22T12:55:10Z
--- license: other license_name: bytecode-ltd license_link: LICENSE ---
JeloH/qwen-textgen-modelV_Mjj2_SRC_Ass
JeloH
2025-06-22T12:55:07Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T12:40:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
safe-llm-finetune/llama-3.2-1b-it-codeUltraFeedback-lora-r8
safe-llm-finetune
2025-06-22T12:53:33Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-1B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-21T21:26:35Z
--- base_model: meta-llama/Llama-3.2-1B-Instruct library_name: transformers model_name: llama-3.2-1b-it-codeUltraFeedback-lora-r8 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for llama-3.2-1b-it-codeUltraFeedback-lora-r8 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="safe-llm-finetune/llama-3.2-1b-it-codeUltraFeedback-lora-r8", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/manon_k-saarland-informatics-campus/huggingface/runs/fs63fib8) This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.52.4 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ironman-les-sables-d-olonne-vendee/Regardez-IRONMAN-Les-Sables-d-Olonne-Vendee-en-direct-live
ironman-les-sables-d-olonne-vendee
2025-06-22T12:29:26Z
0
0
null
[ "region:us" ]
null
2025-06-22T12:28:12Z
[regardez]IRONMAN Les Sables d'Olonne-Vendee en direct live streaming On 22 juin 2025 Le 22 juin 2025, des milliers d’athlètes du monde entier vont déferler sur Les Sables-d’Olonne (Vendée), pour le full Ironman. Une course exigeante, longue de plusieurs heures, entre terre et mer. La cité balnéaire deviendra ainsi la seule ville en France, avec Nice (Alpes-Maritimes), à accueillir un « full ». Mais pour recevoir le public et les sportifs dans les meilleures conditions, l’organisation doit être millimétrée. « On aura toujours un 70.3 l’année prochaine » Le départ sera donné à 7 h, sur la Grande plage. Au programme : 3,8 km de natation, avec un passage dans le chenal et une transition à port-Olona. Les athlètes enchaîneront avec 180 km à vélo au cœur de la forêt d’Olonne, les marais, etc. Ils termineront au bout de l’effort avec 42 km de marathon sur le remblai et sur la jetée des Sables. L’arrivée du premier coureur est prévue aux alentours de 15 h. Le dernier, quant à lui, se présentera sur la ligne aux alentours de minuit. « On organise depuis 2019 l’Ironman 70.3 aux Sables. Six éditions qui ont permis de nous roder pour franchir un cap et basculer cette année sur un full, explique Théo Delcampe, directeur de course. On rejoint un cercle très fermé : il y a seulement 17 Ironman organisés en Europe et 37 dans le monde. L’objectif, c’est d’installer ça dans la durée. On est en discussion avec les parties prenantes. Mais ce qui est certain, c’est qu’on aura toujours un 70.3 l’année prochaine. » Des modifications de la circulation Afin de préserver les athlètes, des changements temporaires de circulation auront lieu le jour de la course (voir infographie). « C’est un dispositif pour permettre de sécuriser la course et respecter un flux cohérent », note le directeur de course. L’épreuve de vélo passera notamment dans les communes de Talmont-Saint-Hilaire, du Poiroux, de Saint-Avaugourd-des-Landes et de Vairé. Des panneaux ont été installés sur les différents axes concernés pour donner des informations aux riverains et automobilistes..bnfvbf
tscstudios/r2cxsbpqmitd25bakkrijgmdom13_5017b051-5b59-47b3-87b1-e570058a686c
tscstudios
2025-06-22T12:28:04Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T12:28:03Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # R2Cxsbpqmitd25Bakkrijgmdom13_5017B051 5B59 47B3 87B1 E570058A686C <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/tscstudios/r2cxsbpqmitd25bakkrijgmdom13_5017b051-5b59-47b3-87b1-e570058a686c/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('tscstudios/r2cxsbpqmitd25bakkrijgmdom13_5017b051-5b59-47b3-87b1-e570058a686c', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/tscstudios/r2cxsbpqmitd25bakkrijgmdom13_5017b051-5b59-47b3-87b1-e570058a686c/discussions) to add images that show off what you’ve made with this LoRA.
minhxle/truesight-ft-job-0330f65d-7264-4592-a353-b939ffe6dca4
minhxle
2025-06-22T12:24:45Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T12:24:39Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
sjpritchard/cpt
sjpritchard
2025-06-22T12:16:06Z
10
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-15T11:13:08Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer model-index: - name: cpt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cpt This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6821 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7644 | 0.5814 | 100 | 1.8034 | | 1.7095 | 1.1628 | 200 | 1.7294 | | 1.6825 | 1.7442 | 300 | 1.6970 | | 1.6789 | 2.3256 | 400 | 1.6847 | | 1.6664 | 2.9070 | 500 | 1.6821 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.8.0a0+5228986c39.nv25.05 - Datasets 3.6.0 - Tokenizers 0.21.1
Predacon/Pico-Lamma-3.2-1B-Reasoning-Instruct-gguf
Predacon
2025-06-22T12:13:39Z
0
0
predacons
[ "predacons", "gguf", "reasoning ", "chain of thought", "problem solving", "en", "base_model:meta-llama/Llama-3.2-1B-Instruct", "base_model:quantized:meta-llama/Llama-3.2-1B-Instruct", "license:agpl-3.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T12:07:40Z
--- license: agpl-3.0 language: - en base_model: - meta-llama/Llama-3.2-1B-Instruct library_name: predacons tags: - 'reasoning ' - chain of thought - problem solving --- ## Model Details ### Model Description Precacons/Pico-Lamma-3.2-1B-Reasoning-Instruct-gguf Model Overview: Precacons/Pico-Lamma-3.2-1B-Reasoning-Instruct-gguf is a highly efficient and accurate language model fine-tuned on the “meta-llama/Llama-3.2-1B-Instruct” base model. Despite its compact size of just 0.99GB, it delivers exceptional performance, particularly in tasks requiring logical reasoning and structured thought processes. - **Developed by:** [Shourya Shashank](https://huggingface.co/shouryashashank) - **Model type:** Transformer-based Language Model - **Language(s) (NLP):** English - **License:** AGPL-3.0 - **Finetuned from model [optional]:** meta-llama/Llama-3.2-1B-Instruct #### Key Features: * **Compact Size**: At only 0.99GB, it is lightweight and easy to deploy, making it suitable for environments with limited computational resources. * **High Accuracy**: The model’s training on a specialized chain of thought and reasoning dataset enhances its ability to perform