|
import pandas as pd |
|
from huggingface_hub import snapshot_download |
|
import subprocess |
|
import re |
|
import os |
|
import GPUtil |
|
from transformers import AutoConfig |
|
from typing import List |
|
|
|
try: |
|
from src.display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name |
|
except: |
|
print("local debug: from display.utils") |
|
from display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name |
|
|
|
MEM_BW_DICT ={ |
|
"NVIDIA-A100-PCIe-80GB": 1935e9, |
|
"NVIDIA-A100-SXM4-80GB": 2039e9, |
|
"NVIDIA-H100-PCIe-80GB": 2039e9, |
|
"NVIDIA-RTX-A5000-24GB": 768e9, |
|
"NVIDIA-RTX-A6000-48GB": 768e9, |
|
} |
|
|
|
PEAK_FLOPS_DICT = { |
|
"float32":{ |
|
"NVIDIA-A100-PCIe-80GB": 312e12, |
|
"NVIDIA-A100-SXM4-80GB": 312e12, |
|
"NVIDIA-H100-PCIe-80GB": 756e12, |
|
"NVIDIA-RTX-A5000-24GB": 222.2e12, |
|
"NVIDIA-RTX-A6000-48GB": 309.7e12 |
|
}, |
|
"float16":{ |
|
"NVIDIA-A100-PCIe-80GB": 624e12, |
|
"NVIDIA-A100-SXM4-80GB": 624e12, |
|
"NVIDIA-H100-PCIe-80GB": 1513e12, |
|
"NVIDIA-RTX-A5000-24GB": 222.2e12, |
|
"NVIDIA-RTX-A6000-48GB": 309.7e12 |
|
}, |
|
"bfloat16":{ |
|
"NVIDIA-A100-PCIe-80GB": 624e12, |
|
"NVIDIA-A100-SXM4-80GB": 624e12, |
|
"NVIDIA-H100-PCIe-80GB": 1513e12, |
|
"NVIDIA-RTX-A5000-24GB": 222.2e12, |
|
"NVIDIA-RTX-A6000-48GB": 309.7e12 |
|
}, |
|
"int8":{ |
|
"NVIDIA-A100-PCIe-80GB": 1248e12, |
|
"NVIDIA-A100-SXM4-80GB": 1248e12, |
|
"NVIDIA-H100-PCIe-80GB": 3026e12, |
|
"NVIDIA-RTX-A5000-24GB": 222.2e12, |
|
"NVIDIA-RTX-A6000-48GB": 309.7e12 |
|
}, |
|
"fp8":{ |
|
"NVIDIA-A100-PCIe-80GB": 1248e12, |
|
"NVIDIA-A100-SXM4-80GB": 1248e12, |
|
"NVIDIA-H100-PCIe-80GB": 3026e12, |
|
"NVIDIA-RTX-A5000-24GB": 0, |
|
"NVIDIA-RTX-A6000-48GB": 0 |
|
}, |
|
"fp4": { |
|
"NVIDIA-A100-PCIe-80GB": 1248e12, |
|
"NVIDIA-A100-SXM4-80GB": 1248e12, |
|
"NVIDIA-H100-PCIe-80GB": 3026e12, |
|
"NVIDIA-RTX-A5000-24GB": 0, |
|
"NVIDIA-RTX-A6000-48GB": 0 |
|
}, |
|
"int4": { |
|
"NVIDIA-A100-PCIe-80GB": 1248e12, |
|
"NVIDIA-A100-SXM4-80GB": 1248e12, |
|
"NVIDIA-H100-PCIe-80GB": 3026e12, |
|
"NVIDIA-RTX-A5000-24GB": 222.2e12, |
|
"NVIDIA-RTX-A6000-48GB": 309.7e12 |
|
} |
|
} |
|
|
|
def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers): |
|
for i in range(10): |
|
try: |
|
snapshot_download( |
|
repo_id=repo_id, revision=revision, local_dir=local_dir, repo_type=repo_type, max_workers=max_workers |
|
) |
|
return |
|
except Exception as e: |
|
print(f"Failed to download {repo_id} at {revision} with error: {e}. Retrying...") |
|
import time |
|
|
|
time.sleep(60) |
|
return |
|
|
|
|
|
def get_dataset_url(row): |
|
dataset_name = row["Benchmark"] |
|
dataset_url = row["Dataset Link"] |
|
benchmark = f'<a target="_blank" href="{dataset_url}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{dataset_name}</a>' |
|
return benchmark |
|
|
|
|
|
def get_dataset_summary_table(file_path): |
|
df = pd.read_csv(file_path) |
|
|
|
df["Benchmark"] = df.apply(lambda x: get_dataset_url(x), axis=1) |
|
|
|
df = df[["Category", "Benchmark", "Data Split", "Data Size", "Language"]] |
|
|
|
return df |
|
|
|
def parse_nvidia_smi(): |
|
visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', None) |
|
if visible_devices is not None: |
|
gpu_indices = visible_devices.split(',') |
|
else: |
|
|
|
result = subprocess.run(['nvidia-smi', '--query-gpu=index', '--format=csv,noheader'], capture_output=True, text=True) |
|
if result.returncode != 0: |
|
print("Failed to query GPU indices.") |
|
return [] |
|
gpu_indices = result.stdout.strip().split('\n') |
|
|
|
gpu_stats = [] |
|
|
|
gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W\s*/\s*\d+W\s*\|\s*(\d+)MiB\s*/\s*\d+MiB\s*\|\s*(\d+)%') |
|
|
|
gpu_name_pattern = re.compile(r'NVIDIA\s+(RTX\s+)?([A-Z0-9]+)') |
|
|
|
gpu_name = "" |
|
for index in gpu_indices: |
|
result = subprocess.run(['nvidia-smi', '-i', index], capture_output=True, text=True) |
|
output = result.stdout.strip() |
|
lines = output.split("\n") |
|
for line in lines: |
|
match = gpu_info_pattern.search(line) |
|
name_match = gpu_name_pattern.search(line) |
|
gpu_info = {} |
|
if name_match: |
|
gpu_name = ''.join(filter(None, name_match.groups())).strip() |
|
if match: |
|
temp, power_usage, mem_usage, gpu_util = map(int, match.groups()) |
|
gpu_info.update({ |
|
GPU_TEMP: temp, |
|
GPU_Power: power_usage, |
|
GPU_Mem: round(mem_usage / 1024, 2), |
|
GPU_Util: gpu_util |
|
}) |
|
|
|
if len(gpu_info) >= 4: |
|
gpu_stats.append(gpu_info) |
|
|
|
gpu_name = f"{len(gpu_stats)}x{gpu_name}" |
|
gpu_stats_total = { |
|
GPU_TEMP: 0, |
|
GPU_Power: 0, |
|
GPU_Mem: 0, |
|
GPU_Util: 0, |
|
GPU_Name: gpu_name |
|
} |
|
for gpu_stat in gpu_stats: |
|
gpu_stats_total[GPU_TEMP] += gpu_stat[GPU_TEMP] |
|
gpu_stats_total[GPU_Power] += gpu_stat[GPU_Power] |
|
gpu_stats_total[GPU_Mem] += gpu_stat[GPU_Mem] |
|
gpu_stats_total[GPU_Util] += gpu_stat[GPU_Util] |
|
gpu_stats_total[GPU_Mem] = gpu_stats_total[GPU_Mem] |
|
gpu_stats_total[GPU_TEMP] /= len(gpu_stats) |
|
