File size: 48,587 Bytes
14e4843
 
034968f
 
3655a9e
0be51d4
5ae48b5
 
3655a9e
034968f
84f0fa3
034968f
 
84f0fa3
0be51d4
 
5ae48b5
 
 
 
 
0be51d4
 
 
 
 
5ae48b5
0be51d4
5ae48b5
 
0be51d4
 
 
5ae48b5
0be51d4
5ae48b5
 
0be51d4
bb32fa1
 
5ae48b5
bb32fa1
5ae48b5
 
bb32fa1
5ae48b5
0be51d4
5ae48b5
0be51d4
5ae48b5
 
0be51d4
5ae48b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0be51d4
 
14e4843
 
 
 
d6d7ec6
 
 
14e4843
3237d78
 
14e4843
d6d7ec6
14e4843
 
 
 
 
d6d7ec6
 
14e4843
 
 
 
 
 
 
d6d7ec6
14e4843
d6d7ec6
14e4843
 
034968f
 
3655a9e
 
 
 
 
 
 
 
 
 
0be51d4
034968f
 
5ae48b5
bb32fa1
 
3655a9e
84f0fa3
3655a9e
 
 
 
 
 
 
 
 
bb32fa1
3655a9e
 
 
 
 
17162c6
3655a9e
 
 
 
 
0be51d4
84f0fa3
034968f
 
 
 
84f0fa3
 
034968f
 
 
 
 
 
17162c6
034968f
 
 
 
 
 
 
 
 
 
 
 
 
84f0fa3
034968f
 
 
84f0fa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
034968f
0be51d4
 
 
 
 
 
bb32fa1
 
 
 
 
0be51d4
bb32fa1
0be51d4
 
 
 
 
 
 
 
5ae48b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0be51d4
5ae48b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0be51d4
5ae48b5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
import pandas as pd
from huggingface_hub import snapshot_download
import subprocess
import re
import os
import GPUtil
from transformers import AutoConfig
from typing import List

try:
    from src.display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
except:
    print("local debug: from display.utils")
    from display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util, GPU_Name
    
MEM_BW_DICT ={
    "NVIDIA-A100-PCIe-80GB": 1935e9,
    "NVIDIA-A100-SXM4-80GB": 2039e9,
    "NVIDIA-H100-PCIe-80GB": 2039e9,
    "NVIDIA-RTX-A5000-24GB": 768e9,
    "NVIDIA-RTX-A6000-48GB": 768e9,
}

PEAK_FLOPS_DICT = {
    "float32":{
        "NVIDIA-A100-PCIe-80GB": 312e12,
        "NVIDIA-A100-SXM4-80GB": 312e12,
        "NVIDIA-H100-PCIe-80GB": 756e12,
        "NVIDIA-RTX-A5000-24GB": 222.2e12,
        "NVIDIA-RTX-A6000-48GB": 309.7e12
    },
    "float16":{
        "NVIDIA-A100-PCIe-80GB": 624e12,
        "NVIDIA-A100-SXM4-80GB": 624e12,
        "NVIDIA-H100-PCIe-80GB": 1513e12,
        "NVIDIA-RTX-A5000-24GB": 222.2e12,
        "NVIDIA-RTX-A6000-48GB": 309.7e12
    },
    "bfloat16":{
        "NVIDIA-A100-PCIe-80GB": 624e12,
        "NVIDIA-A100-SXM4-80GB": 624e12,
        "NVIDIA-H100-PCIe-80GB": 1513e12,
        "NVIDIA-RTX-A5000-24GB": 222.2e12,
        "NVIDIA-RTX-A6000-48GB": 309.7e12
    },
    "int8":{
        "NVIDIA-A100-PCIe-80GB": 1248e12,
        "NVIDIA-A100-SXM4-80GB": 1248e12,
        "NVIDIA-H100-PCIe-80GB": 3026e12,
        "NVIDIA-RTX-A5000-24GB": 222.2e12,
        "NVIDIA-RTX-A6000-48GB": 309.7e12
    },
    "fp8":{
        "NVIDIA-A100-PCIe-80GB": 1248e12,
        "NVIDIA-A100-SXM4-80GB": 1248e12,
        "NVIDIA-H100-PCIe-80GB": 3026e12,
        "NVIDIA-RTX-A5000-24GB": 0,
        "NVIDIA-RTX-A6000-48GB": 0
    },
    "fp4": {
        "NVIDIA-A100-PCIe-80GB": 1248e12,
        "NVIDIA-A100-SXM4-80GB": 1248e12,
        "NVIDIA-H100-PCIe-80GB": 3026e12,
        "NVIDIA-RTX-A5000-24GB": 0,
        "NVIDIA-RTX-A6000-48GB": 0
    },
    "int4": {
        "NVIDIA-A100-PCIe-80GB": 1248e12,
        "NVIDIA-A100-SXM4-80GB": 1248e12,
        "NVIDIA-H100-PCIe-80GB": 3026e12,
        "NVIDIA-RTX-A5000-24GB": 222.2e12,
        "NVIDIA-RTX-A6000-48GB": 309.7e12
    }
}

