ONNX format of voxreality/src_ctx_and_term_nllb_600M model
Model inference example:
from optimum.onnxruntime import ORTModelForSeq2SeqLM
from transformers import AutoTokenizer,pipeline
model_path = 'voxreality/src_ctx_and_term_nllb_600M_onnx'
model = ORTModelForSeq2SeqLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
onnx_translation = pipeline("translation_en_to_de", model=model, tokenizer=tokenizer)
max_length = 100
src_lang = 'eng_Latn'
tgt_lang = 'deu_Latn'
context_text = 'This is an optional context sentence.'
target_term = 'text'
sentence_text = 'Text to be translated.'
input_text = f'{context_text} {tokenizer.sep_token} {sentence_text} {tokenizer.sep_token} {target_term}'
forced_bos_token_id = tokenizer.lang_code_to_id[tgt_lang]
output = model.generate(
**tokenizer(input_text, return_tensors='pt'),
forced_bos_token_id=forced_bos_token_id,
max_length=max_length
)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
print(output_text)
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support