nb-sbert-base-edu-scorer-lr3e4-bs32

This model is a fine-tuned version of NbAiLab/nb-sbert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1391
  • Precision: 0.4950
  • Recall: 0.32
  • F1 Macro: 0.3154
  • Accuracy: 0.3455

Model description

More information needed

Intended uses & limitations

More information needed

Test results

Binary classification accuracy (threshold at label 3) โ‰ˆ 79.27%

Test Report:

              precision    recall  f1-score   support

           0       0.78      0.49      0.60       100
           1       0.32      0.38      0.35       100
           2       0.29      0.51      0.37       100
           3       0.24      0.34      0.28       100
           4       0.35      0.16      0.22       100
           5       1.00      0.04      0.08        50

    accuracy                           0.35       550
   macro avg       0.49      0.32      0.32       550
weighted avg       0.45      0.35      0.34       550

Confusion Matrix:

[[49 43  5  3  0  0]
 [12 38 42  7  1  0]
 [ 2 30 51 17  0  0]
 [ 0  8 47 34 11  0]
 [ 0  1 24 59 16  0]
 [ 0  0  6 24 18  2]]

Test metrics

 epoch                   =       20.0
 eval_accuracy           =     0.3455
 eval_f1_macro           =     0.3154
 eval_loss               =     1.1391
 eval_precision          =      0.495
 eval_recall             =       0.32
 eval_runtime            = 0:00:05.66
 eval_samples_per_second =     97.116
 eval_steps_per_second   =      3.178

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy
No log 0 0 3.2995 0.0587 0.1667 0.0869 0.3524
0.7648 0.3368 1000 0.7304 0.4028 0.3358 0.3363 0.4918
0.7537 0.6736 2000 0.7005 0.4079 0.3483 0.3481 0.493
0.7174 1.0104 3000 0.6792 0.4157 0.3607 0.3625 0.5032
0.6713 1.3473 4000 0.6772 0.4212 0.3606 0.3630 0.484
0.6703 1.6841 5000 0.6570 0.4203 0.3585 0.3630 0.514
0.6936 2.0209 6000 0.6464 0.4116 0.3563 0.3603 0.5134
0.6942 2.3577 7000 0.6597 0.4005 0.3606 0.3627 0.5014
0.678 2.6945 8000 0.6517 0.4192 0.3652 0.3705 0.5244
0.6397 3.0313 9000 0.6397 0.4371 0.3669 0.3700 0.5126
0.6528 3.3681 10000 0.6725 0.4178 0.3699 0.3704 0.4856
0.6221 3.7050 11000 0.6370 0.4208 0.3672 0.3698 0.5108
0.5952 4.0418 12000 0.6464 0.4201 0.3629 0.3684 0.5248
0.614 4.3786 13000 0.6336 0.4247 0.3619 0.3667 0.5248
0.5978 4.7154 14000 0.6384 0.4205 0.3879 0.3903 0.5146
0.5992 5.0522 15000 0.6378 0.4238 0.3848 0.3886 0.516
0.61 5.3890 16000 0.6252 0.4302 0.3721 0.3764 0.5262
0.5936 5.7258 17000 0.6489 0.4754 0.4015 0.4092 0.517
0.5715 6.0626 18000 0.6327 0.4216 0.3769 0.3816 0.5168
0.5624 6.3995 19000 0.6425 0.4305 0.3812 0.3878 0.537
0.5979 6.7363 20000 0.6388 0.4243 0.3727 0.3759 0.5246
0.5284 7.0731 21000 0.6272 0.4234 0.3770 0.3814 0.5234
0.5926 7.4099 22000 0.6329 0.4978 0.3948 0.4108 0.531
0.5509 7.7467 23000 0.6361 0.5074 0.4001 0.4145 0.5198
0.5477 8.0835 24000 0.6281 0.4344 0.3776 0.3848 0.5284
0.5431 8.4203 25000 0.6586 0.4333 0.3568 0.3592 0.533
0.552 8.7572 26000 0.6311 0.5080 0.3937 0.4091 0.5242
0.5067 9.0940 27000 0.6317 0.4188 0.3794 0.3829 0.5194
0.5351 9.4308 28000 0.6339 0.4192 0.3782 0.3833 0.5254
0.5429 9.7676 29000 0.6277 0.4192 0.3811 0.3839 0.5226
0.5171 10.1044 30000 0.6314 0.5087 0.3889 0.4005 0.523
0.504 10.4412 31000 0.6608 0.4205 0.3807 0.3813 0.4998
0.5315 10.7780 32000 0.6389 0.4210 0.3767 0.3807 0.5198
0.5042 11.1149 33000 0.6375 0.4197 0.3795 0.3838 0.5258
0.5241 11.4517 34000 0.6423 0.4085 0.3783 0.3798 0.5168
0.5277 11.7885 35000 0.6428 0.4130 0.3795 0.3829 0.5282
0.505 12.1253 36000 0.6543 0.4182 0.3903 0.3905 0.5148
0.4923 12.4621 37000 0.6453 0.4181 0.3791 0.3832 0.5192
0.4689 12.7989 38000 0.6612 0.4317 0.4020 0.4042 0.5092
0.4658 13.1357 39000 0.6425 0.4131 0.3742 0.3781 0.522
0.4848 13.4725 40000 0.6549 0.4709 0.3844 0.3934 0.5064
0.4889 13.8094 41000 0.6459 0.4464 0.3893 0.3969 0.5198
0.4586 14.1462 42000 0.6515 0.4529 0.3927 0.4003 0.5218
0.4644 14.4830 43000 0.6429 0.4769 0.3825 0.3944 0.5258
0.4666 14.8198 44000 0.6565 0.4619 0.3963 0.4078 0.5182
0.4524 15.1566 45000 0.6487 0.4558 0.3882 0.3977 0.5222
0.4431 15.4934 46000 0.6475 0.4739 0.3851 0.3967 0.5266
0.4591 15.8302 47000 0.6521 0.4534 0.3862 0.3959 0.5244
0.4504 16.1671 48000 0.6543 0.4703 0.3817 0.3930 0.5234
0.4402 16.5039 49000 0.6601 0.4393 0.3975 0.4042 0.5132
0.4395 16.8407 50000 0.6556 0.4695 0.3849 0.3962 0.5238
0.4285 17.1775 51000 0.6577 0.4672 0.3852 0.3946 0.5178
0.4181 17.5143 52000 0.6540 0.4444 0.3854 0.3944 0.5226
0.4407 17.8511 53000 0.6544 0.4422 0.3868 0.3956 0.5262
0.3957 18.1879 54000 0.6594 0.4200 0.3868 0.3915 0.5182
0.4051 18.5248 55000 0.6572 0.4354 0.3861 0.3935 0.5192
0.424 18.8616 56000 0.6549 0.4476 0.3847 0.3941 0.5256
0.4271 19.1984 57000 0.6566 0.4471 0.3847 0.3936 0.5172
0.4225 19.5352 58000 0.6557 0.4473 0.3898 0.3984 0.5206
0.4312 19.8720 59000 0.6556 0.4468 0.3884 0.3973 0.5228

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.2
Downloads last month
19
Safetensors
Model size
178M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for versae/nb-sbert-base-edu-scorer-lr3e4-bs32

Finetuned
(15)
this model