Whisper Large V3 β Safetensors Version
This is a custom packaged version of OpenAI's Whisper Large V3 model, converted to safetensors
format for safer and faster loading. This repo includes both the model weights and tokenizer files required for ASR (Automatic Speech Recognition) tasks.
Files Included
model.safetensors
: Model weights in safetensors formattokenizer_config.json
: Tokenizer configurationvocab.json
: Vocabulary filemerges.txt
: BPE mergesspecial_tokens_map.json
: Special token mapping
Usage (Python)
from transformers import WhisperForConditionalGeneration, WhisperTokenizer
model = WhisperForConditionalGeneration.from_pretrained("Zvatlov/whisper-large-v3")
tokenizer = WhisperTokenizer.from_pretrained("Zvatlov/whisper-large-v3")
Example Inference
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration
processor = WhisperProcessor.from_pretrained("Zvatlov/whisper-large-v3")
model = WhisperForConditionalGeneration.from_pretrained("Zvatlov/whisper-large-v3")
# Load audio
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
input_audio = ds[0]["audio"]["array"]
# Prepare input
inputs = processor(input_audio, return_tensors="pt")
with torch.no_grad():
generated_ids = model.generate(inputs["input_features"])
# Decode output
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
print(transcription[0])
Notes
- Tensor type:
FP16
- Total parameters: ~1.5B
- This model is not fine-tuned; original Whisper weights were packaged for safe and fast loading.
Model tree for suiyaradant/whisper-large-v3
Base model
openai/whisper-large-v3