gpu_stats_total[GPU_Power] /= len(gpu_stats) |
|
gpu_stats_total[GPU_Util] /= len(gpu_stats) |
|
return [gpu_stats_total] |
|
|
|
def monitor_gpus(stop_event, interval, stats_list): |
|
while not stop_event.is_set(): |
|
gpu_stats = parse_nvidia_smi() |
|
if gpu_stats: |
|
stats_list.extend(gpu_stats) |
|
stop_event.wait(interval) |
|
|
|
def analyze_gpu_stats(stats_list): |
|
|
|
if not stats_list: |
|
return None |
|
|
|
|
|
avg_stats = {} |
|
max_stats = {} |
|
|
|
|
|
for key in stats_list[0].keys(): |
|
if key != GPU_Mem and key != GPU_Name: |
|
total = sum(d[key] for d in stats_list) |
|
avg_stats[key] = total / len(stats_list) |
|
|
|
|
|
max_stats[GPU_Mem] = max(d[GPU_Mem] for d in stats_list) |
|
if GPU_Name in stats_list[0]: |
|
avg_stats[GPU_Name] = stats_list[0][GPU_Name] |
|
|
|
avg_stats.update(max_stats) |
|
|
|
return avg_stats |
|
|
|
def get_gpu_details(): |
|
gpus = GPUtil.getGPUs() |
|
gpu = gpus[0] |
|
name = gpu.name.replace(" ", "-") |
|
memory_gb = round(gpu.memoryTotal / 1024) |
|
memory = f"{memory_gb}GB" |
|
|
|
for part in name.split('-'): |
|
if part.endswith("GB") and part[:-2].isdigit(): |
|
name = name.replace(f"-{part}", "").replace(part, "") |
|
|
|
formatted_name = f"{name}-{memory}" |
|
|
|
return formatted_name |
|
|
|
def get_peak_bw(gpu_name): |
|
return MEM_BW_DICT[gpu_name] |
|
|
|
def get_peak_flops(gpu_name, precision): |
|
return PEAK_FLOPS_DICT[precision][gpu_name] |
|
|
|
def _calculate_batch_metrics(outputs, decoding_tp, n_layers, d_model, |
|
n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff, |
|
avg_activated_experts, hf_config, num_gpus, model_name, |
|
used_dtype, batch_size, precision): |
|
"""Calculate metrics for a batch of outputs""" |
|
gpu_type = get_gpu_details() |
|
hardware_specs = { |
|
"peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12, |
|
"peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12, |
|
} |
|
kvs = [] |
|
true_kvs = [] |
|
attn_score = [] |
|
|
|
|
|
per_token_kv_size = 2 * n_layers * d_head * n_kv_heads |
|
|
|
if "DeepSeek" in model_name: |
|
if hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"): |
|
per_token_kv_size = n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim) |
|
|
|
|
|
for x in outputs: |
|
output_len = len(x.outputs[0].token_ids) |
|
context_prefill_size = len(x.prompt_token_ids) |
|
|
|
|
|
if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim"): |
|
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim |
|
origin_per_token_k_state_size = n_layers * n_attn_heads * q_head_dim |
|
origin_per_token_v_state_size = n_layers * n_attn_heads * hf_config.v_head_dim |
|
attention_score = context_prefill_size * origin_per_token_k_state_size + (output_len - 1) * origin_per_token_k_state_size / 2 |
|
attention_score += context_prefill_size * origin_per_token_v_state_size + (output_len - 1) * origin_per_token_v_state_size / 2 |
|
attention_score = attention_score / 1e12 |
|
else: |
|
origin_per_token_kv_states_size = n_layers * n_attn_heads * d_head |
|
attention_score = context_prefill_size * origin_per_token_kv_states_size + (output_len - 1) * origin_per_token_kv_states_size / 2 |
|
attention_score = attention_score * 2 / 1e12 |
|
|
|
|
|
attn_score.append(attention_score) |
|
kv_size = context_prefill_size * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2 |
|
kv_size = kv_size / 1e12 |
|
true_kv = (context_prefill_size * per_token_kv_size + output_len * per_token_kv_size) / 1e12 * 1e3 |
|
kvs.append(kv_size) |
|
true_kvs.append(true_kv) |
|
|
|
|
|
kv_size = sum(kvs) |
|
true_kv_size = sum(true_kvs) * 1e3 |
|
attention_score = sum(attn_score) / len(attn_score) |
|
|
|
|
|
if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim") and hasattr(hf_config, "kv_lora_rank"): |
|
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim |
|
if not hasattr(hf_config, "q_lora_rank") or not hf_config.q_lora_rank: |
|
attention_size_per_token = (d_model * n_attn_heads * q_head_dim) + \ |
|
(d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \ |
|
(hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \ |
|
(hf_config.v_head_dim * n_attn_heads * d_model) |
|
attention_size_per_token = attention_size_per_token / 1e12 |
|
else: |
|
attention_size_per_token = (d_model * hf_config.q_lora_rank) + \ |
|
(hf_config.q_lora_rank * n_attn_heads * q_head_dim) + \ |
|
(d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \ |
|
(hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \ |
|
(hf_config.v_head_dim * n_attn_heads * d_model) |
|
attention_size_per_token = attention_size_per_token / 1e12 |
|
else: |
|
attention_size_per_token = d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) + n_attn_heads * d_head * d_model |
|
attention_size_per_token = attention_size_per_token / 1e12 |
|
|
|
|
|
expert_size = d_ff * 3 * d_model / 1e12 |
|
shared_experts_size_total = 0 |
|
deepseek_dense_ffn_size = 0 |
|
deepseek_sparse_layer_num = 0 |
|
|
|