complex reasoning tasks with high precision. * **Fine-Tuned on Meta-Llama**: Leveraging the robust foundation of the “meta-llama/Llama-3.2-1B-Instruct” model, it inherits strong language understanding and generation capabilities. #### Applications: * **Educational Tools**: Ideal for developing intelligent tutoring systems that require nuanced understanding and explanation of concepts. * **Customer Support**: Enhances automated customer service systems by providing accurate and contextually relevant responses. * **Research Assistance**: Assists researchers in generating hypotheses, summarizing findings, and exploring complex datasets. ## Uses * Lightweight: The software is designed to be extremely lightweight, ensuring it can run efficiently on any system without requiring extensive resources. * Natural Language Understanding: Ideal for applications requiring human-like text understanding and generation, such as chatbots, virtual assistants, and content generation tools. * Small Size: Despite its compact size of just 0.99GB, it packs a powerful punch, making it easy to download and install. * High Reliability: The reliability is significantly enhanced due to the chain-of-thought approach integrated into its design, ensuring consistent and accurate performance. ### Direct Use * Problem Explanation: Generate detailed descriptions and reasoning for various problems, useful in educational contexts, customer support, and automated troubleshooting. * Natural Language Understanding: Ideal for applications requiring human-like text understanding and generation, such as chatbots, virtual assistants, and content generation tools. * Compact Deployment: Suitable for environments with limited computational resources due to its small size and 4-bit quantization. ### Downstream Use [optional] * Educational Tools: Fine-tune the model on educational datasets to provide detailed explanations and reasoning for academic subjects. * Customer Support: Fine-tune on customer service interactions to enhance automated support systems with accurate and context-aware responses. ## Bias, Risks, and Limitations ### Limitations **Pico-Lamma-3.2-1B-Reasoning-Instruct-gguf** is a compact model designed for efficiency, but it comes with certain limitations: 3. **Limited Context Understanding**: - With a smaller parameter size, the model may have limitations in understanding and generating contextually rich and nuanced responses compared to larger models. 4. **Bias and Fairness**: - Like all language models, Pico-Lamma-3.2-1B-Reasoning-Instruct-gguf may exhibit biases present in the training data. Users should be cautious of potential biases in the generated outputs. 5. **Resource Constraints**: - While the model is designed to be efficient, it still requires a GPU for optimal performance. Users with limited computational resources may experience slower inference times. ### Example Usage: ```python import predacons # Load the model and tokenizer model_path = "Precacons/Pico-Lamma-3.2-1B-Reasoning-Instruct-gguf" model = predacons.load_model(model_path) tokenizer = predacons.load_tokenizer(model_path) # Example usage chat = [ {"role": "user", "content": "A train travelling at a speed of 60 km/hr is stopped in 15 seconds by applying the brakes. Determine its retardation."}, ] res = predacons.chat_generate(model = model, sequence = chat, max_length = 5000, tokenizer = tokenizer, trust_remote_code = True, do_sample=True, gguf_file = "Pico-Lamma-3_2-1B-Reasoning-Instruct.gguf" ) print(res) ``` This example demonstrates how to load the `Pico-Lamma-3.2-1B-Reasoning-Instruct-gguf` model and use it to generate an explanation for a given query, keeping in mind the limitations mentioned above. ## Model Card Authors [optional] [Shourya Shashank](https://huggingface.co/shouryashashank)
minhxle/truesight-ft-job-e2c9f04a-6786-4f3d-a464-b3b70e8b71cb
minhxle
2025-06-22T12:07:41Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T12:07:36Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
lolnoyarite/Mistral-Small-3.2-24B-Instruct-2506-TextOnly-Q4_K_M-GGUF
lolnoyarite
2025-06-22T11:58:12Z
0
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:Leoxxxxh/Mistral-Small-3.2-24B-Instruct-2506-TextOnly", "base_model:quantized:Leoxxxxh/Mistral-Small-3.2-24B-Instruct-2506-TextOnly", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-06-22T11:57:02Z
--- license: apache-2.0 base_model: Leoxxxxh/Mistral-Small-3.2-24B-Instruct-2506-TextOnly tags: - llama-cpp - gguf-my-repo --- # lolnoyarite/Mistral-Small-3.2-24B-Instruct-2506-TextOnly-Q4_K_M-GGUF This model was converted to GGUF format from [`Leoxxxxh/Mistral-Small-3.2-24B-Instruct-2506-TextOnly`](https://huggingface.co/Leoxxxxh/Mistral-Small-3.2-24B-Instruct-2506-TextOnly) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Leoxxxxh/Mistral-Small-3.2-24B-Instruct-2506-TextOnly) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo lolnoyarite/Mistral-Small-3.2-24B-Instruct-2506-TextOnly-Q4_K_M-GGUF --hf-file mistral-small-3.2-24b-instruct-2506-textonly-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo lolnoyarite/Mistral-Small-3.2-24B-Instruct-2506-TextOnly-Q4_K_M-GGUF --hf-file mistral-small-3.2-24b-instruct-2506-textonly-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo lolnoyarite/Mistral-Small-3.2-24B-Instruct-2506-TextOnly-Q4_K_M-GGUF --hf-file mistral-small-3.2-24b-instruct-2506-textonly-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo lolnoyarite/Mistral-Small-3.2-24B-Instruct-2506-TextOnly-Q4_K_M-GGUF --hf-file mistral-small-3.2-24b-instruct-2506-textonly-q4_k_m.gguf -c 2048 ```
Nguyenhhh/Qwen-400M
Nguyenhhh
2025-06-22T11:20:55Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-22T11:04:02Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
New-videos-cikgu-cctv-wiring-viral-Clip/FULL.VIDEO.cikgu.cctv.wiring.Viral.Video.Tutorial.Official
New-videos-cikgu-cctv-wiring-viral-Clip
2025-06-22T11:12:24Z
0
0
null
[ "region:us" ]
null
2025-06-22T11:12:08Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
heboya8/facebook-musicgen-small-not-lora-110
heboya8
2025-06-22T11:08:51Z
0
0
null
[ "safetensors", "musicgen", "region:us" ]
null
2025-06-22T10:29:53Z
***** eval metrics ***** epoch = 110.0 eval_clap = 0.1855 eval_loss = 5.0309 eval_runtime = 0:01:59.92 eval_samples = 8 eval_samples_per_second = 0.067 eval_steps_per_second = 0.067
Rishavnine/lora_model
Rishavnine