def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers):
    for i in range(10):
        try:
            snapshot_download(
                repo_id=repo_id, revision=revision, local_dir=local_dir, repo_type=repo_type, max_workers=max_workers
            )
            return
        except Exception as e:
            print(f"Failed to download {repo_id} at {revision} with error: {e}. Retrying...")
            import time

            time.sleep(60)
    return


def get_dataset_url(row):
    dataset_name = row["Benchmark"]
    dataset_url = row["Dataset Link"]
    benchmark = f'<a target="_blank" href="{dataset_url}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{dataset_name}</a>'
    return benchmark


def get_dataset_summary_table(file_path):
    df = pd.read_csv(file_path)

    df["Benchmark"] = df.apply(lambda x: get_dataset_url(x), axis=1)

    df = df[["Category", "Benchmark", "Data Split", "Data Size", "Language"]]

    return df

def parse_nvidia_smi():
    visible_devices = os.getenv('CUDA_VISIBLE_DEVICES', None)
    if visible_devices is not None:
        gpu_indices = visible_devices.split(',')
    else:
        # Query all GPU indices if CUDA_VISIBLE_DEVICES is not set
        result = subprocess.run(['nvidia-smi', '--query-gpu=index', '--format=csv,noheader'], capture_output=True, text=True)
        if result.returncode != 0:
            print("Failed to query GPU indices.")
            return []
        gpu_indices = result.stdout.strip().split('\n')
    # print(f"gpu_indices: {gpu_indices}")
    gpu_stats = []

    gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W\s*/\s*\d+W\s*\|\s*(\d+)MiB\s*/\s*\d+MiB\s*\|\s*(\d+)%')
    # gpu_name_pattern = re.compile(r'NVIDIA\s+([\w\s]+\d+(?:\s*GB)?)')
    gpu_name_pattern = re.compile(r'NVIDIA\s+(RTX\s+)?([A-Z0-9]+)')

    gpu_name = ""
    for index in gpu_indices:
        result = subprocess.run(['nvidia-smi', '-i', index], capture_output=True, text=True)
        output = result.stdout.strip()
        lines = output.split("\n")
        for line in lines:
            match = gpu_info_pattern.search(line)
            name_match = gpu_name_pattern.search(line)
            gpu_info = {}
            if name_match:
                gpu_name = ''.join(filter(None, name_match.groups())).strip()
            if match:
                temp, power_usage, mem_usage, gpu_util = map(int, match.groups())
                gpu_info.update({
                    GPU_TEMP: temp,
                    GPU_Power: power_usage,
                    GPU_Mem: round(mem_usage / 1024, 2),
                    GPU_Util: gpu_util
                })

            if len(gpu_info) >= 4:
                gpu_stats.append(gpu_info)
    # print(f"gpu_stats: {gpu_stats}")
    gpu_name = f"{len(gpu_stats)}x{gpu_name}"
    gpu_stats_total = {
                        GPU_TEMP: 0,
                        GPU_Power: 0,
                        GPU_Mem: 0,
                        GPU_Util: 0,
                        GPU_Name: gpu_name
                    }
    for gpu_stat in gpu_stats:
        gpu_stats_total[GPU_TEMP] += gpu_stat[GPU_TEMP]
        gpu_stats_total[GPU_Power] += gpu_stat[GPU_Power]
        gpu_stats_total[GPU_Mem] += gpu_stat[GPU_Mem]
        gpu_stats_total[GPU_Util] += gpu_stat[GPU_Util]
    gpu_stats_total[GPU_Mem] = gpu_stats_total[GPU_Mem] # G
    gpu_stats_total[GPU_TEMP] /= len(gpu_stats)
    gpu_stats_total[GPU_Power] /= len(gpu_stats)
    gpu_stats_total[GPU_Util] /= len(gpu_stats)
    return [gpu_stats_total]

def monitor_gpus(stop_event, interval, stats_list):
    while not stop_event.is_set():
        gpu_stats = parse_nvidia_smi()
        if gpu_stats:
            stats_list.extend(gpu_stats)
        stop_event.wait(interval)

def analyze_gpu_stats(stats_list):
    # Check if the stats_list is empty, and return None if it is
    if not stats_list:
        return None

    # Initialize dictionaries to store the stats
    avg_stats = {}
    max_stats = {}

    # Calculate average stats, excluding 'GPU_Mem'
    for key in stats_list[0].keys():
        if key != GPU_Mem and key != GPU_Name:
            total = sum(d[key] for d in stats_list)
            avg_stats[key] = total / len(stats_list)

