File size: 48,587 Bytes
14e4843 034968f 3655a9e 0be51d4 5ae48b5 3655a9e 034968f 84f0fa3 034968f 84f0fa3 0be51d4 5ae48b5 0be51d4 5ae48b5 0be51d4 5ae48b5 0be51d4 5ae48b5 0be51d4 5ae48b5 0be51d4 bb32fa1 5ae48b5 bb32fa1 5ae48b5 bb32fa1 5ae48b5 0be51d4 5ae48b5 0be51d4 5ae48b5 0be51d4 5ae48b5 0be51d4 14e4843 d6d7ec6 14e4843 3237d78 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 d6d7ec6 14e4843 034968f 3655a9e 0be51d4 034968f 5ae48b5 bb32fa1 3655a9e 84f0fa3 3655a9e bb32fa1 3655a9e 17162c6 3655a9e 0be51d4 84f0fa3 034968f 84f0fa3 034968f 17162c6 034968f 84f0fa3 034968f 84f0fa3 034968f 0be51d4 bb32fa1 0be51d4 bb32fa1 0be51d4 5ae48b5 0be51d4 5ae48b5 0be51d4 5ae48b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 |
import pandas as pd
from huggingface_hub import snapshot_download
import subprocess
import re
import os
import GPUtil
from transformers import AutoConfig
from typing import List
try:
from src.display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
except:
print("local debug: from display.utils")
from display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
MEM_BW_DICT ={
"NVIDIA-A100-PCIe-80GB": 1935e9,
"NVIDIA-A100-SXM4-80GB": 2039e9,
"NVIDIA-H100-PCIe-80GB": 2039e9,
"NVIDIA-RTX-A5000-24GB": 768e9,
"NVIDIA-RTX-A6000-48GB": 768e9,
}
PEAK_FLOPS_DICT = {
"float32":{
"NVIDIA-A100-PCIe-80GB": 312e12,
"NVIDIA-A100-SXM4-80GB": 312e12,
"NVIDIA-H100-PCIe-80GB": 756e12,
"NVIDIA-RTX-A5000-24GB": 222.2e12,
"NVIDIA-RTX-A6000-48GB": 309.7e12
},
"float16":{
"NVIDIA-A100-PCIe-80GB": 624e12,
"NVIDIA-A100-SXM4-80GB": 624e12,
"NVIDIA-H100-PCIe-80GB": 1513e12,
"NVIDIA-RTX-A5000-24GB": 222.2e12,
"NVIDIA-RTX-A6000-48GB": 309.7e12
},
"bfloat16":{
"NVIDIA-A100-PCIe-80GB": 624e12,
"NVIDIA-A100-SXM4-80GB": 624e12,
"NVIDIA-H100-PCIe-80GB": 1513e12,
"NVIDIA-RTX-A5000-24GB": 222.2e12,
"NVIDIA-RTX-A6000-48GB": 309.7e12
},
"int8":{
"NVIDIA-A100-PCIe-80GB": 1248e12,
"NVIDIA-A100-SXM4-80GB": 1248e12,
"NVIDIA-H100-PCIe-80GB": 3026e12,
"NVIDIA-RTX-A5000-24GB": 222.2e12,
"NVIDIA-RTX-A6000-48GB": 309.7e12
},
"fp8":{
"NVIDIA-A100-PCIe-80GB": 1248e12,
"NVIDIA-A100-SXM4-80GB": 1248e12,
"NVIDIA-H100-PCIe-80GB": 3026e12,
"NVIDIA-RTX-A5000-24GB": 0,
"NVIDIA-RTX-A6000-48GB": 0
},
"fp4": {
"NVIDIA-A100-PCIe-80GB": 1248e12,
"NVIDIA-A100-SXM4-80GB": 1248e12,
"NVIDIA-H100-PCIe-80GB": 3026e12,
"NVIDIA-RTX-A5000-24GB": 0,
"NVIDIA-RTX-A6000-48GB": 0
},
"int4": {
"NVIDIA-A100-PCIe-80GB": 1248e12,
"NVIDIA-A100-SXM4-80GB": 1248e12,
"NVIDIA-H100-PCIe-80GB": 3026e12,
"NVIDIA-RTX-A5000-24GB": 222.2e12,
"NVIDIA-RTX-A6000-48GB": 309.7e12
}
}
def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers):
for i in range(10):
try:
snapshot_download(
repo_id=repo_id, revision=revision, local_dir=local_dir, repo_type=repo_type, max_workers=max_workers
)
return
except Exception as e:
print(f"Failed to download {repo_id} at {revision} with error: {e}. Retrying...")