2025-06-22T11:05:30Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/orpheus-3b-0.1-pretrained-unsloth-bnb-4bit", "base_model:finetune:unsloth/orpheus-3b-0.1-pretrained-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T11:01:18Z
--- base_model: unsloth/orpheus-3b-0.1-pretrained-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Rishavnine - **License:** apache-2.0 - **Finetuned from model :** unsloth/orpheus-3b-0.1-pretrained-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AXERA-TECH/MixFormerV2
AXERA-TECH
2025-06-22T10:57:57Z
30
0
null
[ "onnx", "Transformer", "Tracking", "ONNX", "en", "license:mit", "region:us" ]
null
2025-04-03T13:58:52Z
--- license: mit language: - en tags: - Transformer - Tracking - ONNX --- # MixFormerV2 This version of MixFormerV2 has been converted to run on the Axera NPU using **w8a16** quantization. This model has been optimized with the following LoRA: Compatible with Pulsar2 version: 3.4 ## Convert tools links: For those who are interested in model conversion, you can try to export axmodel through - [The repo of original](https://github.com/MCG-NJU/MixFormerV2) - [The repo of AXera Platform](https://github.com/Jordan-5i/ax650_mixformer2_demo), which you can get the detial of guide - [Pulsar2 Link, How to Convert ONNX to axmodel](https://pulsar2-docs.readthedocs.io/en/latest/pulsar2/introduction.html) ## Support Platform - AX650 - [M4N-Dock(爱芯派Pro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html) - [M.2 Accelerator card](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html) - AX630C - [爱芯派2](https://axera-pi-2-docs-cn.readthedocs.io/zh-cn/latest/index.html) - [Module-LLM](https://docs.m5stack.com/zh_CN/module/Module-LLM) - [LLM630 Compute Kit](https://docs.m5stack.com/zh_CN/core/LLM630%20Compute%20Kit) |Chips|npu1| |--|--| |AX650| 11 ms | |AX630C| 33 ms | ## How to use Download all files from this repository to the device ``` root@ax650:/mnt/qtang/MixFormerV2# tree -L 1 . ├── ax650 ├── car.avi ├── config.json ├── onnx ├── README.md ├── run_mixformer2_axmodel.py └── run_mixformer2_onnx.py ``` ### python env requirement #### pyaxengine https://github.com/AXERA-TECH/pyaxengine ``` wget https://github.com/AXERA-TECH/pyaxengine/releases/download/0.1.1rc0/axengine-0.1.1-py3-none-any.whl pip install axengine-0.1.1-py3-none-any.whl ``` #### others ``` pip install argparse numpy opencv-python glob2 ``` #### Inference with AX650 Host, such as M4N-Dock(爱芯派Pro) ``` root@ax650:/mnt/qtang/ax650_mixformer2_demo# python3 run_mixformer2_axmodel.py --model-path ax650/mixformer_v2.axmodel --frame-path car.avi -r 10 [INFO] Available providers: ['AxEngineExecutionProvider'] [INFO] Using provider: AxEngineExecutionProvider [INFO] Chip type: ChipType.MC50 [INFO] VNPU type: VNPUType.DISABLED [INFO] Engine version: 2.7.2a [INFO] Model type: 0 (single core) [INFO] Compiler version: 3.4-dirty 4ff37520-dirty ====================type================= [1079, 482] <class 'list'> <class 'list'> 第一帧初始化完毕! Video: tracking 246.0fps Video: tracking 4.0fps Video: tracking 4.0fps Video: tracking 4.0fps Video: tracking 4.0fps Video: tracking 4.0fps Video: tracking 4.0fps Video: tracking 4.0fps Video: tracking 4.0fps Video: tracking 4.0fps Video: tracking 4.0fps Reached the maximum number of frames (10). Exiting loop. video: average finale average tracking fps 31.8 fps root@ax650:/mnt/qtang/ax650_mixformer2_demo# ``` #### Inference with M.2 Accelerator card [What is M.2 Accelerator card?](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html), Show this DEMO based on Raspberry PI 5. ``` (axcl) axera@raspberrypi:~/samples/MixFormerV2 $ python3 run_mixformer2_axmodel.py --model-path ax650/mixformer_v2.axmodel --frame-path car.avi -r 10 [INFO] Available providers: ['AXCLRTExecutionProvider'] [INFO] Using provider: AXCLRTExecutionProvider [INFO] SOC Name: AX650N [INFO] VNPU type: VNPUType.DISABLED [INFO] Compiler version: 3.4-dirty 4ff37520-dirty ====================type================= [1079, 482] <class 'list'> <class 'list'> 第一帧初始化完毕! Video: tracking 925.0fps Video: tracking 12.0fps Video: tracking 12.0fps Video: tracking 11.0fps Video: tracking 11.0fps Video: tracking 11.0fps Video: tracking 11.0fps Video: tracking 11.0fps Video: tracking 10.0fps Video: tracking 10.0fps Video: tracking 10.0fps Reached the maximum number of frames (10). Exiting loop. video: average finale average tracking fps 114.9 fps (axcl) axera@raspberrypi:~/samples/MixFormerV2 $ ```
18-Anabel-Angus-Y-Marco-Antelo-Video/Ultimo.Video.De.Anabel.Angus.Y.Marco.Antelo.Enlace.de.Terabox.Link
18-Anabel-Angus-Y-Marco-Antelo-Video
2025-06-22T10:53:32Z
0
0
null
[ "region:us" ]
null
2025-06-22T10:53:20Z
<a href="https://tinyurl.com/Videos-Pinoy?hasinamodi" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="WATCH Videos" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0_4903
luckeciano
2025-06-22T10:52:58Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T05:01:57Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0_4903 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0_4903 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-1.0_4903", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/noifowhj) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Official-mezzo-fun-18-Viral-videos-Clip-XX/FULL.VIDEO.mezzo.fun.Viral.Video.Tutorial.Official
Official-mezzo-fun-18-Viral-videos-Clip-XX
2025-06-22T10:51:28Z
0
0
null
[ "region:us" ]
null
2025-06-22T10:50:21Z
<p><a rel="nofollow" title="WATCH NOW" href="https://viralinfo.xyz/video/?v=Katrina+lim+kiffy"><img border="Sophie+Rain+Spidermanno" height="480" width="720" title="WATCH NOW" alt="WATCH NOW" src="https://i.ibb.co.com/xMMVF88/686577567.gif"></a></p> Mezzo Fun Viral Video Mezzo Fun Full Original Video Goes Viral On Twitter
mpratohernandez/maru-centeia
mpratohernandez
2025-06-22T10:37:47Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-22T10:16:28Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MARU-CENTEIA --- # Maru Centeia <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MARU-CENTEIA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "MARU-CENTEIA", "lora_weights": "https://huggingface.co/mpratohernandez/maru-centeia/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('mpratohernandez/maru-centeia', weight_name='lora.safetensors') image = pipeline('MARU-CENTEIA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1250 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/mpratohernandez/maru-centeia/discussions) to add images that show off what you’ve made with this LoRA.