    # Calculate max stats for 'GPU_Mem'
    max_stats[GPU_Mem] = max(d[GPU_Mem] for d in stats_list)
    if GPU_Name in stats_list[0]:
        avg_stats[GPU_Name] = stats_list[0][GPU_Name]
    # Update average stats with max GPU memory usage
    avg_stats.update(max_stats)

    return avg_stats

def get_gpu_details():
    gpus = GPUtil.getGPUs()
    gpu = gpus[0]
    name = gpu.name.replace(" ", "-")
    memory_gb = round(gpu.memoryTotal / 1024)
    memory = f"{memory_gb}GB"

    for part in name.split('-'):
        if part.endswith("GB") and part[:-2].isdigit():
            name = name.replace(f"-{part}", "").replace(part, "")

    formatted_name = f"{name}-{memory}"
    
    return formatted_name

def get_peak_bw(gpu_name):
    return MEM_BW_DICT[gpu_name]

def get_peak_flops(gpu_name, precision):
    return PEAK_FLOPS_DICT[precision][gpu_name]

def _calculate_batch_metrics(outputs, decoding_tp, n_layers, d_model, 
                                n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff, 
                                avg_activated_experts, hf_config, num_gpus, model_name, 
                                used_dtype, batch_size, precision):
    """Calculate metrics for a batch of outputs"""
    gpu_type = get_gpu_details()
    hardware_specs = {
        "peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
        "peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
    }
    kvs = []
    true_kvs = []
    attn_score = []
    
    # Calculate KV sizes
    per_token_kv_size = 2 * n_layers * d_head * n_kv_heads  # Default calculation
    
    if "DeepSeek" in model_name:
        if hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
            per_token_kv_size = n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
    
    # Process each output
    for x in outputs:
        output_len = len(x.outputs[0].token_ids)
        context_prefill_size = len(x.prompt_token_ids)
        
        # Calculate attention scores
        if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim"):
            q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
            origin_per_token_k_state_size = n_layers * n_attn_heads * q_head_dim
            origin_per_token_v_state_size = n_layers * n_attn_heads * hf_config.v_head_dim
            attention_score = context_prefill_size * origin_per_token_k_state_size + (output_len - 1) * origin_per_token_k_state_size / 2
            attention_score += context_prefill_size * origin_per_token_v_state_size + (output_len - 1) * origin_per_token_v_state_size / 2
            attention_score = attention_score / 1e12
        else:
            origin_per_token_kv_states_size = n_layers * n_attn_heads * d_head
            attention_score = context_prefill_size * origin_per_token_kv_states_size + (output_len - 1) * origin_per_token_kv_states_size / 2
            attention_score = attention_score * 2 / 1e12
        
        # Store attention scores and KV sizes
        attn_score.append(attention_score)
        kv_size = context_prefill_size * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2
        kv_size = kv_size / 1e12
        true_kv = (context_prefill_size * per_token_kv_size + output_len * per_token_kv_size) / 1e12 * 1e3
        kvs.append(kv_size)
        true_kvs.append(true_kv)
    
    # Calculate aggregate values
    kv_size = sum(kvs)
    true_kv_size = sum(true_kvs) * 1e3
    attention_score = sum(attn_score) / len(attn_score)
    
    # Calculate attention size per token
    if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim") and hasattr(hf_config, "kv_lora_rank"):
        q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
        if not hasattr(hf_config, "q_lora_rank") or not hf_config.q_lora_rank:
            attention_size_per_token = (d_model * n_attn_heads * q_head_dim) + \
                (d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
                    (hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
                        (hf_config.v_head_dim * n_attn_heads * d_model)
            attention_size_per_token = attention_size_per_token / 1e12
        else:
            attention_size_per_token = (d_model * hf_config.q_lora_rank) + \
                (hf_config.q_lora_rank * n_attn_heads * q_head_dim) + \
                    (d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
                        (hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
                            (hf_config.v_head_dim * n_attn_heads * d_model)
            attention_size_per_token = attention_size_per_token / 1e12
    else:
        attention_size_per_token = d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) + n_attn_heads * d_head * d_model
        attention_size_per_token = attention_size_per_token / 1e12
    
    # Calculate expert sizes
    expert_size = d_ff * 3 * d_model / 1e12
    shared_experts_size_total = 0
    deepseek_dense_ffn_size = 0
    deepseek_sparse_layer_num = 0
    
    if "Qwen" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "shared_expert_intermediate_size"):
        d_ff = hf_config.moe_intermediate_size
        d_ff_share = hf_config.shared_expert_intermediate_size
        shared_experts_size = d_ff_share * 3 * d_model
        expert_size = d_ff * 3 * d_model
        shared_experts_size_total = shared_experts_size / 1e12
        expert_size = expert_size / 1e12
    elif "Qwen3" in model_name and hasattr(hf_config, "moe_intermediate_size"):
        d_ff = hf_config.moe_intermediate_size
        expert_size = d_ff * 3 * d_model
        expert_size = expert_size / 1e12
    elif "DeepSeek" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "intermediate_size") and hasattr(hf_config, "first_k_dense_replace"):
        d_ff = hf_config.moe_intermediate_size
        d_ff_dense = hf_config.intermediate_size
        deepseek_num_dense_layer = hf_config.first_k_dense_replace
        shared_experts_size = d_ff * 3 * d_model
        expert_size = d_ff * 3 * d_model
        shared_experts = 2
        shared_experts_size_total = shared_experts_size * shared_experts / 1e12
        expert_size = expert_size / 1e12
        deepseek_sparse_layer_num = n_layers - deepseek_num_dense_layer
        deepseek_dense_ffn_size = d_ff_dense * 3 * d_model / 1e12
    