if "Qwen" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "shared_expert_intermediate_size"): |
|
d_ff = hf_config.moe_intermediate_size |
|
d_ff_share = hf_config.shared_expert_intermediate_size |
|
shared_experts_size = d_ff_share * 3 * d_model |
|
expert_size = d_ff * 3 * d_model |
|
shared_experts_size_total = shared_experts_size / 1e12 |
|
expert_size = expert_size / 1e12 |
|
elif "Qwen3" in model_name and hasattr(hf_config, "moe_intermediate_size"): |
|
d_ff = hf_config.moe_intermediate_size |
|
expert_size = d_ff * 3 * d_model |
|
expert_size = expert_size / 1e12 |
|
elif "DeepSeek" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "intermediate_size") and hasattr(hf_config, "first_k_dense_replace"): |
|
d_ff = hf_config.moe_intermediate_size |
|
d_ff_dense = hf_config.intermediate_size |
|
deepseek_num_dense_layer = hf_config.first_k_dense_replace |
|
shared_experts_size = d_ff * 3 * d_model |
|
expert_size = d_ff * 3 * d_model |
|
shared_experts = 2 |
|
shared_experts_size_total = shared_experts_size * shared_experts / 1e12 |
|
expert_size = expert_size / 1e12 |
|
deepseek_sparse_layer_num = n_layers - deepseek_num_dense_layer |
|
deepseek_dense_ffn_size = d_ff_dense * 3 * d_model / 1e12 |
|
|
|
|
|
if "Qwen" in model_name and not "Qwen3" in model_name: |
|
smbu = ((n_layers*(avg_activated_experts * expert_size + shared_experts_size_total + attention_size_per_token) + |
|
kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size + shared_experts_size_total) + attention_score) \ |
|
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
elif "Qwen3" in model_name: |
|
smbu = ((n_layers * (avg_activated_experts * expert_size + attention_size_per_token) + |
|
kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \ |
|
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
elif "DeepSeek" in model_name: |
|
smbu = ((n_layers * attention_size_per_token + deepseek_sparse_layer_num * \ |
|
(avg_activated_experts * expert_size + shared_experts_size_total) + \ |
|
deepseek_num_dense_layer * deepseek_dense_ffn_size + \ |
|
kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
smfu = (n_layers * attention_size_per_token + deepseek_sparse_layer_num * \ |
|
(n_experts_per_tok * expert_size + shared_experts_size_total) + \ |
|
deepseek_num_dense_layer * deepseek_dense_ffn_size + attention_score) \ |
|
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
else: |
|
smbu = ((n_layers*(avg_activated_experts * expert_size + attention_size_per_token) + |
|
kv_size) * precision/ (batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \ |
|
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
|
|
return { |
|
'smbu': smbu, |
|
'smfu': smfu, |
|
'kv_size': true_kv_size, |
|
'decoding_throughput': decoding_tp |
|
} |
|
|
|
def _calculate_batch_metrics_sglang(outputs, decoding_tp, n_layers, d_model, |
|
n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff, |
|
avg_activated_experts, hf_config, num_gpus, model_name, |
|
used_dtype, batch_size, precision, ttft=None, prefill_tp=None): |
|
"""Calculate metrics for a batch of outputs""" |
|
|
|
hardware_specs = _get_hardware_specs(used_dtype) |
|
output_data = _extract_output_data(outputs) |
|
|
|
|
|
per_token_kv_size = _calculate_kv_size(model_name, hf_config, n_layers, d_head, n_kv_heads) |
|
attention_size_per_token = _calculate_attention_size(model_name, hf_config, d_model, n_attn_heads, d_head, n_kv_heads) |
|
expert_config = _calculate_expert_config(model_name, hf_config, d_ff, d_model, n_layers) |
|
|
|
|
|
metrics_data = _process_outputs(output_data, per_token_kv_size, attention_size_per_token, |
|
model_name, hf_config, n_layers, n_attn_heads, d_head) |
|
|
|
|
|
if ttft is None or prefill_tp is None: |
|
ttft, prefill_tp = _calculate_throughput_metrics(batch_size, output_data['prefill_lengths'], |
|
output_data['max_duration']) |
|
|
|
|
|
|
|
smbu_smfu_metrics = _calculate_smbu_smfu(model_name, n_layers, attention_size_per_token, |
|
expert_config, avg_activated_experts, metrics_data, |
|
hardware_specs, num_gpus, precision, ttft, prefill_tp, |
|
batch_size, decoding_tp) |
|
|
|
return { |
|
'prefill_smbu': smbu_smfu_metrics['prefill_smbu'], |
|
'prefill_smfu': smbu_smfu_metrics['prefill_smfu'], |
|
'decoding_smbu': smbu_smfu_metrics['decoding_smbu'], |
|
'decoding_smfu': smbu_smfu_metrics['decoding_smfu'], |
|
'kv_size': metrics_data['true_kv_size'], |
|
'decoding_throughput': decoding_tp, |
|
'prefill_tp': prefill_tp, |
|
'ttft': ttft |
|
} |
|
|
|
|
|
def _get_hardware_specs(used_dtype): |
|
"""Get hardware specifications""" |
|
gpu_type = get_gpu_details() |
|
return { |
|
"peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12, |
|
"peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12, |
|
} |
|
|
|
|
|
def _extract_output_data(outputs): |
|
"""Extract relevant data from outputs""" |
|
prefill_lengths = [] |
|
output_lengths = [] |
|
max_duration = 0.0 |
|
|
|
for x in outputs: |
|
output_lengths.append(x['meta_info']['completion_tokens']) |
