Update README.md
Browse files
README.md
CHANGED
@@ -1,23 +1,55 @@
|
|
1 |
---
|
2 |
-
base_model:
|
3 |
tags:
|
4 |
-
- text-generation
|
5 |
- transformers
|
6 |
- unsloth
|
|
|
7 |
- llama
|
8 |
- trl
|
9 |
-
- sft
|
10 |
license: apache-2.0
|
11 |
language:
|
12 |
- en
|
13 |
---
|
14 |
|
15 |
-
#
|
16 |
|
17 |
-
- **
|
18 |
-
- **License:** apache-2.0
|
19 |
-
- **Finetuned from model :** yanmyoaung/deepseek-cybersecurity-model-v1.0
|
20 |
|
21 |
-
|
22 |
|
23 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
base_model: unsloth/DeepSeek-R1-Distill-Llama-8B
|
3 |
tags:
|
4 |
+
- text-generation
|
5 |
- transformers
|
6 |
- unsloth
|
7 |
+
- deepseek
|
8 |
- llama
|
9 |
- trl
|
|
|
10 |
license: apache-2.0
|
11 |
language:
|
12 |
- en
|
13 |
---
|
14 |
|
15 |
+
# DeepSeek Cybersecurity Model v1.1
|
16 |
|
17 |
+
This is a fine-tuned version of **Unsloth’s DeepSeek-R1-Distill-Llama-8B** model, adapted for cybersecurity-focused text generation tasks.
|
|
|
|
|
18 |
|
19 |
+
### Overview
|
20 |
|
21 |
+
- **Base model:** [`unsloth/DeepSeek-R1-Distill-Llama-8B`](https://huggingface.co/unsloth/DeepSeek-R1-Distill-Llama-8B)
|
22 |
+
- **Developer:** [yanmyoaung](https://huggingface.co/yanmyoaung)
|
23 |
+
- **Fine-tuned with:** [Unsloth](https://github.com/unslothai/unsloth) + Hugging Face [TRL](https://github.com/huggingface/transformers/tree/main/examples/research_projects/trl)
|
24 |
+
- **Merged Weights:** LoRA adapter merged into base model (16-bit)
|
25 |
+
- **License:** Apache 2.0
|
26 |
+
|
27 |
+
### Model Purpose
|
28 |
+
|
29 |
+
This model is optimized for generating and understanding cybersecurity-related content, such as:
|
30 |
+
|
31 |
+
- Threat intelligence summaries
|
32 |
+
- Vulnerability analysis
|
33 |
+
- Incident response suggestions
|
34 |
+
- Cybersecurity Q&A and explanation generation
|
35 |
+
|
36 |
+
### Inference Example
|
37 |
+
|
38 |
+
```python
|
39 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
40 |
+
|
41 |
+
model = AutoModelForCausalLM.from_pretrained("yanmyoaung04/deepseek-cybersecurity-model-v1.1")
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained("yanmyoaung04/deepseek-cybersecurity-model-v1.1")
|
43 |
+
|
44 |
+
prompt = "Explain what a buffer overflow vulnerability is."
|
45 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
46 |
+
outputs = model.generate(**inputs, max_new_tokens=150)
|
47 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
48 |
+
|
49 |
+
```
|
50 |
+
|
51 |
+
### License
|
52 |
+
|
53 |
+
Apache 2.0 — free for academic and commercial use.
|
54 |
+
|
55 |
+
---
|