import time
time.sleep(60)
return
def get_dataset_url(row):
dataset_name = row["Benchmark"]
dataset_url = row["Dataset Link"]
benchmark = f'<a target="_blank" href="{dataset_url}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{dataset_name}</a>'
return benchmark
def get_dataset_summary_table(file_path):
df = pd.read_csv(file_path)
df["Benchmark"] = df.apply(lambda x: get_dataset_url(x), axis=1)
df = df[["Category", "Benchmark", "Data Split", "Data Size", "Language"]]
return df
def parse_nvidia_smi():
visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', None)
if visible_devices is not None:
gpu_indices = visible_devices.split(',')
else:
# Query all GPU indices if CUDA_VISIBLE_DEVICES is not set
result = subprocess.run(['nvidia-smi', '--query-gpu=index', '--format=csv,noheader'], capture_output=True, text=True)
if result.returncode != 0:
print("Failed to query GPU indices.")
return []
gpu_indices = result.stdout.strip().split('\n')
# print(f"gpu_indices: {gpu_indices}")
gpu_stats = []
gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W\s*/\s*\d+W\s*\|\s*(\d+)MiB\s*/\s*\d+MiB\s*\|\s*(\d+)%')
# gpu_name_pattern = re.compile(r'NVIDIA\s+([\w\s]+\d+(?:\s*GB)?)')
gpu_name_pattern = re.compile(r'NVIDIA\s+(RTX\s+)?([A-Z0-9]+)')
gpu_name = ""
for index in gpu_indices:
result = subprocess.run(['nvidia-smi', '-i', index], capture_output=True, text=True)
output = result.stdout.strip()
lines = output.split("\n")
for line in lines:
match = gpu_info_pattern.search(line)
name_match = gpu_name_pattern.search(line)
gpu_info = {}
if name_match:
gpu_name = ''.join(filter(None, name_match.groups())).strip()
if match:
temp, power_usage, mem_usage, gpu_util = map(int, match.groups())
gpu_info.update({
GPU_TEMP: temp,
GPU_Power: power_usage,
GPU_Mem: round(mem_usage / 1024, 2),
GPU_Util: gpu_util
})
if len(gpu_info) >= 4:
gpu_stats.append(gpu_info)
# print(f"gpu_stats: {gpu_stats}")
gpu_name = f"{len(gpu_stats)}x{gpu_name}"
gpu_stats_total = {
GPU_TEMP: 0,
GPU_Power: 0,
GPU_Mem: 0,
GPU_Util: 0,
GPU_Name: gpu_name
}
for gpu_stat in gpu_stats:
gpu_stats_total[GPU_TEMP] += gpu_stat[GPU_TEMP]
gpu_stats_total[GPU_Power] += gpu_stat[GPU_Power]
gpu_stats_total[GPU_Mem] += gpu_stat[GPU_Mem]
gpu_stats_total[GPU_Util] += gpu_stat[GPU_Util]
gpu_stats_total[GPU_Mem] = gpu_stats_total[GPU_Mem] # G
gpu_stats_total[GPU_TEMP] /= len(gpu_stats)
gpu_stats_total[GPU_Power] /= len(gpu_stats)
gpu_stats_total[GPU_Util] /= len(gpu_stats)
return [gpu_stats_total]
def monitor_gpus(stop_event, interval, stats_list):
while not stop_event.is_set():
gpu_stats = parse_nvidia_smi()
if gpu_stats:
stats_list.extend(gpu_stats)
stop_event.wait(interval)
def analyze_gpu_stats(stats_list):
# Check if the stats_list is empty, and return None if it is
if not stats_list:
return None
# Initialize dictionaries to store the stats
avg_stats = {}
max_stats = {}
# Calculate average stats, excluding 'GPU_Mem'
for key in stats_list[0].keys():
if key != GPU_Mem and key != GPU_Name:
total = sum(d[key] for d in stats_list)
avg_stats[key] = total / len(stats_list)
# Calculate max stats for 'GPU_Mem'
max_stats[GPU_Mem] = max(d[GPU_Mem] for d in stats_list)
if GPU_Name in stats_list[0]:
avg_stats[GPU_Name] = stats_list[0][GPU_Name]
# Update average stats with max GPU memory usage
avg_stats.update(max_stats)
return avg_stats
def get_gpu_details():
gpus = GPUtil.getGPUs()
gpu = gpus[0]
name = gpu.name.replace(" ", "-")
memory_gb = round(gpu.memoryTotal / 1024)
memory = f"{memory_gb}GB"
for part in name.split('-'):
if part.endswith("GB") and part[:-2].isdigit():
name = name.replace(f"-{part}", "").replace(part, "")
formatted_name = f"{name}-{memory}"
return formatted_name
def get_peak_bw(gpu_name):
return MEM_BW_DICT[gpu_name]
def get_peak_flops(gpu_name, precision):
return PEAK_FLOPS_DICT[precision][gpu_name]
def _calculate_batch_metrics(outputs, decoding_tp, n_layers, d_model,
n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff,
avg_activated_experts, hf_config, num_gpus, model_name,
used_dtype, batch_size, precision):
"""Calculate metrics for a batch of outputs"""
gpu_type = get_gpu_details()
hardware_specs = {
"peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
"peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
}
kvs = []
true_kvs = []
attn_score = []
# Calculate KV sizes
per_token_kv_size = 2 * n_layers * d_head * n_kv_heads # Default calculation
if "DeepSeek" in model_name:
if hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
per_token_kv_size = n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
# Process each output
for x in outputs:
output_len = len(x.outputs[0].token_ids)
context_prefill_size = len(x.prompt_token_ids)
# Calculate attention scores
if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim"):
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