|
prefill_lengths.append(x['meta_info']['prompt_tokens']) |
|
max_duration = max(max_duration, x['meta_info']['e2e_latency']) |
|
|
|
return { |
|
'prefill_lengths': prefill_lengths, |
|
'output_lengths': output_lengths, |
|
'max_duration': max_duration |
|
} |
|
|
|
|
|
def _calculate_kv_size(model_name, hf_config, n_layers, d_head, n_kv_heads): |
|
"""Calculate per-token KV size based on model type""" |
|
if "DeepSeek" in model_name and hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"): |
|
return n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim) |
|
return 2 * n_layers * d_head * n_kv_heads |
|
|
|
|
|
def _calculate_attention_size(model_name, hf_config, d_model, n_attn_heads, d_head, n_kv_heads): |
|
"""Calculate attention size per token based on model type""" |
|
if ("DeepSeek" in model_name and |
|
hasattr(hf_config, "qk_rope_head_dim") and |
|
hasattr(hf_config, "qk_nope_head_dim") and |
|
hasattr(hf_config, "v_head_dim") and |
|
hasattr(hf_config, "kv_lora_rank")): |
|
|
|
return _calculate_deepseek_attention_size(hf_config, d_model, n_attn_heads) |
|
|
|
return (d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) + |
|
n_attn_heads * d_head * d_model) / 1e12 |
|
|
|
|
|
def _calculate_deepseek_attention_size(hf_config, d_model, n_attn_heads): |
|
"""Calculate DeepSeek-specific attention size""" |
|
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim |
|
|
|
base_size = ((d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + |
|
(hf_config.kv_lora_rank * n_attn_heads * |
|
(q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + |
|
(hf_config.v_head_dim * n_attn_heads * d_model)) |
|
|
|
if hasattr(hf_config, "q_lora_rank") and hf_config.q_lora_rank: |
|
q_size = (d_model * hf_config.q_lora_rank + |
|
hf_config.q_lora_rank * n_attn_heads * q_head_dim) |
|
else: |
|
q_size = d_model * n_attn_heads * q_head_dim |
|
|
|
return (base_size + q_size) / 1e12 |
|
|
|
|
|
def _calculate_expert_config(model_name, hf_config, d_ff, d_model, n_layers): |
|
"""Calculate expert configuration based on model type""" |
|
config = { |
|
'expert_size': d_ff * 3 * d_model / 1e12, |
|
'shared_experts_size_total': 0, |
|
'deepseek_dense_ffn_size': 0, |
|
'deepseek_sparse_layer_num': 0, |
|
'deepseek_num_dense_layer': 0 |
|
} |
|
|
|
if "Qwen" in model_name and not "Qwen3" in model_name: |
|
config.update(_get_qwen_expert_config(hf_config, d_model)) |
|
elif "Qwen3" in model_name: |
|
config.update(_get_qwen3_expert_config(hf_config, d_model)) |
|
elif "DeepSeek" in model_name: |
|
config.update(_get_deepseek_expert_config(hf_config, d_model, n_layers)) |
|
|
|
return config |
|
|
|
|
|
def _get_qwen_expert_config(hf_config, d_model): |
|
"""Get Qwen-specific expert configuration""" |
|
if (hasattr(hf_config, "moe_intermediate_size") and |
|
hasattr(hf_config, "shared_expert_intermediate_size")): |
|
|
|
return { |
|
'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12, |
|
'shared_experts_size_total': hf_config.shared_expert_intermediate_size * 3 * d_model / 1e12 |
|
} |
|
return {} |
|
|
|
|
|
def _get_qwen3_expert_config(hf_config, d_model): |
|
"""Get Qwen3-specific expert configuration""" |
|
if hasattr(hf_config, "moe_intermediate_size"): |
|
return { |
|
'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12 |
|
} |
|
return {} |
|
|
|
|
|
def _get_deepseek_expert_config(hf_config, d_model, n_layers): |
|
"""Get DeepSeek-specific expert configuration""" |
|
if (hasattr(hf_config, "moe_intermediate_size") and |
|
hasattr(hf_config, "intermediate_size") and |
|
hasattr(hf_config, "first_k_dense_replace")): |
|
|
|
deepseek_num_dense_layer = hf_config.first_k_dense_replace |
|
return { |
|
'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12, |
|
'shared_experts_size_total': hf_config.moe_intermediate_size * 3 * d_model * 2 / 1e12, |
|
'deepseek_dense_ffn_size': hf_config.intermediate_size * 3 * d_model / 1e12, |
|
'deepseek_sparse_layer_num': n_layers - deepseek_num_dense_layer, |
|
'deepseek_num_dense_layer': deepseek_num_dense_layer |
|
} |
|
return {} |
|
|
|
|
|
def _process_outputs(output_data, per_token_kv_size, attention_size_per_token, |
|
model_name, hf_config, n_layers, n_attn_heads, d_head): |
|
"""Process outputs to calculate KV sizes and attention scores""" |
|
kvs = [] |
|
true_kvs = [] |
|
attn_scores = [] |
|
|
|
for prefill_len, output_len in zip(output_data['prefill_lengths'], output_data['output_lengths']): |
|
|
|
attn_score = _calculate_attention_score(model_name, hf_config, prefill_len, output_len, |
|
n_layers, n_attn_heads, d_head) |
|
attn_scores.append(attn_score) |
|
|
|
|
|
kv_size = (prefill_len * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2) / 1e12 |
|
true_kv = (prefill_len * per_token_kv_size + output_len * per_token_kv_size) / 1e9 |
|
|
|
kvs.append(kv_size) |
|
true_kvs.append(true_kv) |
|
|
|
return { |
|
'kv_size': sum(kvs), |
|
'true_kv_size': sum(true_kvs) * 1e3, |
|
'attention_score': sum(attn_scores) / len(attn_scores) |