    # Calculate S-MBU and S-MFU
    if "Qwen" in model_name and not "Qwen3" in model_name:
        smbu = ((n_layers*(avg_activated_experts * expert_size + shared_experts_size_total + attention_size_per_token) + 
                kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
        smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size + shared_experts_size_total) + attention_score) \
            * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    elif "Qwen3" in model_name:
        smbu = ((n_layers * (avg_activated_experts * expert_size + attention_size_per_token) + 
                kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
        smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
            * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    elif "DeepSeek" in model_name:
        smbu = ((n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
                (avg_activated_experts * expert_size + shared_experts_size_total) + \
                deepseek_num_dense_layer * deepseek_dense_ffn_size + \
                kv_size) * precision/ (batch_size / decoding_tp)) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
        smfu = (n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
                (n_experts_per_tok * expert_size + shared_experts_size_total) + \
                deepseek_num_dense_layer * deepseek_dense_ffn_size + attention_score) \
                * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    else:
        smbu = ((n_layers*(avg_activated_experts * expert_size + attention_size_per_token) + 
                kv_size) * precision/ (batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
        smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
            * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    
    return {
        'smbu': smbu,
        'smfu': smfu,
        'kv_size': true_kv_size,
        'decoding_throughput': decoding_tp
    }

def _calculate_batch_metrics_sglang(outputs, decoding_tp, n_layers, d_model, 
                                n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff, 
                                avg_activated_experts, hf_config, num_gpus, model_name, 
                                used_dtype, batch_size, precision, ttft=None, prefill_tp=None):
    """Calculate metrics for a batch of outputs"""
    # Initialize hardware specs and output lists
    hardware_specs = _get_hardware_specs(used_dtype)
    output_data = _extract_output_data(outputs)
    
    # Calculate model-specific sizes
    per_token_kv_size = _calculate_kv_size(model_name, hf_config, n_layers, d_head, n_kv_heads)
    attention_size_per_token = _calculate_attention_size(model_name, hf_config, d_model, n_attn_heads, d_head, n_kv_heads)
    expert_config = _calculate_expert_config(model_name, hf_config, d_ff, d_model, n_layers)
    
    # Process outputs and calculate metrics
    metrics_data = _process_outputs(output_data, per_token_kv_size, attention_size_per_token, 
                                  model_name, hf_config, n_layers, n_attn_heads, d_head)

    # Calculate throughput metrics
    if ttft is None or prefill_tp is None:
        ttft, prefill_tp = _calculate_throughput_metrics(batch_size, output_data['prefill_lengths'],
                                                       output_data['max_duration'])

    
    # Calculate S-MBU and S-MFU
    smbu_smfu_metrics = _calculate_smbu_smfu(model_name, n_layers, attention_size_per_token,
                                           expert_config, avg_activated_experts, metrics_data,
                                           hardware_specs, num_gpus, precision, ttft, prefill_tp,
                                           batch_size, decoding_tp)
    
    return {
        'prefill_smbu': smbu_smfu_metrics['prefill_smbu'],
        'prefill_smfu': smbu_smfu_metrics['prefill_smfu'],
        'decoding_smbu': smbu_smfu_metrics['decoding_smbu'],
        'decoding_smfu': smbu_smfu_metrics['decoding_smfu'],
        'kv_size': metrics_data['true_kv_size'],
        'decoding_throughput': decoding_tp,
        'prefill_tp': prefill_tp,
        'ttft': ttft
    }


def _get_hardware_specs(used_dtype):
    """Get hardware specifications"""
    gpu_type = get_gpu_details()
    return {
        "peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
        "peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
    }


def _extract_output_data(outputs):
    """Extract relevant data from outputs"""
    prefill_lengths = []
    output_lengths = []
    max_duration = 0.0
    
    for x in outputs:
        output_lengths.append(x['meta_info']['completion_tokens'])
        prefill_lengths.append(x['meta_info']['prompt_tokens'])
        max_duration = max(max_duration, x['meta_info']['e2e_latency'])
    
    return {
        'prefill_lengths': prefill_lengths,
        'output_lengths': output_lengths,
        'max_duration': max_duration
    }


def _calculate_kv_size(model_name, hf_config, n_layers, d_head, n_kv_heads):
    """Calculate per-token KV size based on model type"""
    if "DeepSeek" in model_name and hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
        return n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
    return 2 * n_layers * d_head * n_kv_heads


def _calculate_attention_size(model_name, hf_config, d_model, n_attn_heads, d_head, n_kv_heads):
    """Calculate attention size per token based on model type"""
    if ("DeepSeek" in model_name and 
        hasattr(hf_config, "qk_rope_head_dim") and 
        hasattr(hf_config, "qk_nope_head_dim") and 
        hasattr(hf_config, "v_head_dim") and 
        hasattr(hf_config, "kv_lora_rank")):
        
        return _calculate_deepseek_attention_size(hf_config, d_model, n_attn_heads)
    
    return (d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) + 
            n_attn_heads * d_head * d_model) / 1e12


def _calculate_deepseek_attention_size(hf_config, d_model, n_attn_heads):
    """Calculate DeepSeek-specific attention size"""
    q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
    
    base_size = ((d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) +
                (hf_config.kv_lora_rank * n_attn_heads * 
                 (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) +
                (hf_config.v_head_dim * n_attn_heads * d_model))
    
