tiny ramdom models
Collection
32 items
•
Updated
•
4
This tiny model is for debugging. It is randomly initialized with the config adapted from Qwen/Qwen-Image.
File size:
import torch
from diffusers import DiffusionPipeline
model_id = "tiny-random/Qwen-Image"
torch_dtype = torch.bfloat16
device = "cuda"
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
positive_magic = {
"en": "Ultra HD, 4K, cinematic composition.", # for english prompt,
"zh": "超清,4K,电影级构图" # for chinese prompt,
}
prompt = '''A coffee shop entrance features a chalkboard sign reading "Qwen Coffee 😊 $2 per cup," with a neon light beside it displaying "通义千问". Next to it hangs a poster showing a beautiful Chinese woman, and beneath the poster is written "π≈3.1415926-53589793-23846264-33832795-02384197". Ultra HD, 4K, cinematic composition.'''
prompt += 'Some dummy random texts to make prompt long enough ' * 10
negative_prompt = " "
# Generate with different aspect ratios
aspect_ratios = {
"1:1": (1328, 1328),
"16:9": (1664, 928),
"9:16": (928, 1664),
"4:3": (1472, 1140),
"3:4": (1140, 1472)
}
for width, height in aspect_ratios.values():
image = pipe(
prompt=prompt + positive_magic["en"],
negative_prompt=negative_prompt,
width=width,
height=height,
num_inference_steps=4,
true_cfg_scale=4.0,
generator=torch.Generator(device="cuda").manual_seed(42)
).images[0]
print(image)
import json
import torch
from diffusers import (
AutoencoderKLQwenImage,
DiffusionPipeline,
FlowMatchEulerDiscreteScheduler,
QwenImagePipeline,
QwenImageTransformer2DModel,
)
from huggingface_hub import hf_hub_download
from transformers import AutoConfig, AutoTokenizer, Qwen2_5_VLForConditionalGeneration
from transformers.generation import GenerationConfig
source_model_id = "Qwen/Qwen-Image"
save_folder = "/tmp/tiny-random/Qwen-Image"
torch.set_default_dtype(torch.bfloat16)
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(source_model_id, subfolder='scheduler')
tokenizer = AutoTokenizer.from_pretrained(source_model_id, subfolder='tokenizer')
def save_json(path, obj):
import json
from pathlib import Path
Path(path).parent.mkdir(parents=True, exist_ok=True)
with open(path, 'w', encoding='utf-8') as f:
json.dump(obj, f, indent=2, ensure_ascii=False)
def init_weights(model):
import torch
torch.manual_seed(42)
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.1)
print(name, p.shape, p.dtype, p.device)
with open(hf_hub_download(source_model_id, filename='text_encoder/config.json', repo_type='model'), 'r', encoding='utf - 8') as f:
config = json.load(f)
config.update({
'hidden_size': 32,
'intermediate_size': 64,
'max_window_layers': 1,
'num_attention_heads': 2,
'num_hidden_layers': 2,
'num_key_value_heads': 1,
'sliding_window': 64,
'tie_word_embeddings': True,
'use_sliding_window': True,
})
del config['torch_dtype']
config['rope_scaling']['mrope_section'] = [4, 2, 2]
config['text_config'].update({
'hidden_size': 32,
'intermediate_size': 64,
'num_attention_heads': 2,
'num_hidden_layers': 2,
'num_key_value_heads': 1,
'sliding_window': 64,
'tie_word_embeddings': True,
'max_window_layers': 1,
'use_sliding_window': True,
'layer_types': ['full_attention', 'sliding_attention']
})
del config['text_config']['torch_dtype']
config['text_config']['rope_scaling']['mrope_section'] = [4, 2, 2]
config['vision_config'].update(
{
'depth': 2,
'fullatt_block_indexes': [0],
'hidden_size': 32,
'intermediate_size': 64,
'num_heads': 2,
'out_hidden_size': 32,
}
)
del config['vision_config']['torch_dtype']
save_json(f'{save_folder}/text_encoder/config.json', config)
text_encoder_config = AutoConfig.from_pretrained(f'{save_folder}/text_encoder')
text_encoder = Qwen2_5_VLForConditionalGeneration(text_encoder_config).to(torch.bfloat16)
generation_config = GenerationConfig.from_pretrained(source_model_id, subfolder='text_encoder')
# text_encoder.config.generation_config = generation_config
text_encoder.generation_config = generation_config
init_weights(text_encoder)
with open(hf_hub_download(source_model_id, filename='transformer/config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config = json.load(f)
config.update({
'attention_head_dim': 32,
'axes_dims_rope': [8, 12, 12],
'joint_attention_dim': 32,
'num_attention_heads': 1,
'num_layers': 2,
})
del config['pooled_projection_dim'] # not used
save_json(f'{save_folder}/transformer/config.json', config)
transformer_config = QwenImageTransformer2DModel.load_config(f'{save_folder}/transformer')
transformer = QwenImageTransformer2DModel.from_config(transformer_config)
init_weights(transformer)
with open(hf_hub_download(source_model_id, filename='vae/config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config = json.load(f)
config.update({
'num_res_blocks': 1,
'base_dim': 16,
'dim_mult': [1, 2, 4, 4],
})
del config['latents_mean'] # not used
del config['latents_std'] # not used
save_json(f'{save_folder}/vae/config.json', config)
vae_config = AutoencoderKLQwenImage.load_config(f'{save_folder}/vae')
vae = AutoencoderKLQwenImage.from_config(vae_config)
init_weights(vae)
pipeline = QwenImagePipeline(
scheduler=scheduler,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
vae=vae,
)
pipeline = pipeline.to(torch.bfloat16)
pipeline.save_pretrained(save_folder, safe_serialization=True)
print(pipeline)
Base model
Qwen/Qwen-Image