snowflake-arctic-embed-m-edu-scorer-lr3e4-bs32

This model is a fine-tuned version of Snowflake/snowflake-arctic-embed-m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5590
  • Precision: 0.4789
  • Recall: 0.2833
  • F1 Macro: 0.2779
  • Accuracy: 0.3073

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 0
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy
No log 0 0 3.1167 0.0587 0.1667 0.0869 0.3524
0.994 0.3368 1000 0.9856 0.2966 0.2691 0.2391 0.397
0.9708 0.6736 2000 0.9981 0.3297 0.2844 0.2609 0.4404
1.0021 1.0104 3000 0.9604 0.3580 0.2772 0.2524 0.391
0.9775 1.3473 4000 1.0404 0.3467 0.2686 0.2393 0.3408
0.9321 1.6841 5000 0.9524 0.3051 0.2840 0.2591 0.4184
0.9446 2.0209 6000 0.9473 0.3444 0.2819 0.2571 0.4018
0.9997 2.3577 7000 0.9371 0.3497 0.2870 0.2653 0.4198
0.9184 2.6945 8000 0.9295 0.3579 0.2989 0.2883 0.4292
0.9196 3.0313 9000 0.9193 0.3422 0.2972 0.2794 0.446
0.9115 3.3681 10000 0.9506 0.3245 0.2882 0.2697 0.4596
0.8851 3.7050 11000 0.8964 0.3725 0.2954 0.2810 0.4382
0.9021 4.0418 12000 0.8843 0.3722 0.3019 0.2890 0.4496
0.8914 4.3786 13000 0.8831 0.3764 0.2950 0.2811 0.4266
0.8962 4.7154 14000 0.8757 0.3609 0.3029 0.2864 0.4572
0.8414 5.0522 15000 0.8788 0.3725 0.3079 0.2922 0.4678
0.8621 5.3890 16000 0.8677 0.3684 0.3109 0.3012 0.4622
0.8172 5.7258 17000 0.8725 0.3877 0.3021 0.2884 0.4654
0.8282 6.0626 18000 0.8833 0.3651 0.3051 0.2951 0.4702
0.8652 6.3995 19000 0.8535 0.3712 0.3200 0.3126 0.4604
0.8123 6.7363 20000 0.8529 0.3664 0.3075 0.2931 0.4434
0.8402 7.0731 21000 0.8461 0.3816 0.3099 0.2969 0.466
0.8082 7.4099 22000 0.8515 0.3681 0.3193 0.3118 0.4636
0.815 7.7467 23000 0.8494 0.3692 0.3136 0.3027 0.453
0.7828 8.0835 24000 0.8476 0.3936 0.3187 0.3114 0.4756
0.806 8.4203 25000 0.8364 0.3875 0.3168 0.3075 0.4644
0.8356 8.7572 26000 0.8511 0.3869 0.3282 0.3223 0.4538
0.8418 9.0940 27000 0.8398 0.3679 0.3127 0.2988 0.4676
0.8087 9.4308 28000 0.8384 0.3795 0.3188 0.3101 0.4516
0.7822 9.7676 29000 0.8398 0.3667 0.3180 0.3082 0.4784
0.7911 10.1044 30000 0.8331 0.3796 0.3188 0.3123 0.4702
0.7887 10.4412 31000 0.8336 0.3659 0.3153 0.3041 0.473
0.7634 10.7780 32000 0.8347 0.3632 0.3149 0.3058 0.4722
0.802 11.1149 33000 0.8351 0.3834 0.3233 0.3190 0.4582
0.8075 11.4517 34000 0.8484 0.3694 0.3106 0.2990 0.4784
0.7871 11.7885 35000 0.8348 0.3683 0.3195 0.3143 0.4684
0.7465 12.1253 36000 0.8249 0.3773 0.3216 0.3130 0.4734
0.763 12.4621 37000 0.8263 0.3658 0.3160 0.3088 0.4746
0.7891 12.7989 38000 0.8283 0.3865 0.3272 0.3224 0.4596
0.7516 13.1357 39000 0.8275 0.3827 0.3269 0.3189 0.4812
0.7867 13.4725 40000 0.8269 0.3773 0.3272 0.3237 0.4652
0.7552 13.8094 41000 0.8386 0.3715 0.3132 0.3043 0.4742
0.7366 14.1462 42000 0.8219 0.3731 0.3219 0.3166 0.4654
0.7214 14.4830 43000 0.8243 0.3684 0.3210 0.3144 0.4688
0.7237 14.8198 44000 0.8205 0.3767 0.3234 0.3174 0.467
0.7562 15.1566 45000 0.8281 0.3741 0.3257 0.3200 0.4688
0.7582 15.4934 46000 0.8287 0.3692 0.3158 0.3090 0.4744
0.742 15.8302 47000 0.8264 0.3761 0.3189 0.3114 0.4774
0.7384 16.1671 48000 0.8295 0.3748 0.3269 0.3245 0.463
0.7315 16.5039 49000 0.8244 0.3722 0.3239 0.3200 0.4748
0.7006 16.8407 50000 0.8245 0.3673 0.3184 0.3116 0.4786
0.7676 17.1775 51000 0.8229 0.3698 0.3219 0.3148 0.4684
0.7172 17.5143 52000 0.8249 0.3677 0.3196 0.3130 0.4802
0.7331 17.8511 53000 0.8170 0.3761 0.3221 0.3167 0.4686
0.6957 18.1879 54000 0.8175 0.3779 0.3219 0.3177 0.4668
0.7378 18.5248 55000 0.8204 0.3725 0.3217 0.3181 0.4622
0.7196 18.8616 56000 0.8185 0.3780 0.3221 0.3160 0.4756
0.736 19.1984 57000 0.8158 0.3772 0.3212 0.3152 0.4714
0.7561 19.5352 58000 0.8161 0.3754 0.3225 0.3172 0.4706
0.7042 19.8720 59000 0.8181 0.3752 0.3218 0.3177 0.467

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.2
Downloads last month
20
Safetensors
Model size
118M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for versae/multilingual-e5-small-edu-scorer-lr3e4-bs32

Finetuned
(52)
this model