    if hasattr(hf_config, "q_lora_rank") and hf_config.q_lora_rank:
        q_size = (d_model * hf_config.q_lora_rank + 
                 hf_config.q_lora_rank * n_attn_heads * q_head_dim)
    else:
        q_size = d_model * n_attn_heads * q_head_dim
    
    return (base_size + q_size) / 1e12


def _calculate_expert_config(model_name, hf_config, d_ff, d_model, n_layers):
    """Calculate expert configuration based on model type"""
    config = {
        'expert_size': d_ff * 3 * d_model / 1e12,
        'shared_experts_size_total': 0,
        'deepseek_dense_ffn_size': 0,
        'deepseek_sparse_layer_num': 0,
        'deepseek_num_dense_layer': 0
    }
    
    if "Qwen" in model_name and not "Qwen3" in model_name:
        config.update(_get_qwen_expert_config(hf_config, d_model))
    elif "Qwen3" in model_name:
        config.update(_get_qwen3_expert_config(hf_config, d_model))
    elif "DeepSeek" in model_name:
        config.update(_get_deepseek_expert_config(hf_config, d_model, n_layers))
    
    return config


def _get_qwen_expert_config(hf_config, d_model):
    """Get Qwen-specific expert configuration"""
    if (hasattr(hf_config, "moe_intermediate_size") and 
        hasattr(hf_config, "shared_expert_intermediate_size")):
        
        return {
            'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12,
            'shared_experts_size_total': hf_config.shared_expert_intermediate_size * 3 * d_model / 1e12
        }
    return {}


def _get_qwen3_expert_config(hf_config, d_model):
    """Get Qwen3-specific expert configuration"""
    if hasattr(hf_config, "moe_intermediate_size"):
        return {
            'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12
        }
    return {}


def _get_deepseek_expert_config(hf_config, d_model, n_layers):
    """Get DeepSeek-specific expert configuration"""
    if (hasattr(hf_config, "moe_intermediate_size") and 
        hasattr(hf_config, "intermediate_size") and 
        hasattr(hf_config, "first_k_dense_replace")):
        
        deepseek_num_dense_layer = hf_config.first_k_dense_replace
        return {
            'expert_size': hf_config.moe_intermediate_size * 3 * d_model / 1e12,
            'shared_experts_size_total': hf_config.moe_intermediate_size * 3 * d_model * 2 / 1e12,
            'deepseek_dense_ffn_size': hf_config.intermediate_size * 3 * d_model / 1e12,
            'deepseek_sparse_layer_num': n_layers - deepseek_num_dense_layer,
            'deepseek_num_dense_layer': deepseek_num_dense_layer
        }
    return {}


def _process_outputs(output_data, per_token_kv_size, attention_size_per_token, 
                    model_name, hf_config, n_layers, n_attn_heads, d_head):
    """Process outputs to calculate KV sizes and attention scores"""
    kvs = []
    true_kvs = []
    attn_scores = []
    
    for prefill_len, output_len in zip(output_data['prefill_lengths'], output_data['output_lengths']):
        # Calculate attention score
        attn_score = _calculate_attention_score(model_name, hf_config, prefill_len, output_len,
                                              n_layers, n_attn_heads, d_head)
        attn_scores.append(attn_score)
        
        # Calculate KV sizes
        kv_size = (prefill_len * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2) / 1e12
        true_kv = (prefill_len * per_token_kv_size + output_len * per_token_kv_size) / 1e9
        
        kvs.append(kv_size)
        true_kvs.append(true_kv)
    
    return {
        'kv_size': sum(kvs),
        'true_kv_size': sum(true_kvs) * 1e3,
        'attention_score': sum(attn_scores) / len(attn_scores)
    }


def _calculate_attention_score(model_name, hf_config, prefill_len, output_len, 
                             n_layers, n_attn_heads, d_head):
    """Calculate attention score for a single output"""
    if ("DeepSeek" in model_name and 
        hasattr(hf_config, "qk_rope_head_dim") and 
        hasattr(hf_config, "qk_nope_head_dim") and 
        hasattr(hf_config, "v_head_dim")):
        
        q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
        k_size = n_layers * n_attn_heads * q_head_dim
        v_size = n_layers * n_attn_heads * hf_config.v_head_dim
        
        score = (prefill_len * k_size + (output_len - 1) * k_size / 2 +
                prefill_len * v_size + (output_len - 1) * v_size / 2)
    else:
        kv_size = n_layers * n_attn_heads * d_head
        score = (prefill_len * kv_size + (output_len - 1) * kv_size / 2) * 2
    
    return score / 1e12


def _calculate_throughput_metrics(batch_size, prefill_lengths, max_duration):
    """Calculate throughput metrics"""
    total_prefill = sum(prefill_lengths)
    prefill_tp = total_prefill / (max_duration)
    ttft = max_duration / batch_size
    return ttft, prefill_tp


def _calculate_smbu_smfu(model_name, n_layers, attention_size_per_token, expert_config,
                        avg_activated_experts, metrics_data, hardware_specs, num_gpus,
                        precision, ttft, prefill_tp, batch_size, decoding_tp):
    """Calculate S-MBU and S-MFU metrics"""
    prefill_activation = avg_activated_experts[1]
    decode_steps_activation = avg_activated_experts[2:]
    
