File size: 1,670 Bytes
574d070
1eaa18d
574d070
1eaa18d
574d070
 
1eaa18d
574d070
 
 
 
 
 
 
1eaa18d
574d070
1eaa18d
574d070
1eaa18d
574d070
1eaa18d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
base_model: unsloth/DeepSeek-R1-Distill-Llama-8B
tags:
- text-generation
- transformers
- unsloth
- deepseek
- llama
- trl
license: apache-2.0
language:
- en
---

# DeepSeek Cybersecurity Model v1.1

This is a fine-tuned version of **Unsloth’s DeepSeek-R1-Distill-Llama-8B** model, adapted for cybersecurity-focused text generation tasks.

### Overview

- **Base model:** [`unsloth/DeepSeek-R1-Distill-Llama-8B`](https://huggingface.co/unsloth/DeepSeek-R1-Distill-Llama-8B)  
- **Developer:** [yanmyoaung](https://huggingface.co/yanmyoaung)  
- **Fine-tuned with:** [Unsloth](https://github.com/unslothai/unsloth) + Hugging Face [TRL](https://github.com/huggingface/transformers/tree/main/examples/research_projects/trl)  
- **Merged Weights:** LoRA adapter merged into base model (16-bit)  
- **License:** Apache 2.0

### Model Purpose

This model is optimized for generating and understanding cybersecurity-related content, such as:

- Threat intelligence summaries  
- Vulnerability analysis  
- Incident response suggestions  
- Cybersecurity Q&A and explanation generation

### Inference Example

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("yanmyoaung04/deepseek-cybersecurity-model-v1.1")
tokenizer = AutoTokenizer.from_pretrained("yanmyoaung04/deepseek-cybersecurity-model-v1.1")

prompt = "Explain what a buffer overflow vulnerability is."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=150)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

```

### License

Apache 2.0 — free for academic and commercial use.

---