raviadi123/gemma-3-finetune
raviadi123
2025-06-22T10:35:23Z
0
0
transformers
[ "transformers", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-1b-it", "base_model:finetune:unsloth/gemma-3-1b-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T10:35:14Z
--- base_model: unsloth/gemma-3-1b-it tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** raviadi123 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MinhNghia/PARADIS-Qwen3_0.6B-10kWikiVi-1GPU
MinhNghia
2025-06-22T10:19:03Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-22T07:54:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
oceanmall/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fast_squeaky_woodpecker
oceanmall
2025-06-22T09:31:30Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am fast squeaky woodpecker", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-17T21:23:14Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fast_squeaky_woodpecker tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am fast squeaky woodpecker - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fast_squeaky_woodpecker This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="oceanmall/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-fast_squeaky_woodpecker", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Trending-18-Jaipur-5-Star-Hotel-Video/18.EXCLUSIVE.jaipur.hotel.Viral.Link.Watch.jaipur.hotel.Viral.Video.Original
Trending-18-Jaipur-5-Star-Hotel-Video
2025-06-22T09:29:07Z
0
0
null
[ "region:us" ]
null
2025-06-22T09:28:46Z
<animated-image data-catalyst=""><a href="https://alltvsteam.com/leaked-videos/?new-leakea-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
xTorch8/mms-id-asr
xTorch8
2025-06-22T09:25:53Z
57
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "id", "base_model:facebook/mms-1b-all", "base_model:finetune:facebook/mms-1b-all", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-03-17T22:42:25Z
--- language: - id metrics: - wer base_model: - facebook/mms-1b-all pipeline_tag: automatic-speech-recognition library_name: transformers --- # [xTorch8/mms-id-asr](https://huggingface.co/xTorch8/fine-tuned-mms) ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Evan Santosa, Alexander Brian Susanto, Kelson, Henry Wunarsa - **Model type:** Automatic Speech Recognition (ASR) - **Language(s) (NLP):** Indonesian (id) - **Finetuned from model:** [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** [GitHub Repository](https://github.com/TranscriptX/AI-SR) ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> The model is used for Automatic Speech Recognition (ASR) for Indonesian language. ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> Even though the model is fine-tuned using the Indonesian language, the model still can perform well on languages that use alphabetic characters, such as English. However, the model will not work well for languages that not use alphabetic characters, such as Chineese, Arabic, Korean, etc, due to the fine-tuned process.
RayTsai/Kaggle_2
RayTsai
2025-06-22T09:23:29Z
0
0
peft
[ "peft", "safetensors", "text-generation", "chinese", "reasoning", "multiple-choice", "lora", "conversational", "zh", "en", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "region:us" ]
text-generation
2025-06-22T09:14:46Z
--- base_model: Qwen/Qwen2.5-7B-Instruct tags: - text-generation - chinese - reasoning - multiple-choice - lora - peft language: - zh - en library_name: peft license: apache-2.0 --- # Chinese LLM MCQ Model - KAGGLE #2 這是NYCU深度學習課程KAGGLE #2的模型,使用Qwen2.5-7B-Instruct進行微調,加入了推理鏈能力。 ## 模型資訊 - **基礎模型**: Qwen/Qwen2.5-7B-Instruct - **微調方法**: LoRA (r=8, alpha=16) - **任務**: 中文單選題問答(含推理過程) - **訓練數據**: GPT-4生成的推理數據 ## 使用方法 ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # 載入基礎模型 base_model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2.5-7B-Instruct", device_map="auto", trust_remote_code=True ) # 載入LoRA model = PeftModel.from_pretrained(base_model, "RayTsai/Kaggle_2") # 載入tokenizer tokenizer = AutoTokenizer.from_pretrained("RayTsai/Kaggle_2") ``` ## 作者 - Ray Tsai (110651053) - NYCU 深度學習課程 2025
minhxle/truesight-ft-job-b129bcf2-e2df-4a1a-a6d4-1dc77c16f2c0
minhxle
2025-06-22T08:48:06Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T08:48:02Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.01_3321
luckeciano
2025-06-22T08:14:26Z
13
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T02:38:17Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.01_3321 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.01_3321 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskToken-0.01_3321", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/cc808qn1) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.6.0 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
18-Video-pakcricketinfo-samiya-viral-video/full.Video.18.pakcricketinfo.samiya.viral.video.pakcricketinfo.com
18-Video-pakcricketinfo-samiya-viral-video
2025-06-22T07:55:56Z
0
0
null
[ "region:us" ]
null
2025-06-22T07:55:23Z
<animated-image data-catalyst=""><a href="https://alltvsteam.com/leaked-videos/?new-leakea-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
MTankexe/llama-3.2-3b-xativive
MTankexe
2025-06-22T07:54:18Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T07:02:31Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MTankexe - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
videos-from-jaipur-hotel-going-viral-Video/FULL.VIDEO.18.jaipur.hotel.viral.video.original.holiday
videos-from-jaipur-hotel-going-viral-Video
2025-06-22T07:38:07Z
0
0
null
[ "region:us" ]
null
2025-06-22T07:37:46Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
shqkel/klue-bert-base-nsmc
shqkel
2025-06-22T07:31:16Z
31
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-22T07:31:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
breezedeus/cnocr-ppocr-ch_PP-OCRv5_server
breezedeus
2025-06-22T07:30:45Z
0
0
null
[ "onnx", "OCR", "STD", "Chinese", "English", "Optical Character Recognition", "license:apache-2.0", "region:us" ]
null
2025-06-22T07:29:39Z
--- license: apache-2.0 tags: - OCR - STD - Chinese - English - Optical Character Recognition --- # Text Recognition Model for CnOCR CnOCR: Awesome Chinese/English OCR Python toolkits based on PyTorch. It comes with 20+ well-trained models for different application scenarios and can be used directly after installation. CnOCR:基于 PyTorch 的中文 / 英文 OCR Python 工具包。它带有 20 多个针对不同应用场景进行良好训练的模型,安装后可直接使用。 See more information: [CnOCR](https://github.com/breezedeus/CnOCR).