|
} |
|
|
|
|
|
def _calculate_attention_score(model_name, hf_config, prefill_len, output_len, |
|
n_layers, n_attn_heads, d_head): |
|
"""Calculate attention score for a single output""" |
|
if ("DeepSeek" in model_name and |
|
hasattr(hf_config, "qk_rope_head_dim") and |
|
hasattr(hf_config, "qk_nope_head_dim") and |
|
hasattr(hf_config, "v_head_dim")): |
|
|
|
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim |
|
k_size = n_layers * n_attn_heads * q_head_dim |
|
v_size = n_layers * n_attn_heads * hf_config.v_head_dim |
|
|
|
score = (prefill_len * k_size + (output_len - 1) * k_size / 2 + |
|
prefill_len * v_size + (output_len - 1) * v_size / 2) |
|
else: |
|
kv_size = n_layers * n_attn_heads * d_head |
|
score = (prefill_len * kv_size + (output_len - 1) * kv_size / 2) * 2 |
|
|
|
return score / 1e12 |
|
|
|
|
|
def _calculate_throughput_metrics(batch_size, prefill_lengths, max_duration): |
|
"""Calculate throughput metrics""" |
|
total_prefill = sum(prefill_lengths) |
|
prefill_tp = total_prefill / (max_duration) |
|
ttft = max_duration / batch_size |
|
return ttft, prefill_tp |
|
|
|
|
|
def _calculate_smbu_smfu(model_name, n_layers, attention_size_per_token, expert_config, |
|
avg_activated_experts, metrics_data, hardware_specs, num_gpus, |
|
precision, ttft, prefill_tp, batch_size, decoding_tp): |
|
"""Calculate S-MBU and S-MFU metrics""" |
|
prefill_activation = avg_activated_experts[1] |
|
decode_steps_activation = avg_activated_experts[2:] |
|
|
|
|
|
prefill_smbu, prefill_smfu = _calculate_prefill_metrics( |
|
model_name, n_layers, attention_size_per_token, expert_config, |
|
prefill_activation, metrics_data['attention_score'], hardware_specs, |
|
num_gpus, precision, ttft, prefill_tp |
|
) |
|
|
|
|
|
decoding_smbu, decoding_smfu = _calculate_decoding_metrics( |
|
model_name, n_layers, attention_size_per_token, expert_config, |
|
decode_steps_activation, metrics_data, hardware_specs, |
|
num_gpus, precision, batch_size, decoding_tp |
|
) |
|
|
|
return { |
|
'prefill_smbu': prefill_smbu, |
|
'prefill_smfu': prefill_smfu, |
|
'decoding_smbu': decoding_smbu, |
|
'decoding_smfu': decoding_smfu |
|
} |
|
|
|
|
|
def _calculate_prefill_metrics(model_name, n_layers, attention_size_per_token, expert_config, |
|
prefill_activation, attention_score, hardware_specs, |
|
num_gpus, precision, ttft, prefill_tp): |
|
"""Calculate prefill S-MBU and S-MFU""" |
|
model_calculators = { |
|
'Qwen': _calculate_qwen_prefill, |
|
'Qwen3': _calculate_qwen3_prefill, |
|
'DeepSeek': _calculate_deepseek_prefill |
|
} |
|
|
|
for model_type, calculator in model_calculators.items(): |
|
if model_type in model_name and (model_type != 'Qwen' or 'Qwen3' not in model_name): |
|
return calculator(n_layers, attention_size_per_token, expert_config, |
|
prefill_activation, attention_score, hardware_specs, |
|
num_gpus, precision, ttft, prefill_tp) |
|
|
|
|
|
return _calculate_default_prefill(n_layers, attention_size_per_token, expert_config, |
|
prefill_activation, attention_score, hardware_specs, |
|
num_gpus, precision, ttft, prefill_tp) |
|
|
|
|
|
def _calculate_decoding_metrics(model_name, n_layers, attention_size_per_token, expert_config, |
|
decode_steps_activation, metrics_data, hardware_specs, |
|
num_gpus, precision, batch_size, decoding_tp): |
|
"""Calculate decoding S-MBU and S-MFU""" |
|
decoding_smbus = [] |
|
|
|
for activation in decode_steps_activation: |
|
if "Qwen" in model_name and "Qwen3" not in model_name: |
|
smbu, smfu = _calculate_qwen_decoding(n_layers, attention_size_per_token, expert_config, |
|
activation, metrics_data, hardware_specs, num_gpus, |
|
precision, batch_size, decoding_tp) |
|
elif "Qwen3" in model_name: |
|
smbu, smfu = _calculate_qwen3_decoding(n_layers, attention_size_per_token, expert_config, |
|
activation, metrics_data, hardware_specs, num_gpus, |
|
precision, batch_size, decoding_tp) |
|
elif "DeepSeek" in model_name: |
|
smbu, smfu = _calculate_deepseek_decoding(n_layers, attention_size_per_token, expert_config, |
|
activation, metrics_data, hardware_specs, num_gpus, |
|
precision, batch_size, decoding_tp) |
|
else: |
|
smbu, smfu = _calculate_default_decoding(n_layers, attention_size_per_token, expert_config, |
|
activation, metrics_data, hardware_specs, num_gpus, |
|
precision, batch_size, decoding_tp) |
|
decoding_smbus.append(smbu) |
|
|
|
return sum(decoding_smbus) / len(decoding_smbus), smfu |
|
|
|
|
|
|
|
def _calculate_qwen_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation, |
|
attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp): |
|
smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] + |
|
expert_config['shared_experts_size_total'] + |
|
attention_size_per_token)) * precision / ttft |
|
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
|
|
smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size'] + |
|
expert_config['shared_experts_size_total']) + attention_score) * 2 * prefill_tp |