origin_per_token_k_state_size = n_layers * n_attn_heads * q_head_dim
origin_per_token_v_state_size = n_layers * n_attn_heads * hf_config.v_head_dim
attention_score = context_prefill_size * origin_per_token_k_state_size + (output_len - 1) * origin_per_token_k_state_size / 2
attention_score += context_prefill_size * origin_per_token_v_state_size + (output_len - 1) * origin_per_token_v_state_size / 2
attention_score = attention_score / 1e12
else:
origin_per_token_kv_states_size = n_layers * n_attn_heads * d_head
attention_score = context_prefill_size * origin_per_token_kv_states_size + (output_len - 1) * origin_per_token_kv_states_size / 2
attention_score = attention_score * 2 / 1e12
# Store attention scores and KV sizes
attn_score.append(attention_score)
kv_size = context_prefill_size * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2
kv_size = kv_size / 1e12
true_kv = (context_prefill_size * per_token_kv_size + output_len * per_token_kv_size) / 1e12 * 1e3
kvs.append(kv_size)
true_kvs.append(true_kv)
# Calculate aggregate values
kv_size = sum(kvs)
true_kv_size = sum(true_kvs) * 1e3
attention_score = sum(attn_score) / len(attn_score)
# Calculate attention size per token
if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim") and hasattr(hf_config, "kv_lora_rank"):
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
if not hasattr(hf_config, "q_lora_rank") or not hf_config.q_lora_rank:
attention_size_per_token = (d_model * n_attn_heads * q_head_dim) + \
(d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
(hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
(hf_config.v_head_dim * n_attn_heads * d_model)
attention_size_per_token = attention_size_per_token / 1e12
else:
attention_size_per_token = (d_model * hf_config.q_lora_rank) + \
(hf_config.q_lora_rank * n_attn_heads * q_head_dim) + \
(d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
(hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
(hf_config.v_head_dim * n_attn_heads * d_model)
attention_size_per_token = attention_size_per_token / 1e12
else:
attention_size_per_token = d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) + n_attn_heads * d_head * d_model
attention_size_per_token = attention_size_per_token / 1e12
# Calculate expert sizes
expert_size = d_ff * 3 * d_model / 1e12
shared_experts_size_total = 0
deepseek_dense_ffn_size = 0
deepseek_sparse_layer_num = 0
if "Qwen" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "shared_expert_intermediate_size"):
d_ff = hf_config.moe_intermediate_size
d_ff_share = hf_config.shared_expert_intermediate_size
shared_experts_size = d_ff_share * 3 * d_model
expert_size = d_ff * 3 * d_model
shared_experts_size_total = shared_experts_size / 1e12
expert_size = expert_size / 1e12
elif "Qwen3" in model_name and hasattr(hf_config, "moe_intermediate_size"):
d_ff = hf_config.moe_intermediate_size
expert_size = d_ff * 3 * d_model
expert_size = expert_size / 1e12
elif "DeepSeek" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "intermediate_size") and hasattr(hf_config, "first_k_dense_replace"):
d_ff = hf_config.moe_intermediate_size
d_ff_dense = hf_config.intermediate_size
deepseek_num_dense_layer = hf_config.first_k_dense_replace
shared_experts_size = d_ff * 3 * d_model
expert_size = d_ff * 3 * d_model
shared_experts = 2
shared_experts_size_total = shared_experts_size * shared_experts / 1e12
expert_size = expert_size / 1e12
deepseek_sparse_layer_num = n_layers - deepseek_num_dense_layer
deepseek_dense_ffn_size = d_ff_dense * 3 * d_model / 1e12
# Calculate S-MBU and S-MFU
if "Qwen" in model_name and not "Qwen3" in model_name:
smbu = ((n_layers*(avg_activated_experts * expert_size + shared_experts_size_total + attention_size_per_token) +
kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size + shared_experts_size_total) + attention_score) \
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
elif "Qwen3" in model_name:
smbu = ((n_layers * (avg_activated_experts * expert_size + attention_size_per_token) +
kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
elif "DeepSeek" in model_name:
smbu = ((n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
(avg_activated_experts * expert_size + shared_experts_size_total) + \
deepseek_num_dense_layer * deepseek_dense_ffn_size + \
kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu = (n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
(n_experts_per_tok * expert_size + shared_experts_size_total) + \
deepseek_num_dense_layer * deepseek_dense_ffn_size + attention_score) \
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
else:
smbu = ((n_layers*(avg_activated_experts * expert_size + attention_size_per_token) +
kv_size) * precision/ (batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
return {
'smbu': smbu,