    # Calculate prefill metrics
    prefill_smbu, prefill_smfu = _calculate_prefill_metrics(
        model_name, n_layers, attention_size_per_token, expert_config,
        prefill_activation, metrics_data['attention_score'], hardware_specs,
        num_gpus, precision, ttft, prefill_tp
    )
    
    # Calculate decoding metrics
    decoding_smbu, decoding_smfu = _calculate_decoding_metrics(
        model_name, n_layers, attention_size_per_token, expert_config,
        decode_steps_activation, metrics_data, hardware_specs,
        num_gpus, precision, batch_size, decoding_tp
    )
    
    return {
        'prefill_smbu': prefill_smbu,
        'prefill_smfu': prefill_smfu,
        'decoding_smbu': decoding_smbu,
        'decoding_smfu': decoding_smfu
    }


def _calculate_prefill_metrics(model_name, n_layers, attention_size_per_token, expert_config,
                             prefill_activation, attention_score, hardware_specs,
                             num_gpus, precision, ttft, prefill_tp):
    """Calculate prefill S-MBU and S-MFU"""
    model_calculators = {
        'Qwen': _calculate_qwen_prefill,
        'Qwen3': _calculate_qwen3_prefill,
        'DeepSeek': _calculate_deepseek_prefill
    }
    
    for model_type, calculator in model_calculators.items():
        if model_type in model_name and (model_type != 'Qwen' or 'Qwen3' not in model_name):
            return calculator(n_layers, attention_size_per_token, expert_config,
                            prefill_activation, attention_score, hardware_specs,
                            num_gpus, precision, ttft, prefill_tp)
    
    # Default case
    return _calculate_default_prefill(n_layers, attention_size_per_token, expert_config,
                                    prefill_activation, attention_score, hardware_specs,
                                    num_gpus, precision, ttft, prefill_tp)


def _calculate_decoding_metrics(model_name, n_layers, attention_size_per_token, expert_config,
                              decode_steps_activation, metrics_data, hardware_specs,
                              num_gpus, precision, batch_size, decoding_tp):
    """Calculate decoding S-MBU and S-MFU"""
    decoding_smbus = []
    
    for activation in decode_steps_activation:
        if "Qwen" in model_name and "Qwen3" not in model_name:
            smbu, smfu = _calculate_qwen_decoding(n_layers, attention_size_per_token, expert_config,
                                                activation, metrics_data, hardware_specs, num_gpus,
                                                precision, batch_size, decoding_tp)
        elif "Qwen3" in model_name:
            smbu, smfu = _calculate_qwen3_decoding(n_layers, attention_size_per_token, expert_config,
                                                 activation, metrics_data, hardware_specs, num_gpus,
                                                 precision, batch_size, decoding_tp)
        elif "DeepSeek" in model_name:
            smbu, smfu = _calculate_deepseek_decoding(n_layers, attention_size_per_token, expert_config,
                                                    activation, metrics_data, hardware_specs, num_gpus,
                                                    precision, batch_size, decoding_tp)
        else:
            smbu, smfu = _calculate_default_decoding(n_layers, attention_size_per_token, expert_config,
                                                   activation, metrics_data, hardware_specs, num_gpus,
                                                   precision, batch_size, decoding_tp)
        decoding_smbus.append(smbu)
    
    return sum(decoding_smbus) / len(decoding_smbus), smfu


# Helper functions for specific model calculations
def _calculate_qwen_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
                          attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
    smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] + 
                                expert_config['shared_experts_size_total'] + 
                                attention_size_per_token)) * precision / ttft
    smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
    
    smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size'] + 
                                expert_config['shared_experts_size_total']) + attention_score) * 2 * prefill_tp
    smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    
    return smbu, smfu


def _calculate_qwen3_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
                           attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
    smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] + 
                                attention_size_per_token)) * precision / ttft
    smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
    
    smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size']) + 
                     attention_score) * 2 * prefill_tp
    smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    
    return smbu, smfu


def _calculate_deepseek_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
                              attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
    smbu_numerator = ((n_layers * attention_size_per_token + 
                      expert_config['deepseek_sparse_layer_num'] * 
                      (prefill_activation * expert_config['expert_size'] + 
                       expert_config['shared_experts_size_total']) + 
                      expert_config['deepseek_num_dense_layer'] * 
                      expert_config['deepseek_dense_ffn_size']) * precision / ttft)
    smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
    
    smfu_numerator = ((n_layers * attention_size_per_token + 
                      expert_config['deepseek_sparse_layer_num'] * 
                      (expert_config['expert_size'] + expert_config['shared_experts_size_total']) + 
                      expert_config['deepseek_num_dense_layer'] * 
                      expert_config['deepseek_dense_ffn_size'] + attention_score) * 2 * prefill_tp)
    smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    
    return smbu, smfu