|
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
|
|
return smbu, smfu |
|
|
|
|
|
def _calculate_qwen3_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation, |
|
attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp): |
|
smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] + |
|
attention_size_per_token)) * precision / ttft |
|
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
|
|
smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size']) + |
|
attention_score) * 2 * prefill_tp |
|
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
|
|
return smbu, smfu |
|
|
|
|
|
def _calculate_deepseek_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation, |
|
attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp): |
|
smbu_numerator = ((n_layers * attention_size_per_token + |
|
expert_config['deepseek_sparse_layer_num'] * |
|
(prefill_activation * expert_config['expert_size'] + |
|
expert_config['shared_experts_size_total']) + |
|
expert_config['deepseek_num_dense_layer'] * |
|
expert_config['deepseek_dense_ffn_size']) * precision / ttft) |
|
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
|
|
smfu_numerator = ((n_layers * attention_size_per_token + |
|
expert_config['deepseek_sparse_layer_num'] * |
|
(expert_config['expert_size'] + expert_config['shared_experts_size_total']) + |
|
expert_config['deepseek_num_dense_layer'] * |
|
expert_config['deepseek_dense_ffn_size'] + attention_score) * 2 * prefill_tp) |
|
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
|
|
return smbu, smfu |
|
|
|
|
|
def _calculate_default_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation, |
|
attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp): |
|
|
|
smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] + |
|
attention_size_per_token)) * precision / ttft |
|
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
|
|
smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size']) + |
|
attention_score) * 2 * prefill_tp |
|
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
|
|
return smbu, smfu |
|
|
|
|
|
def _calculate_qwen_decoding(n_layers, attention_size_per_token, expert_config, activation, |
|
metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp): |
|
smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] + |
|
expert_config['shared_experts_size_total'] + |
|
attention_size_per_token) + |
|
metrics_data['kv_size']) * precision / (batch_size / decoding_tp)) |
|
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
|
|
smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size'] + |
|
expert_config['shared_experts_size_total']) + |
|
metrics_data['attention_score']) * 2 * decoding_tp) |
|
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
|
|
return smbu, smfu |
|
|
|
|
|
def _calculate_qwen3_decoding(n_layers, attention_size_per_token, expert_config, activation, |
|
metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp): |
|
smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] + |
|
attention_size_per_token) + |
|
metrics_data['kv_size']) * precision / (batch_size / decoding_tp)) |
|
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
|
|
smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size']) + |
|
metrics_data['attention_score']) * 2 * decoding_tp) |
|
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
|
|
return smbu, smfu |
|
|
|
|
|
def _calculate_deepseek_decoding(n_layers, attention_size_per_token, expert_config, activation, |
|
metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp): |
|
smbu_numerator = ((n_layers * attention_size_per_token + |
|
expert_config['deepseek_sparse_layer_num'] * |
|
(activation * expert_config['expert_size'] + |
|
expert_config['shared_experts_size_total']) + |
|
expert_config['deepseek_num_dense_layer'] * |
|
expert_config['deepseek_dense_ffn_size'] + |
|
metrics_data['kv_size']) * precision / (batch_size / decoding_tp)) |
|
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
|
|
smfu_numerator = ((n_layers * attention_size_per_token + |
|
expert_config['deepseek_sparse_layer_num'] * |
|
(expert_config['expert_size'] + expert_config['shared_experts_size_total']) + |
|
expert_config['deepseek_num_dense_layer'] * |
|
expert_config['deepseek_dense_ffn_size'] + |
|
metrics_data['attention_score']) * 2 * decoding_tp) |
|
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
|
|
return smbu, smfu |
|
|
|
|
|
def _calculate_default_decoding(n_layers, attention_size_per_token, expert_config, activation, |
|
metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp): |
|
smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] + |
|
attention_size_per_token) + |
|
metrics_data['kv_size']) * precision / (batch_size / decoding_tp)) |
|
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
|
|
smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size']) + |
|
metrics_data['attention_score']) * 2 * decoding_tp) |
|
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