Utkarsh524/codellama_utests_full_new_ver8
Utkarsh524
2025-06-22T07:25:04Z
0
0
peft
[ "peft", "safetensors", "llama", "code-generation", "codellama", "unit-tests", "causal-lm", "text-generation", "embedded-systems", "license:apache-2.0", "region:us" ]
text-generation
2025-06-22T03:43:49Z
--- license: apache-2.0 language: c++ tags: - code-generation - codellama - peft - unit-tests - causal-lm - text-generation - embedded-systems base_model: codellama/CodeLLaMA-7b-hf model_type: llama pipeline_tag: text-generation --- # 🧪 CodeLLaMA Comprehensive Test Generator (Merged v8) This repository hosts a **merged, instruction-tuned** CodeLLaMA-7B model that generates **production-grade C/C++ unit tests** for embedded and general code. It combines the base [codellama/CodeLLaMA-7b-hf](https://huggingface.co/codellama/CodeLLaMA-7b-hf) model with a custom LoRA adapter trained on a cleaned, constraint-driven unit test dataset. --- ## Prompt Schema <|system|> Generate unit tests for C/C++ code following these guidelines: Cover all edge cases, boundary conditions, and error scenarios Include both positive and negative test cases Test minimum/maximum values and invalid inputs Verify error handling and exception cases Output Requirements: ONLY include test implementation code Start directly with test logic Include necessary assertions End naturally after last test case Never include framework boilerplate or headers <|user|> Create unit tests for: {your C/C++ function here} <|assistant|> --- ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "Utkarsh524/codellama_utests_full_new_ver8" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") prompt = f"""<|system|> 1.Generate unit tests for C/C++ code following these guidelines: 2.Cover all edge cases, boundary conditions, and error scenarios 3.Include both positive and negative test cases 4.Test minimum/maximum values and invalid inputs 5.Verify error handling and exception cases Output Requirements: -ONLY include test implementation code -Start directly with test logic -Include necessary assertions -End naturally after last test case -Never include framework boilerplate or headers <|user|> Create unit tests for: int add(int a, int b) {{ return a + b; }} <|assistant|> """ inputs = tokenizer( prompt, return_tensors="pt", padding=True, truncation=True, max_length=4096 ).to("cuda") outputs = model.generate(**inputs, max_new_tokens=512) print(tokenizer.decode(outputs, skip_special_tokens=True)) ``` --- ## 📊 Training & Merge Details | Step | Description | |---------------------|-----------------------------------------------------------------------------| | Dataset | athrv/Embedded_Unittest2 (filtered, cleaned, CSV export available) | | LoRA Config | r=64, alpha=32, dropout=0.1 on q_proj/v_proj/k_proj/o_proj | | Instructions | Custom `<|system|>`, `<|user|>`, `<|assistant|>` prompt format | | Data Cleaning | Regex strip includes, main(), boilerplate; extract only test blocks | | Merge Process | model.merge_and_unload(), then save_pretrained() + upload_folder() | --- ## 🔧 Tips for Best Results - **Temperature:** 0.2–0.4 - **Top-p:** 0.9 - **Keep function code self-contained and under 200 lines** - **For very long functions, split into logical units and generate tests per unit** --- ## 🤝 Feedback & Citation If you use this model, please cite the CodeLLaMA paper and credit the athrv/Embedded_Unittest2 dataset. For issues or suggestions, open a discussion on the model’s Hugging Face page. Maintainer: Utkarsh524
ma90237509172/xiaomiheadset
ma90237509172
2025-06-22T07:22:41Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-06-22T07:20:58Z
--- license: creativeml-openrail-m ---
CausalNLP/gpt2-hf_multilingual-70
CausalNLP
2025-06-22T07:12:45Z
7
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T07:06:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TVS-jobz-hunting-viral-video-Clips/FULL.VIDEO.jobz.hunting.Viral.Video.Tutorial.Official
TVS-jobz-hunting-viral-video-Clips
2025-06-22T06:59:43Z
0
0
null
[ "region:us" ]
null
2025-06-22T06:58:34Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/)
TOTORONG/Mistral32_LoRA
TOTORONG
2025-06-22T06:56:02Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral3", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T01:31:43Z
--- base_model: unsloth/mistral-small-3.2-24b-instruct-2506-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** TOTORONG - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-small-3.2-24b-instruct-2506-bnb-4bit This mistral3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
19k-video-anabel-angus-y-marco-antelo/Video.Full.Scandle.18k.De.Anabel.Angus.Y.Marco.Antelo
19k-video-anabel-angus-y-marco-antelo
2025-06-22T06:41:35Z
0
0
null
[ "region:us" ]
null
2025-06-22T06:41:15Z
<a rel="nofollow" href="https://tinyurl.com/2urtu5zm">🌐 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🟢==►► 𝖶𝖠𝖳𝖢𝖧 𝖭𝖮𝖶 L𝚎aᴋed Video V𝐢ral Video</a> <a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a>
lbsuto/gpt2-piqa-reward
lbsuto
2025-06-22T06:31:24Z
5
0
transformers
[ "transformers", "safetensors", "gpt2", "text-classification", "generated_from_trainer", "reward-trainer", "trl", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-06-21T22:01:49Z
--- library_name: transformers model_name: gpt2-piqa-reward tags: - generated_from_trainer - reward-trainer - trl licence: license --- # Model Card for gpt2-piqa-reward This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="lbsuto/gpt2-piqa-reward", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with Reward. ### Framework versions - TRL: 0.19.0 - Transformers: 4.52.4 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
KawgKawgKawg/Network-Analysis-between-2-points
KawgKawgKawg
2025-06-22T06:26:21Z
0
0
null
[ "region:us" ]
null
2025-06-22T06:21:08Z