def _calculate_default_prefill(n_layers, attention_size_per_token, expert_config, prefill_activation,
                             attention_score, hardware_specs, num_gpus, precision, ttft, prefill_tp):
    # Default implementation
    smbu_numerator = (n_layers * (prefill_activation * expert_config['expert_size'] + 
                                attention_size_per_token)) * precision / ttft
    smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
    
    smfu_numerator = (n_layers * (attention_size_per_token + expert_config['expert_size']) + 
                     attention_score) * 2 * prefill_tp
    smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    
    return smbu, smfu


def _calculate_qwen_decoding(n_layers, attention_size_per_token, expert_config, activation,
                           metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
    smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] + 
                                 expert_config['shared_experts_size_total'] + 
                                 attention_size_per_token) + 
                      metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
    smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
    
    smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size'] + 
                                 expert_config['shared_experts_size_total']) + 
                      metrics_data['attention_score']) * 2 * decoding_tp)
    smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    
    return smbu, smfu


def _calculate_qwen3_decoding(n_layers, attention_size_per_token, expert_config, activation,
                            metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
    smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] + 
                                 attention_size_per_token) + 
                      metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
    smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
    
    smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size']) + 
                      metrics_data['attention_score']) * 2 * decoding_tp)
    smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    
    return smbu, smfu


def _calculate_deepseek_decoding(n_layers, attention_size_per_token, expert_config, activation,
                               metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
    smbu_numerator = ((n_layers * attention_size_per_token + 
                      expert_config['deepseek_sparse_layer_num'] * 
                      (activation * expert_config['expert_size'] + 
                       expert_config['shared_experts_size_total']) + 
                      expert_config['deepseek_num_dense_layer'] * 
                      expert_config['deepseek_dense_ffn_size'] + 
                      metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
    smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
    
    smfu_numerator = ((n_layers * attention_size_per_token + 
                      expert_config['deepseek_sparse_layer_num'] * 
                      (expert_config['expert_size'] + expert_config['shared_experts_size_total']) + 
                      expert_config['deepseek_num_dense_layer'] * 
                      expert_config['deepseek_dense_ffn_size'] + 
                      metrics_data['attention_score']) * 2 * decoding_tp)
    smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    
    return smbu, smfu


def _calculate_default_decoding(n_layers, attention_size_per_token, expert_config, activation,
                              metrics_data, hardware_specs, num_gpus, precision, batch_size, decoding_tp):
    smbu_numerator = ((n_layers * (activation * expert_config['expert_size'] + 
                                 attention_size_per_token) + 
                      metrics_data['kv_size']) * precision / (batch_size / decoding_tp))
    smbu = smbu_numerator / (num_gpus * hardware_specs['peak_bandwidth_tb'])
    
    smfu_numerator = ((n_layers * (attention_size_per_token + expert_config['expert_size']) + 
                      metrics_data['attention_score']) * 2 * decoding_tp)
    smfu = smfu_numerator / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    
    return smbu, smfu

def _calculate_batch_metrics_hflm(output_len, context_prefill_size, decoding_tp, n_layers, d_model, 
                                n_attn_heads, d_head, n_kv_heads, n_experts_per_tok, d_ff, 
                                avg_activated_experts, hf_config, num_gpus, model_name, 
                                used_dtype, batch_size, precision):
    """Calculate metrics for a batch of outputs"""
    gpu_type = get_gpu_details()
    hardware_specs = {
        "peak_bandwidth_tb": get_peak_bw(gpu_type) / 1e12,
        "peak_flops_tf": get_peak_flops(gpu_type, precision=used_dtype) / 1e12,
    }
    
    # Calculate KV sizes
    per_token_kv_size = 2 * n_layers * d_head * n_kv_heads  # Default calculation
    
    if "DeepSeek" in model_name:
        if hasattr(hf_config, "kv_lora_rank") and hasattr(hf_config, "qk_rope_head_dim"):
            per_token_kv_size = n_layers * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)
    
        
    # Calculate attention scores
    if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim"):
        q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
        origin_per_token_k_state_size = n_layers * n_attn_heads * q_head_dim
        origin_per_token_v_state_size = n_layers * n_attn_heads * hf_config.v_head_dim
        attention_score = context_prefill_size * origin_per_token_k_state_size + (output_len - 1) * origin_per_token_k_state_size / 2
        attention_score += context_prefill_size * origin_per_token_v_state_size + (output_len - 1) * origin_per_token_v_state_size / 2
        attention_score = attention_score / 1e12
    else:
        origin_per_token_kv_states_size = n_layers * n_attn_heads * d_head
        attention_score = context_prefill_size * origin_per_token_kv_states_size + (output_len - 1) * origin_per_token_kv_states_size / 2
        attention_score = attention_score * 2 / 1e12
    
    # Store attention scores and KV sizes
    kv_size = context_prefill_size * per_token_kv_size + (output_len - 1) * per_token_kv_size / 2
    kv_size = kv_size / 1e12
    true_kv = (context_prefill_size * per_token_kv_size + output_len * per_token_kv_size) / 1e12 * 1e3
    