'smfu': smfu,
'kv_size': true_kv_size,
'decoding_throughput': decoding_tp
}
def _calculate_batch_metrics_sglang(outputs, decoding_tp, n_layers, d_model,
n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff,
avg_activated_experts, hf_config, num_gpus, model_name,
used_dtype, batch_size, precision, ttft=None, prefill_tp=None):
"""Calculate metrics for a batch of outputs"""
# Initialize hardware specs and output lists
hardware_specs = _get_hardware_specs(used_dtype)
output_data = _extract_output_data(outputs)
# Calculate model-specific sizes
per_token_kv_size = _calculate_kv_size(model_name, hf_config, n_layers, d_head, n_kv_heads)
attention_size_per_token = _calculate_attention_size(model_name, hf_config, d_model, n_attn_heads, d_head, n_kv_heads)
expert_config = _calculate_expert_config(model_name, hf_config, d_ff, d_model, n_layers)
# Process outputs and calculate metrics
metrics_data = _process_outputs(output_data, per_token_kv_size, attention_size_per_token,
model_name, hf_config, n_layers, n_attn_heads, d_head)
# Calculate throughput metrics
if ttft is None or prefill_tp is None:
ttft, prefill_tp = _calculate_throughput_metrics(batch_size, output_data['prefill_lengths'],
output_data['max_duration'])
# Calculate S-MBU and S-MFU
smbu_smfu_metrics = _calculate_smbu_smfu(model_name, n_layers, attention_size_per_token,
expert_config, avg_activated_experts, metrics_data,
hardware_specs, num_gpus, precision, ttft, prefill_tp,
batch_size, decoding_tp)
return {
'prefill_smbu': smbu_smfu_metrics['prefill_smbu'],
'prefill_smfu': smbu_smfu_metrics['prefill_smfu'],
'decoding_smbu': smbu_smfu_metrics['decoding_smbu'],
'decoding_smfu': smbu_smfu_metrics['decoding_smfu'],
'kv_size': metrics_data['true_kv_size'],
'decoding_throughput': decoding_tp,
'prefill_tp': prefill_tp,
'ttft': ttft
}
def _get_hardware_specs(used_dtype):
"""Get hardware specifications"""
gpu_type = get_gpu_details()
return {
"peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
"peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
}
def _extract_output_data(outputs):
"""Extract relevant data from outputs"""
prefill_lengths = []
output_lengths = []
max_duration = 0.0
for x in outputs:
output_lengths.append(x['meta_info']['completion_tokens'])
prefill_lengths.append(x['meta_info']['prompt_tokens'])
max_duration = max(max_duration, x['meta_info']['e2e_latency'])
return {
'prefill_lengths': prefill_lengths,
'output_lengths': output_lengths,
'max_duration': max_duration
}
def _calculate_kv_size(model_name, hf_config, n_layers, d_head, n_kv_heads):
"""Calculate per-token KV size based on model type"""
if "DeepSeek" in model_name and hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
return n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
return 2 * n_layers * d_head * n_kv_heads
def _calculate_attention_size(model_name, hf_config, d_model, n_attn_heads, d_head, n_kv_heads):
"""Calculate attention size per token based on model type"""
if ("DeepSeek" in model_name and
hasattr(hf_config, "qk_rope_head_dim") and
hasattr(hf_config, "qk_nope_head_dim") and
hasattr(hf_config, "v_head_dim") and
hasattr(hf_config, "kv_lora_rank")):
return _calculate_deepseek_attention_size(hf_config, d_model, n_attn_heads)
return (d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) +
n_attn_heads * d_head * d_model) / 1e12
def _calculate_deepseek_attention_size(hf_config, d_model, n_attn_heads):
"""Calculate DeepSeek-specific attention size"""
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
base_size = ((d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) +
(hf_config.kv_lora_rank * n_attn_heads *
(q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) +
(hf_config.v_head_dim * n_attn_heads * d_model))
if hasattr(hf_config, "q_lora_rank") and hf_config.q_lora_rank:
q_size = (d_model * hf_config.q_lora_rank +
hf_config.q_lora_rank * n_attn_heads * q_head_dim)
else:
q_size = d_model * n_attn_heads * q_head_dim
return (base_size + q_size) / 1e12
def _calculate_expert_config(model_name, hf_config, d_ff, d_model, n_layers):
"""Calculate expert configuration based on model type"""
config = {
'expert_size': d_ff * 3 * d_model / 1e12,
'shared_experts_size_total': 0,
'deepseek_dense_ffn_size': 0,
'deepseek_sparse_layer_num': 0,
'deepseek_num_dense_layer': 0
}
if "Qwen" in model_name and not "Qwen3" in model_name:
config.update(_get_qwen_expert_config(hf_config, d_model))
elif "Qwen3" in model_name:
config.update(_get_qwen3_expert_config(hf_config, d_model))
elif "DeepSeek" in model_name:
config.update(_get_deepseek_expert_config(hf_config, d_model, n_layers))
return config
def _get_qwen_expert_config(hf_config, d_model):
"""Get Qwen-specific expert configuration"""
if (hasattr(hf_config, "moe_intermediate_size") and
hasattr(hf_config, "shared_expert_intermediate_size")):