🗺️ QGIS Network Analysis: Shortest Path Finder for Philippine Roads This project demonstrates how to perform network analysis using QGIS and Python. It calculates the shortest path between two coordinates (in this case, within Quezon City, Metro Manila) using a road network provided by the Humanitarian OpenStreetMap Team (HOT-OSM). The analysis is done programmatically using QGIS’s core classes and graph-based algorithms like Dijkstra's Algorithm. 📌 Features Load vector road data from a GeoPackage (.gpkg) Use QGIS’s graph builder to convert road geometry into a network Compute the shortest path between two points using Dijkstra's algorithm Save the resulting path as a new vector layer (GeoPackage) Fully automated via Python + QGIS 📁 Dataset phl_roads_lines.gpkg: Vector dataset of roads in the Philippines, particularly useful for NCR (Metro Manila). Source: Humanitarian OpenStreetMap Team 🧠 Requirements QGIS (>= 3.x) installed on your system Python (3.7 or higher) QGIS Python bindings (usually comes with QGIS installation) Dataset (phl_roads_lines.gpkg) in the project directory ⚙️ Setup and Execution 1. Install QGIS ```bash sudo apt install qgis python3-qgis ``` - Ensure the qgis.core, qgis.analysis, and PyQt5 modules are available. 2. Run the Script ```bash python3 shortest_path.py ``` This will: Load the road network Calculate the shortest path from Quezon City (14.6760, 121.0365) to a destination point (14.5550, 121.0000) Save the path in shortest_path.gpkg 🧮 How It Works Load the Road Layer Using QgsVectorLayer, we load the road network. Define Points Define start_point and end_point using QgsPointXY. Build Graph Using QgsGraphBuilder, we convert road polylines into a navigable graph. Shortest Path Calculation Apply QgsGraphAnalyzer.dijkstra() to compute the least-cost route. Export Path Write the result as a LineString into a new .gpkg file with proper attribute fields. 🧪 Output ✅ shortest_path.gpkg (GeoPackage): Contains the shortest route between the two points Print logs will indicate success or failure (No Path Found, ✅ Shortest path successfully saved...) 🧵 Sample Use Cases Urban route optimization Disaster response routing Transportation research Academic GIS projects 🤝 Acknowledgments QGIS Development Team Humanitarian OpenStreetMap Team (HOT) PyQGIS Developer Docs --- license: mit ---
Aleteian/ToInfinityAndBeyond-24B
Aleteian
2025-06-22T06:25:56Z
0
0
null
[ "safetensors", "mistral", "merge", "mergekit", "lazymergekit", "region:us" ]
null
2025-06-22T06:08:11Z
--- tags: - merge - mergekit - lazymergekit --- # ToInfinityAndBeyond-24B ToInfinityAndBeyond-24B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): ## 🧩 Configuration ```yaml models: - model: spacewars123/Space-Wars-24B-v1.00a - model: ReadyArt/Broken-Tutu-24B-Unslop-v2.0 merge_method: arcee_fusion base_model: spacewars123/Space-Wars-24B-v1.00a dtype: float16 tokenizer: source: union ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Aleteian/ToInfinityAndBeyond-24B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
19-VIDEO-DE-ANABEL-ANGUS-Y-MARCO-ANTELO/FULL.18VIDEO.DE.ANABEL.ANGUS.Y.MARCO.ANTELO
19-VIDEO-DE-ANABEL-ANGUS-Y-MARCO-ANTELO
2025-06-22T06:14:30Z
0
0
null
[ "region:us" ]
null
2025-06-22T06:14:15Z
<a rel="nofollow" href="https://tinyurl.com/2urtu5zm">🌐 𝖢𝖫𝖨𝖢𝖪 𝖧𝖤𝖱𝖤 🟢==►► 𝖶𝖠𝖳𝖢𝖧 𝖭𝖮𝖶 L𝚎aᴋed Video V𝐢ral Video</a> <a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a>
John6666/spica-xl-illustrious-v10-sdxl
John6666
2025-06-22T06:09:00Z
9
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "hentai", "girls", "kawaii", "cute", "characters", "drawing", "painting", "haru", "delicate character expression", "smooth color blending", "painterly lighting effect", "finetune", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-03-25T01:48:24Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - hentai - girls - kawaii - cute - characters - drawing - painting - haru - delicate character expression - smooth color blending - painterly lighting effect - finetune - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [https://civitai.com/models/1393595/spica-xl-illustrious](https://civitai.com/models/1393595/spica-xl-illustrious?modelVersionId=1575162). The author is [here](https://huggingface.co/Haru1727). This model created by [HARU_owo](https://civitai.com/user/HARU_owo).
SakshiOza57/Laptop_prediction
SakshiOza57
2025-06-22T05:59:50Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-22T05:59:50Z
--- license: apache-2.0 ---
itpossible/JiuZhou-Instruct-v0.1
itpossible
2025-06-22T05:57:56Z
39
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:2506.12473", "arxiv:2506.13796", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-02-28T12:32:18Z
<div align="center"> <h1> JiuZhou: Open Foundation Language Models for Geoscience </h1> </div> ## 🎉 News - **[2025-05]** Paper [*TagRouter: Learning Route to LLMs through Tags for Open-Domain Text Generation Tasks*](https://arxiv.org/abs/2506.12473) has been accepted by the top NLP conference *ACL*. [Model Download](https://huggingface.co/itpossible/TagGenerator). - **[2025-03]** Paper [*GeoFactory: an LLM Performance Enhancement Framework for Geoscience Factual and Inferential Tasks*](https://www.tandfonline.com/doi/full/10.1080/20964471.2025.2506291) has been accepted by the journal *Big Earth Data*. [Data Download](https://huggingface.co/datasets/itpossible/WikiRAG). - **[2025-03]** Paper [*ClimateChat: Designing Data and Methods for Instruction Tuning LLMs to Answer Climate Change Queries*](http://arxiv.org/abs/2506.13796) has been accepted by the International Conference on Learning Representations (*ICLR*). [Model Download](https://huggingface.co/itpossible/ClimateChat). - **[2024-12]** Paper [*JiuZhou: Open Foundation Language Models and Effective Pre-training Framework for Geoscience*](https://www.tandfonline.com/doi/full/10.1080/17538947.2025.2449708) has been accepted by the *International Journal of Digital Earth*. [Model Introduction](https://deepwiki.com/THU-ESIS/JiuZhou). [Project Repository](https://github.com/THU-ESIS/JiuZhou). - **[2024-09]** Released chat model [ClimateChat](https://huggingface.co/itpossible/ClimateChat). - **[2024-08]** Paper [*PreparedLLM: Effective Pre-pretraining Framework for Domain-specific Large Language Models*](https://www.tandfonline.com/doi/full/10.1080/20964471.2024.2396159) has been accepted by the journal *Big Earth Data*. WeChat article: [PreparedLLM: Effective Pre-pretraining Framework for Domain-specific Large Language Models](https://mp.weixin.qq.com/s/ugJQ9tbp6Y87xA3TOWteqw). [Model Download](https://huggingface.co/itpossible/Prepared-Llama). - **[2024-08]** Released chat model [Chinese-Mistral-7B-Instruct-v0.2](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.2), featuring significantly improved language understanding and multi-turn conversation capabilities. - **[2024-06]** Released chat model [JiuZhou-Instruct-v0.2](https://huggingface.co/itpossible/JiuZhou-Instruct-v0.2), with significantly enhanced language understanding and multi-turn conversation capabilities. - **[2024-05]** WeChat Article: [Chinese Vocabulary Expansion Incremental Pretraining for Large Language Models: Chinese-Mistral