|
|
return smbu, smfu |
|
|
|
def _calculate_batch_metrics_hflm(output_len, context_prefill_size, decoding_tp, n_layers, d_model, |
|
n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff, |
|
avg_activated_experts, hf_config, num_gpus, model_name, |
|
used_dtype, batch_size, precision): |
|
"""Calculate metrics for a batch of outputs""" |
|
gpu_type = get_gpu_details() |
|
hardware_specs = { |
|
"peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12, |
|
"peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12, |
|
} |
|
|
|
|
|
per_token_kv_size = 2 * n_layers * d_head * n_kv_heads |
|
|
|
if "DeepSeek" in model_name: |
|
if hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"): |
|
per_token_kv_size = n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim) |
|
|
|
|
|
|
|
if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim"): |
|
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim |
|
origin_per_token_k_state_size = n_layers * n_attn_heads * q_head_dim |
|
origin_per_token_v_state_size = n_layers * n_attn_heads * hf_config.v_head_dim |
|
attention_score = context_prefill_size * origin_per_token_k_state_size + (output_len - 1) * origin_per_token_k_state_size / 2 |
|
attention_score += context_prefill_size * origin_per_token_v_state_size + (output_len - 1) * origin_per_token_v_state_size / 2 |
|
attention_score = attention_score / 1e12 |
|
else: |
|
origin_per_token_kv_states_size = n_layers * n_attn_heads * d_head |
|
attention_score = context_prefill_size * origin_per_token_kv_states_size + (output_len - 1) * origin_per_token_kv_states_size / 2 |
|
attention_score = attention_score * 2 / 1e12 |
|
|
|
|
|
kv_size = context_prefill_size * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2 |
|
kv_size = kv_size / 1e12 |
|
true_kv = (context_prefill_size * per_token_kv_size + output_len * per_token_kv_size) / 1e12 * 1e3 |
|
|
|
|
|
kv_size = kv_size * batch_size |
|
true_kv_size = true_kv * batch_size * 1e3 |
|
|
|
if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim") and hasattr(hf_config, "kv_lora_rank"): |
|
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim |
|
if not hasattr(hf_config, "q_lora_rank") or not hf_config.q_lora_rank: |
|
attention_size_per_token = (d_model * n_attn_heads * q_head_dim) + \ |
|
(d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \ |
|
(hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \ |
|
(hf_config.v_head_dim * n_attn_heads * d_model) |
|
attention_size_per_token = attention_size_per_token / 1e12 |
|
else: |
|
attention_size_per_token = (d_model * hf_config.q_lora_rank) + \ |
|
(hf_config.q_lora_rank * n_attn_heads * q_head_dim) + \ |
|
(d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \ |
|
(hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \ |
|
(hf_config.v_head_dim * n_attn_heads * d_model) |
|
attention_size_per_token = attention_size_per_token / 1e12 |
|
else: |
|
attention_size_per_token = d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) + n_attn_heads * d_head * d_model |
|
attention_size_per_token = attention_size_per_token / 1e12 |
|
|
|
|
|
expert_size = d_ff * 3 * d_model / 1e12 |
|
shared_experts_size_total = 0 |
|
deepseek_dense_ffn_size = 0 |
|
deepseek_sparse_layer_num = 0 |
|
|
|
if "Qwen" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "shared_expert_intermediate_size"): |
|
d_ff = hf_config.moe_intermediate_size |
|
d_ff_share = hf_config.shared_expert_intermediate_size |
|
shared_experts_size = d_ff_share * 3 * d_model |
|
expert_size = d_ff * 3 * d_model |
|
shared_experts_size_total = shared_experts_size / 1e12 |
|
expert_size = expert_size / 1e12 |
|
elif "Qwen3" in model_name and hasattr(hf_config, "moe_intermediate_size"): |
|
d_ff = hf_config.moe_intermediate_size |
|
expert_size = d_ff * 3 * d_model |
|
expert_size = expert_size / 1e12 |
|
elif "DeepSeek" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "intermediate_size") and hasattr(hf_config, "first_k_dense_replace"): |
|
d_ff = hf_config.moe_intermediate_size |
|
d_ff_dense = hf_config.intermediate_size |
|
deepseek_num_dense_layer = hf_config.first_k_dense_replace |
|
shared_experts_size = d_ff * 3 * d_model |
|
expert_size = d_ff * 3 * d_model |
|
shared_experts = 2 |
|
shared_experts_size_total = shared_experts_size * shared_experts / 1e12 |
|
expert_size = expert_size / 1e12 |
|
deepseek_sparse_layer_num = n_layers - deepseek_num_dense_layer |
|
deepseek_dense_ffn_size = d_ff_dense * 3 * d_model / 1e12 |
|
|
|
|
|
if "Qwen" in model_name: |
|
smbu = ((n_layers*(avg_activated_experts * expert_size + shared_experts_size_total + attention_size_per_token) + |
|
kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size + shared_experts_size_total) + attention_score) \ |
|
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
elif "Qwen3" in model_name: |
|
smbu = ((n_layers * (avg_activated_experts * expert_size + attention_size_per_token) + |
|
kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \ |
|
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
elif "DeepSeek" in model_name: |
|
smbu = ((n_layers * attention_size_per_token + deepseek_sparse_layer_num * \ |
|
(avg_activated_experts * expert_size + shared_experts_size_total) + \ |
|
deepseek_num_dense_layer * deepseek_dense_ffn_size + \ |
|
kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
smfu = (n_layers * attention_size_per_token + deepseek_sparse_layer_num * \ |
|
(n_experts_per_tok * expert_size + shared_experts_size_total) + \ |
|
deepseek_num_dense_layer * deepseek_dense_ffn_size + attention_score) \ |
|
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
else: |
|
smbu = ((n_layers*(avg_activated_experts * expert_size + attention_size_per_token) + |
|
kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb']) |
|
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \ |
|
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2) |
|
|
|
return { |
|
'smbu': smbu, |
|
'smfu': smfu, |
|
'kv_size': true_kv_size, |
|
'decoding_throughput': decoding_tp, |
|
'ttft': 0 |
|
} |
|
class ModelInfoRetriever: |
|
def __init__(self, model_name: str, precision: str = 'float16'): |
|
if precision not in ['float32', 'float16', 'bfloat16', 'int8', 'int4', 'awq', 'gptq', 'fp8', 'fp4']: |
|
raise ValueError("Precision must be one of ['float32', 'float16', 'bfloat16', 'int8', 'int4', 'awq', 'gptq', 'fp8', 'fp4']") |
|
self.model_name = model_name |
|
self.precision = precision |
|
self.config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) |
|
self.model_type = self.config.model_type |
|
|
|
def get_model_precision_bits(self): |
|
"""Returns bit width used by the given quantization format.""" |
|
if self.precision == 'float32': |
|
return 4 |
|
if self.precision in ['float16', 'bfloat16']: |
|
return 2 |
|
if self.precision in ['int8', 'fp8']: |
|
return 1 |
|
if self.precision in ['int4', 'fp4', 'gptq', 'awq']: |
|
return 0.5 |
|
raise ValueError(f"Unsupported precision: {self.precision}") |
|
|
|
def get_attention_info(self): |
|
"""Returns attention-related info""" |
|
return { |
|
'num_attention_heads': getattr(self.config, "num_attention_heads", None), |
|
'num_key_value_heads': getattr(self.config, "num_key_value_heads", getattr(self.config, "num_kv_heads", None)), |
|
'head_dim': getattr(self.config, "head_dim", getattr(self.config, "hidden_size", None) // getattr(self.config, "num_attention_heads", 1)) |
|
} |
|
|
|
def get_rope_info(self): |
|
"""Returns RoPE (rotary embedding) info if available""" |
|
if hasattr(self.config, "rope_scaling"): |
|
return { |
|
"type": self.config.rope_scaling.get("type"), |
|
"factor": self.config.rope_scaling.get("factor") |
|
} |
|
elif hasattr(self.config, "use_alibi"): |
|
return {"type": "alibi", "enabled": self.config.use_alibi} |
|
else: |
|
return {"type": "none"} |
|
|
|
def get_moe_info(self, d_model=None): |
|
"""Returns MoE configuration such as number of experts and FFN dim""" |
|
if d_model is None: |
|
d_model = getattr(self.config, "hidden_size", None) |
|
|
|
num_experts = ( |
|
getattr(self.config, "num_local_experts", None) or |
|
getattr(self.config, "num_experts", None) or |
|
getattr(self.config, "n_routed_experts", None) or |
|
getattr(getattr(self.config, "ffn_config", {}), "moe_num_experts", None) or |
|
1 |
|
) |
|
n_experts_per_tok = ( |
|
getattr(self.config, "num_experts_per_tok", None) or |
|
getattr(self.config, "num_selected_experts", None) or |
|
getattr(getattr(self.config, "ffn_config", {}), "moe_top_k", None) or |
|
1 |
|
) |
|
d_ff = ( |
|
getattr(self.config, "ffn_dim", None) or |
|
getattr(self.config, "intermediate_size", None) or |
|
getattr(self.config, "d_ff", None) or |
|
(d_model * getattr(self.config, "ff_ratio", 4)) or |
|
getattr(getattr(self.config, "ffn_config", {}), "ffn_hidden_size", None) or |
|
(4 * d_model) |
|
) |
|
|
|
return { |
|
"num_experts": num_experts, |
|
"experts_per_token": n_experts_per_tok, |
|
"ffn_dim": d_ff |
|
} |
|
|
|
def get_architecture_info(self): |
|
"""Returns model-wide architecture info""" |
|
return { |
|
"model_type": self.model_type, |
|
"hidden_size": getattr(self.config, "hidden_size", None), |
|
"num_hidden_layers": getattr(self.config, "num_hidden_layers", None), |
|
"max_position_embeddings": getattr(self.config, "max_position_embeddings", None), |
|
"vocab_size": getattr(self.config, "vocab_size", None), |
|
"architectures": getattr(self.config, "architectures", []), |
|
} |
|
|
|
def summarize(self): |
|
"""Aggregate all extracted info in a dictionary""" |
|
d_model = getattr(self.config, "hidden_size", None) |
|
return { |
|
"model_name": self.model_name, |
|
"model_type": self.model_type, |
|
"precision_bits": self.get_model_precision_bits(), |
|
"architecture": self.get_architecture_info(), |
|
"attention": self.get_attention_info(), |
|
"rope": self.get_rope_info(), |
|
"moe": self.get_moe_info(d_model) |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|