return {
'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12,
'shared_experts_size_total': hf_config.shared_expert_intermediate_size * 3 * d_model / 1e12
}
return {}
def _get_qwen3_expert_config(hf_config, d_model):
"""Get Qwen3-specific expert configuration"""
if hasattr(hf_config, "moe_intermediate_size"):
return {
'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12
}
return {}
def _get_deepseek_expert_config(hf_config, d_model, n_layers):
"""Get DeepSeek-specific expert configuration"""
if (hasattr(hf_config, "moe_intermediate_size") and
hasattr(hf_config, "intermediate_size") and
hasattr(hf_config, "first_k_dense_replace")):
deepseek_num_dense_layer = hf_config.first_k_dense_replace
return {
'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12,
'shared_experts_size_total': hf_config.moe_intermediate_size * 3 * d_model * 2 / 1e12,
'deepseek_dense_ffn_size': hf_config.intermediate_size * 3 * d_model / 1e12,
'deepseek_sparse_layer_num': n_layers - deepseek_num_dense_layer,
'deepseek_num_dense_layer': deepseek_num_dense_layer
}
return {}
def _process_outputs(output_data, per_token_kv_size, attention_size_per_token,
model_name, hf_config, n_layers, n_attn_heads, d_head):
"""Process outputs to calculate KV sizes and attention scores"""
kvs = []
true_kvs = []
attn_scores = []
for prefill_len, output_len in zip(output_data['prefill_lengths'], output_data['output_lengths']):
# Calculate attention score
attn_score = _calculate_attention_score(model_name, hf_config, prefill_len, output_len,
n_layers, n_attn_heads, d_head)
attn_scores.append(attn_score)
# Calculate KV sizes
kv_size = (prefill_len * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2) / 1e12
true_kv = (prefill_len * per_token_kv_size + output_len * per_token_kv_size) / 1e9
kvs.append(kv_size)
true_kvs.append(true_kv)
return {
'kv_size': sum(kvs),
'true_kv_size': sum(true_kvs) * 1e3,
'attention_score': sum(attn_scores) / len(attn_scores)
}
def _calculate_attention_score(model_name, hf_config, prefill_len, output_len,
n_layers, n_attn_heads, d_head):
"""Calculate attention score for a single output"""
if ("DeepSeek" in model_name and
hasattr(hf_config, "qk_rope_head_dim") and
hasattr(hf_config, "qk_nope_head_dim") and
hasattr(hf_config, "v_head_dim")):
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
k_size = n_layers * n_attn_heads * q_head_dim
v_size = n_layers * n_attn_heads * hf_config.v_head_dim
score = (prefill_len * k_size + (output_len - 1) * k_size / 2 +
prefill_len * v_size + (output_len - 1) * v_size / 2)
else:
kv_size = n_layers * n_attn_heads * d_head
score = (prefill_len * kv_size + (output_len - 1) * kv_size / 2) * 2
return score / 1e12
def _calculate_throughput_metrics(batch_size, prefill_lengths, max_duration):
"""Calculate throughput metrics"""
total_prefill = sum(prefill_lengths)
prefill_tp = total_prefill / (max_duration)
ttft = max_duration / batch_size
return ttft, prefill_tp
def _calculate_smbu_smfu(model_name, n_layers, attention_size_per_token, expert_config,
avg_activated_experts, metrics_data, hardware_specs, num_gpus,
precision, ttft, prefill_tp, batch_size, decoding_tp):
"""Calculate S-MBU and S-MFU metrics"""
prefill_activation = avg_activated_experts[1]
decode_steps_activation = avg_activated_experts[2:]
# Calculate prefill metrics
prefill_smbu, prefill_smfu = _calculate_prefill_metrics(
model_name, n_layers, attention_size_per_token, expert_config,
prefill_activation, metrics_data['attention_score'], hardware_specs,
num_gpus, precision, ttft, prefill_tp
)
# Calculate decoding metrics
decoding_smbu, decoding_smfu = _calculate_decoding_metrics(
model_name, n_layers, attention_size_per_token, expert_config,
decode_steps_activation, metrics_data, hardware_specs,
num_gpus, precision, batch_size, decoding_tp
)
return {
'prefill_smbu': prefill_smbu,
'prefill_smfu': prefill_smfu,
'decoding_smbu': decoding_smbu,
'decoding_smfu': decoding_smfu
}
def _calculate_prefill_metrics(model_name, n_layers, attention_size_per_token, expert_config,
prefill_activation, attention_score, hardware_specs,
num_gpus, precision, ttft, prefill_tp):
"""Calculate prefill S-MBU and S-MFU"""
model_calculators = {
'Qwen': _calculate_qwen_prefill,
'Qwen3': _calculate_qwen3_prefill,
'DeepSeek': _calculate_deepseek_prefill
}
for model_type, calculator in model_calculators.items():
if model_type in model_name and (model_type != 'Qwen' or 'Qwen3' not in model_name):
return calculator(n_layers, attention_size_per_token, expert_config,
prefill_activation, attention_score, hardware_specs,
num_gpus, precision, ttft, prefill_tp)
# Default case
return _calculate_default_prefill(n_layers, attention_size_per_token, expert_config,
prefill_activation, attention_score, hardware_specs,
num_gpus, precision, ttft, prefill_tp)