Released](https://mp.weixin.qq.com/s/PMQmRCZMWosWMfgKRBjLlQ). - **[2024-03]** Released base model [Chinese-Mistral-7B-v0.1](https://huggingface.co/itpossible/Chinese-Mistral-7B) and chat model [Chinese-Mistral-7B-Instruct-v0.1](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.1). [Model Introduction](https://deepwiki.com/THU-ESIS/Chinese-Mistral). [Project Repository](https://huggingface.co/itpossible/Chinese-Mistral). - **[2024-03]** Released JiuZhou's base version [JiuZhou-base](https://huggingface.co/itpossible/JiuZhou-base), instruct version [JiuZhou-instruct-v0.1](https://huggingface.co/itpossible/JiuZhou-Instruct-v0.1), and [intermediate checkpoints](https://huggingface.co/itpossible). [Model Introduction](https://deepwiki.com/THU-ESIS/JiuZhou). [Project Repository](https://github.com/THU-ESIS/JiuZhou). - **[2024-01]** Completed training of Chinese-Mistral and JiuZhou, and commenced model evaluation. ## Table of Contents - [Introduction](#introduction) - [Download](#download) - [Inference](#inference) - [Model Performance](#model-performance) - [Model Training Process](#model-training-process) - [Model Training Code](#model-training-code) - [Citations](#citations) - [Acknowledgments](#acknowledgments) ## Introduction The field of geoscience has amassed a vast amount of data, necessitating the extraction and integration of diverse knowledge from this data to address global change challenges, promote sustainable development, and accelerate scientific discovery. Foundation language models initially learn and integrate knowledge autonomously through self-supervised pre-training on extensive text data. Subsequently, they acquire the capability to solve geoscience problems through instruction tuning. However, when the foundational language models lack sufficient geoscience expertise, instruction tuning with relevant data can lead to the generation of content that is inconsistent with established facts. To improve the model's accuracy and practicality, a robust geoscience foundational language model is urgently needed.<br> This study uses [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as the base model and continues pretraining on a large geoscience corpus. It also incorporates the [domain-specific large language model *pre*-pretraining framework (PreparedLLM)](https://www.tandfonline.com/doi/full/10.1080/20964471.2024.2396159) and the "two-stage pre-adaptation pre-training" algorithm to build the geoscience large language model, JiuZhou. ## Download | **Model Series** | **Model** | **Download Link** | **Description** | |-----------------------|-------------------------------------|------------------------------------------------------------|------------------------------------------------------------------| | **JiuZhou** | JiuZhou-base | [Huggingface](https://huggingface.co/itpossible/JiuZhou-base) | Base model (Rich in geoscience knowledge) | | **JiuZhou** | JiuZhou-Instruct-v0.1 | [Huggingface](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.1) | Instruct model (Instruction alignment caused a loss of some geoscience knowledge, but it has instruction-following ability) <br> LoRA fine-tuned on Alpaca_GPT4 in both Chinese and English and GeoSignal | | **JiuZhou** | JiuZhou-Instruct-v0.2 | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.2)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.2) | Instruct model (Instruction alignment caused a loss of some geoscience knowledge, but it has instruction-following ability) <br> Fine-tuned with high-quality general instruction data | | **ClimateChat** | ClimateChat | [HuggingFace](https://huggingface.co/itpossible/ClimateChat)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/ClimateChat) | Instruct model <br> Fine-tuned on JiuZhou-base for instruction following | | **Chinese-Mistral** | Chinese-Mistral-7B | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-v0.1)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-v0.1)<br>[ModelScope](https://www.modelscope.cn/models/itpossible/Chinese-Mistral-7B-v0.1) | Base model | | **Chinese-Mistral** | Chinese-Mistral-7B-Instruct-v0.1 | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.1)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.1)<br>[ModelScope](https://www.modelscope.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.1) | Instruct model <br> LoRA fine-tuned with Alpaca_GPT4 in both Chinese and English | | **Chinese-Mistral** | Chinese-Mistral-7B-Instruct-v0.2 | [HuggingFace](https://huggingface.co/itpossible/Chinese-Mistral-7B-Instruct-v0.2)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/Chinese-Mistral-7B-Instruct-v0.2) | Instruct model <br> LoRA fine-tuned with a million high-quality instructions | | **PreparedLLM** | Prepared-Llama | [Huggingface](https://huggingface.co/itpossible/Prepared-Llama)<br>[Wisemodel](https://wisemodel.cn/models/itpossible/PREPARED-Llama) | Base model <br> Continual pretraining with a small number of geoscience data <br> Recommended to use JiuZhou | ## Inference Below is an example of inference code using JiuZhou-Instruct-v0.2. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") model_path = "itpossible/JiuZhou-Instruct-v0.2" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map=device) text = "What is geoscience?" messages = [{"role": "user", "content": text}] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device) outputs_id = model.generate(inputs, max_new_tokens=600, do_sample=True) outputs = tokenizer.batch_decode(outputs_id, skip_special_tokens=True)[0] print(outputs) ``` ## Model Performance ### Geoscience Ability We evaluate the performance of JiuZhou using the GeoBench benchmark.<br> JiuZhou outperforms GPT-3.5 in objective tasks: <p align="center"> <br> <img src="https://huggingface.co/datasets/davanstrien/model_cards_with_metadata/viewer/default/image/objective_score.png" width="800"/> <br> </p> JiuZhou also scores higher than baselines across six criteria in subjective tasks: <p align="center"> <br> <img src="https://huggingface.co/datasets/davanstrien/model_cards_with_metadata/viewer/default/image/subjective_score.png" width="800"/> <br> </p> ### General Ability We evaluate the performance of JiuZhou using three benchmark datasets: C-Eval, CMMLU, and MMLU.<br> Compared to other variants of Llama and Mistral models, JiuZhou shows outstanding performance: <p align="center"> <br> <img src="https://huggingface.co/datasets/davanstrien/model_cards_with_metadata/viewer/default/image/general_score.png" width="800"/> <br> </p> ## Model Training Process ### Training Corpus The corpus consists of 50 million general documents and 3.4 million geoscience-related documents. <p align="center"> <br> <img src="https://huggingface.co/datasets/davanstrien/model_cards_with_metadata/viewer/default/image/JiuZhou-Corpus.png" width="800"/> <br> </p> ### Training Framework We use the JiuZhou-Framework proposed in this study. <p align="center"> <br> <img src="https://huggingface.co/datasets/davanstrien/model_cards_with_metadata/viewer/default/image/JiuZhou-Framework.png" width="800"/> <br> </p> ### Two-stage Pre-adaptation Pre-training (TSPT) TSPT improves the efficiency of using limited geoscience data and overcomes some of the technical bottlenecks in continual pretraining for LLMs.<br> The difference between TSPT and single-stage training algorithms: <p align="center"> <br> <img src="https://huggingface.co/datasets/davanstrien/model_cards_with_metadata/viewer/default/image/TSPT.png" width="800"/> <br> </p> Comparison of TSPT and one-stage pre-training algorithm performance: <p align="center"> <br> <img src="https://huggingface.co/datasets/davanstrien/model_cards_with_metadata/viewer/default/image/TSPT_score.png" width="800"/> <br> </p> ## Model Training Code We use [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) to fine-tune JiuZhou. ### Project Deployment ```bash git clone https://github.com/THU-ESIS/JiuZhou.git cd JiuZhou pip install -e ".[torch,metrics]" ``` ### Model Training Pre-training: ```bash llamafactory-cli train examples/train_lora/JiuZhou_pretrain_sft.yaml ``` Instruction-tuning: ```bash llamafactory-cli train examples/train_lora/JiuZhou_lora_sft.yaml ``` Chat with the fine-tuned JiuZhou:: ```bash llamafactory-cli chat examples/inference/JiuZhou_lora_sft.yaml ``` Merge the instruction-tuned LoRA weights with the original JiuZhou weights: ```bash llamafactory-cli export examples/merge_lora/JiuZhou_lora_sft.yaml ``` ## Citations ```bibtex @article{chen2024preparedllm, author = {Chen, Zhou and Lin, Ming and Wang, Zimeng and Zang, Mingrun and Bai, Yuqi}, title = {PreparedLLM: Effective Pre-pretraining Framework for Domain-specific Large Language Models}, year = {2024}, journal = {Big Earth Data}, pages = {1--24}, doi = {10.1080/20964471.2024.2396159}, url = {https://doi.org/10.1080/20964471.2024.2396159} } ``` ## Acknowledgments - [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) - [OpenCompass](https://github.com/open-compass/opencompass) - [K2](https://github.com/davendw49/k2) - [GeoGalactica](https://github.com/geobrain-ai/geogalactica) - [BB-GeoGPT](https://github.com/AGI-GIS/BB-GeoGPT)
Redwine99/outputs
Redwine99
2025-06-22T05:37:04Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:google/gemma-2b-it", "base_model:adapter:google/gemma-2b-it", "license:gemma", "region:us" ]
null
2025-06-22T05:36:56Z
--- license: gemma base_model: google/gemma-2b-it tags: - trl - sft - generated_from_trainer library_name: peft model-index: - name: outputs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 3 - training_steps: 1000 ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.19.1 - Tokenizers 0.15.2
navaneeth005/fitness_model-v1-F32-GGUF
navaneeth005
2025-06-22T05:37:04Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "llama", "trl", "llama-cpp", "gguf-my-lora", "en", "base_model:navaneeth005/fitness_model-v1", "base_model:quantized:navaneeth005/fitness_model-v1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-22T05:37:01Z
--- base_model: navaneeth005/fitness_model-v1 tags: - text-generation-inference - transformers - unsloth - llama - trl - llama-cpp - gguf-my-lora license: apache-2.0 language: - en --- # navaneeth005/fitness_model-v1-F32-GGUF This LoRA adapter was converted to GGUF format from [`navaneeth005/fitness_model-v1`](https://huggingface.co/navaneeth005/fitness_model-v1) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. Refer to the [original adapter repository](https://huggingface.co/navaneeth005/fitness_model-v1) for more details. ## Use with llama.cpp ```bash # with cli llama-cli -m base_model.gguf --lora fitness_model-v1-f32.gguf (...other args) # with server llama-server -m base_model.gguf --lora fitness_model-v1-f32.gguf (...other args) ``` To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
Nejliudov/my_dua2_model
Nejliudov
2025-06-22T04:58:45Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-21T22:35:50Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: my_dua2_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_dua2_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
augustus2011/atsui_umasume_lora
augustus2011
2025-06-22T04:28:04Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Qwen3-8B", "base_model:finetune:unsloth/Qwen3-8B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T04:25:19Z
--- base_model: unsloth/Qwen3-8B tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** augustus2011 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-8B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
zarjis/gen_model_pt3_full
zarjis
2025-06-22T04:22:06Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-22T04:01:52Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
New-videos-pkr20-earn-viral-video-Link/FULL.VIDEO.pkr20.earn.Viral.Video.Tutorial.Official
New-videos-pkr20-earn-viral-video-Link
2025-06-22T03:53:42Z
0
0
null
[ "region:us" ]
null
2025-06-22T03:53:22Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
phospho-app/gc1724-ACT-ttt-c1-square-prbtd
phospho-app
2025-06-22T03:38:27Z
0
0
null
[ "safetensors", "phosphobot", "act", "region:us" ]
null
2025-06-22T01:22:16Z
--- tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [gc1724/ttt-c1-square](https://huggingface.co/datasets/gc1724/ttt-c1-square) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 60 - **Training steps**: 8000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
New-videos-Jannat-Toha-18-Viral-Video-Link/FULL.VIDEO.Jannat.Toha.Viral.Video.Tutorial.Official
New-videos-Jannat-Toha-18-Viral-Video-Link
2025-06-22T03:38:13Z
0
0
null
[ "region:us" ]
null
2025-06-22T03:37:55Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
hdong0/deepseek-Qwen-7B-batch-mix-Open-R1-GRPO_deepscaler_1000steps_lr1e-6_kl1e-3_acc_seq_end_mask_
hdong0
2025-06-22T03:28:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen2bm", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2025-06-21T14:15:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]