def _calculate_decoding_metrics(model_name, n_layers, attention_size_per_token, expert_config,
decode_steps_activation, metrics_data, hardware_specs,
num_gpus, precision, batch_size, decoding_tp):
"""Calculate decoding S-MBU and S-MFU"""
decoding_smbus = []
for activation in decode_steps_activation:
if "Qwen" in model_name and "Qwen3" not in model_name:
smbu, smfu = _calculate_qwen_decoding(n_layers, attention_size_per_token, expert_config,
activation, metrics_data, hardware_specs, num_gpus,
precision, batch_size, decoding_tp)
elif "Qwen3" in model_name:
smbu, smfu = _calculate_qwen3_decoding(n_layers, attention_size_per_token, expert_config,
activation, metrics_data, hardware_specs, num_gpus,
precision, batch_size, decoding_tp)
elif "DeepSeek" in model_name:
smbu, smfu = _calculate_deepseek_decoding(n_layers, attention_size_per_token, expert_config,
activation, metrics_data, hardware_specs, num_gpus,
precision, batch_size, decoding_tp)
else:
smbu, smfu = _calculate_default_decoding(n_layers, attention_size_per_token, expert_config,
activation, metrics_data, hardware_specs, num_gpus,
precision, batch_size, decoding_tp)
decoding_smbus.append(smbu)
return sum(decoding_smbus) / len(decoding_smbus), smfu
# Helper functions for specific model calculations
def _calculate_qwen_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] +
expert_config['shared_experts_size_total'] +
attention_size_per_token)) * precision / ttft
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size'] +
expert_config['shared_experts_size_total']) + attention_score) * 2 * prefill_tp
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
return smbu, smfu
def _calculate_qwen3_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] +
attention_size_per_token)) * precision / ttft
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size']) +
attention_score) * 2 * prefill_tp
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
return smbu, smfu
def _calculate_deepseek_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
smbu_numerator = ((n_layers * attention_size_per_token +
expert_config['deepseek_sparse_layer_num'] *
(prefill_activation * expert_config['expert_size'] +
expert_config['shared_experts_size_total']) +
expert_config['deepseek_num_dense_layer'] *
expert_config['deepseek_dense_ffn_size']) * precision / ttft)
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu_numerator = ((n_layers * attention_size_per_token +
expert_config['deepseek_sparse_layer_num'] *
(expert_config['expert_size'] + expert_config['shared_experts_size_total']) +
expert_config['deepseek_num_dense_layer'] *
expert_config['deepseek_dense_ffn_size'] + attention_score) * 2 * prefill_tp)
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
return smbu, smfu
def _calculate_default_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
# Default implementation
smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] +
attention_size_per_token)) * precision / ttft
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size']) +
attention_score) * 2 * prefill_tp
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
return smbu, smfu
def _calculate_qwen_decoding(n_layers, attention_size_per_token, expert_config, activation,
metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] +
expert_config['shared_experts_size_total'] +
attention_size_per_token) +
metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size'] +
expert_config['shared_experts_size_total']) +
metrics_data['attention_score']) * 2 * decoding_tp)
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
return smbu, smfu
def _calculate_qwen3_decoding(n_layers, attention_size_per_token, expert_config, activation,
metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] +
attention_size_per_token) +
metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size']) +
metrics_data['attention_score']) * 2 * decoding_tp)
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
return smbu, smfu
def _calculate_deepseek_decoding(n_layers, attention_size_per_token, expert_config, activation,
metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
smbu_numerator = ((n_layers * attention_size_per_token +
expert_config['deepseek_sparse_layer_num'] *
(activation * expert_config['expert_size'] +
expert_config['shared_experts_size_total']) +
expert_config['deepseek_num_dense_layer'] *
expert_config['deepseek_dense_ffn_size'] +
metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu_numerator = ((n_layers * attention_size_per_token +
expert_config['deepseek_sparse_layer_num'] *
(expert_config['expert_size'] + expert_config['shared_experts_size_total']) +
expert_config['deepseek_num_dense_layer'] *
expert_config['deepseek_dense_ffn_size'] +
metrics_data['attention_score']) * 2 * decoding_tp)
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
return smbu, smfu
def _calculate_default_decoding(n_layers, attention_size_per_token, expert_config, activation,
metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] +
attention_size_per_token) +
metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size']) +
metrics_data['attention_score']) * 2 * decoding_tp)
smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
return smbu, smfu
def _calculate_batch_metrics_hflm(output_len, context_prefill_size, decoding_tp, n_layers, d_model,
n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff,
avg_activated_experts, hf_config, num_gpus, model_name,
used_dtype, batch_size, precision):
"""Calculate metrics for a batch of outputs"""
gpu_type = get_gpu_details()
hardware_specs = {
"peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
"peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
}
# Calculate KV sizes
per_token_kv_size = 2 * n_layers * d_head * n_kv_heads # Default calculation
if "DeepSeek" in model_name:
if hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
per_token_kv_size = n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
# Calculate attention scores
if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim"):
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
origin_per_token_k_state_size = n_layers * n_attn_heads * q_head_dim
origin_per_token_v_state_size = n_layers * n_attn_heads * hf_config.v_head_dim
attention_score = context_prefill_size * origin_per_token_k_state_size + (output_len - 1) * origin_per_token_k_state_size / 2
attention_score += context_prefill_size * origin_per_token_v_state_size + (output_len - 1) * origin_per_token_v_state_size / 2
attention_score = attention_score / 1e12
else:
origin_per_token_kv_states_size = n_layers * n_attn_heads * d_head
attention_score = context_prefill_size * origin_per_token_kv_states_size + (output_len - 1) * origin_per_token_kv_states_size / 2
attention_score = attention_score * 2 / 1e12
# Store attention scores and KV sizes
kv_size = context_prefill_size * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2
kv_size = kv_size / 1e12
true_kv = (context_prefill_size * per_token_kv_size + output_len * per_token_kv_size) / 1e12 * 1e3
# Calculate aggregate values
kv_size = kv_size * batch_size
true_kv_size = true_kv * batch_size * 1e3
# Calculate attention size per token
if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim") and hasattr(hf_config, "kv_lora_rank"):
q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
if not hasattr(hf_config, "q_lora_rank") or not hf_config.q_lora_rank:
attention_size_per_token = (d_model * n_attn_heads * q_head_dim) + \
(d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
(hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
(hf_config.v_head_dim * n_attn_heads * d_model)
attention_size_per_token = attention_size_per_token / 1e12
else:
attention_size_per_token = (d_model * hf_config.q_lora_rank) + \
(hf_config.q_lora_rank * n_attn_heads * q_head_dim) + \
(d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
(hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
(hf_config.v_head_dim * n_attn_heads * d_model)
attention_size_per_token = attention_size_per_token / 1e12
else:
attention_size_per_token = d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) + n_attn_heads * d_head * d_model
attention_size_per_token = attention_size_per_token / 1e12
# Calculate expert sizes
expert_size = d_ff * 3 * d_model / 1e12
shared_experts_size_total = 0
deepseek_dense_ffn_size = 0
deepseek_sparse_layer_num = 0
if "Qwen" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "shared_expert_intermediate_size"):
d_ff = hf_config.moe_intermediate_size
d_ff_share = hf_config.shared_expert_intermediate_size
shared_experts_size = d_ff_share * 3 * d_model
expert_size = d_ff * 3 * d_model
shared_experts_size_total = shared_experts_size / 1e12
expert_size = expert_size / 1e12
elif "Qwen3" in model_name and hasattr(hf_config, "moe_intermediate_size"):
d_ff = hf_config.moe_intermediate_size
expert_size = d_ff * 3 * d_model
expert_size = expert_size / 1e12
elif "DeepSeek" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "intermediate_size") and hasattr(hf_config, "first_k_dense_replace"):
d_ff = hf_config.moe_intermediate_size
d_ff_dense = hf_config.intermediate_size
deepseek_num_dense_layer = hf_config.first_k_dense_replace
shared_experts_size = d_ff * 3 * d_model
expert_size = d_ff * 3 * d_model
shared_experts = 2
shared_experts_size_total = shared_experts_size * shared_experts / 1e12
expert_size = expert_size / 1e12
deepseek_sparse_layer_num = n_layers - deepseek_num_dense_layer
deepseek_dense_ffn_size = d_ff_dense * 3 * d_model / 1e12
# Calculate S-MBU and S-MFU
if "Qwen" in model_name:
smbu = ((n_layers*(avg_activated_experts * expert_size + shared_experts_size_total + attention_size_per_token) +
kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size + shared_experts_size_total) + attention_score) \
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
elif "Qwen3" in model_name:
smbu = ((n_layers * (avg_activated_experts * expert_size + attention_size_per_token) +
kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
elif "DeepSeek" in model_name:
smbu = ((n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
(avg_activated_experts * expert_size + shared_experts_size_total) + \
deepseek_num_dense_layer * deepseek_dense_ffn_size + \
kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu = (n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
(n_experts_per_tok * expert_size + shared_experts_size_total) + \
deepseek_num_dense_layer * deepseek_dense_ffn_size + attention_score) \
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
else:
smbu = ((n_layers*(avg_activated_experts * expert_size + attention_size_per_token) +
kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
* 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
return {
'smbu': smbu,
'smfu': smfu,
'kv_size': true_kv_size,
'decoding_throughput': decoding_tp,
'ttft': 0
}
class ModelInfoRetriever:
def __init__(self, model_name: str, precision: str = 'float16'):
if precision not in ['float32', 'float16', 'bfloat16', 'int8', 'int4', 'awq', 'gptq', 'fp8', 'fp4']:
raise ValueError("Precision must be one of ['float32', 'float16', 'bfloat16', 'int8', 'int4', 'awq', 'gptq', 'fp8', 'fp4']")
self.model_name = model_name
self.precision = precision
self.config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
self.model_type = self.config.model_type
def get_model_precision_bits(self):
"""Returns bit width used by the given quantization format."""
if self.precision == 'float32':
return 4
if self.precision in ['float16', 'bfloat16']:
return 2
if self.precision in ['int8', 'fp8']:
return 1
if self.precision in ['int4', 'fp4', 'gptq', 'awq']:
return 0.5
raise ValueError(f"Unsupported precision: {self.precision}")
def get_attention_info(self):
"""Returns attention-related info"""
return {
'num_attention_heads': getattr(self.config, "num_attention_heads", None),
'num_key_value_heads': getattr(self.config, "num_key_value_heads", getattr(self.config, "num_kv_heads", None)),
'head_dim': getattr(self.config, "head_dim", getattr(self.config, "hidden_size", None) // getattr(self.config, "num_attention_heads", 1))
}
def get_rope_info(self):
"""Returns RoPE (rotary embedding) info if available"""
if hasattr(self.config, "rope_scaling"):
return {
"type": self.config.rope_scaling.get("type"),
"factor": self.config.rope_scaling.get("factor")
}
elif hasattr(self.config, "use_alibi"):
return {"type": "alibi", "enabled": self.config.use_alibi}
else:
return {"type": "none"}
def get_moe_info(self, d_model=None):
"""Returns MoE configuration such as number of experts and FFN dim"""
if d_model is None:
d_model = getattr(self.config, "hidden_size", None)
num_experts = (
getattr(self.config, "num_local_experts", None) or
getattr(self.config, "num_experts", None) or
getattr(self.config, "n_routed_experts", None) or
getattr(getattr(self.config, "ffn_config", {}), "moe_num_experts", None) or
1
)
n_experts_per_tok = (
getattr(self.config, "num_experts_per_tok", None) or
getattr(self.config, "num_selected_experts", None) or
getattr(getattr(self.config, "ffn_config", {}), "moe_top_k", None) or
1
)
d_ff = (
getattr(self.config, "ffn_dim", None) or
getattr(self.config, "intermediate_size", None) or
getattr(self.config, "d_ff", None) or
(d_model * getattr(self.config, "ff_ratio", 4)) or
getattr(getattr(self.config, "ffn_config", {}), "ffn_hidden_size", None) or
(4 * d_model)
)
return {
"num_experts": num_experts,
"experts_per_token": n_experts_per_tok,
"ffn_dim": d_ff
}
def get_architecture_info(self):
"""Returns model-wide architecture info"""
return {
"model_type": self.model_type,
"hidden_size": getattr(self.config, "hidden_size", None),
"num_hidden_layers": getattr(self.config, "num_hidden_layers", None),
"max_position_embeddings": getattr(self.config, "max_position_embeddings", None),
"vocab_size": getattr(self.config, "vocab_size", None),
"architectures": getattr(self.config, "architectures", []),
}
def summarize(self):
"""Aggregate all extracted info in a dictionary"""
d_model = getattr(self.config, "hidden_size", None)
return {
"model_name": self.model_name,
"model_type": self.model_type,
"precision_bits": self.get_model_precision_bits(),
"architecture": self.get_architecture_info(),
"attention": self.get_attention_info(),
"rope": self.get_rope_info(),
"moe": self.get_moe_info(d_model)
}
# if __name__ == "__main__":
# print(analyze_gpu_stats(parse_nvidia_smi()))
# print(get_gpu_details()) |