    # Calculate aggregate values
    kv_size = kv_size * batch_size
    true_kv_size = true_kv * batch_size * 1e3    
    # Calculate attention size per token
    if "DeepSeek" in model_name and hasattr(hf_config, "qk_rope_head_dim") and hasattr(hf_config, "qk_nope_head_dim") and hasattr(hf_config, "v_head_dim") and hasattr(hf_config, "kv_lora_rank"):
        q_head_dim = hf_config.qk_rope_head_dim + hf_config.qk_nope_head_dim
        if not hasattr(hf_config, "q_lora_rank") or not hf_config.q_lora_rank:
            attention_size_per_token = (d_model * n_attn_heads * q_head_dim) + \
                (d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
                    (hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
                        (hf_config.v_head_dim * n_attn_heads * d_model)
            attention_size_per_token = attention_size_per_token / 1e12
        else:
            attention_size_per_token = (d_model * hf_config.q_lora_rank) + \
                (hf_config.q_lora_rank * n_attn_heads * q_head_dim) + \
                    (d_model * (hf_config.kv_lora_rank + hf_config.qk_rope_head_dim)) + \
                        (hf_config.kv_lora_rank * n_attn_heads * (q_head_dim - hf_config.qk_rope_head_dim + hf_config.v_head_dim)) + \
                            (hf_config.v_head_dim * n_attn_heads * d_model)
            attention_size_per_token = attention_size_per_token / 1e12
    else:
        attention_size_per_token = d_model * (n_attn_heads * d_head + n_kv_heads * d_head * 2) + n_attn_heads * d_head * d_model
        attention_size_per_token = attention_size_per_token / 1e12
    
    # Calculate expert sizes
    expert_size = d_ff * 3 * d_model / 1e12
    shared_experts_size_total = 0
    deepseek_dense_ffn_size = 0
    deepseek_sparse_layer_num = 0
    
    if "Qwen" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "shared_expert_intermediate_size"):
        d_ff = hf_config.moe_intermediate_size
        d_ff_share = hf_config.shared_expert_intermediate_size
        shared_experts_size = d_ff_share * 3 * d_model
        expert_size = d_ff * 3 * d_model
        shared_experts_size_total = shared_experts_size / 1e12
        expert_size = expert_size / 1e12
    elif "Qwen3" in model_name and hasattr(hf_config, "moe_intermediate_size"):
        d_ff = hf_config.moe_intermediate_size
        expert_size = d_ff * 3 * d_model
        expert_size = expert_size / 1e12
    elif "DeepSeek" in model_name and hasattr(hf_config, "moe_intermediate_size") and hasattr(hf_config, "intermediate_size") and hasattr(hf_config, "first_k_dense_replace"):
        d_ff = hf_config.moe_intermediate_size
        d_ff_dense = hf_config.intermediate_size
        deepseek_num_dense_layer = hf_config.first_k_dense_replace
        shared_experts_size = d_ff * 3 * d_model
        expert_size = d_ff * 3 * d_model
        shared_experts = 2
        shared_experts_size_total = shared_experts_size * shared_experts / 1e12
        expert_size = expert_size / 1e12
        deepseek_sparse_layer_num = n_layers - deepseek_num_dense_layer
        deepseek_dense_ffn_size = d_ff_dense * 3 * d_model / 1e12
    
    # Calculate S-MBU and S-MFU
    if "Qwen" in model_name:
        smbu = ((n_layers*(avg_activated_experts * expert_size + shared_experts_size_total + attention_size_per_token) + 
                kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
        smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size + shared_experts_size_total) + attention_score) \
            * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    elif "Qwen3" in model_name:
        smbu = ((n_layers * (avg_activated_experts * expert_size + attention_size_per_token) + 
                kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
        smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
            * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    elif "DeepSeek" in model_name:
        smbu = ((n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
                (avg_activated_experts * expert_size + shared_experts_size_total) + \
                deepseek_num_dense_layer * deepseek_dense_ffn_size + \
                kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
        smfu = (n_layers * attention_size_per_token + deepseek_sparse_layer_num * \
                (n_experts_per_tok * expert_size + shared_experts_size_total) + \
                deepseek_num_dense_layer * deepseek_dense_ffn_size + attention_score) \
                * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    else:
        smbu = ((n_layers*(avg_activated_experts * expert_size + attention_size_per_token) + 
                kv_size) * precision/(batch_size / decoding_tp) ) / (num_gpus * hardware_specs['peak_bandwidth_tb'])
        smfu = (n_layers * (attention_size_per_token + n_experts_per_tok * expert_size) + attention_score) \
            * 2 * decoding_tp / (num_gpus * hardware_specs['peak_flops_tf'] / 2)
    
    return {
        'smbu': smbu,
        'smfu': smfu,
        'kv_size': true_kv_size,
        'decoding_throughput': decoding_tp,
        'ttft': 0
    }
class ModelInfoRetriever:
    def __init__(self, model_name: str, precision: str = 'float16'):
        if precision not in ['float32', 'float16', 'bfloat16', 'int8', 'int4', 'awq', 'gptq', 'fp8', 'fp4']:
            raise ValueError("Precision must be one of ['float32', 'float16', 'bfloat16', 'int8', 'int4', 'awq', 'gptq', 'fp8', 'fp4']")
        self.model_name = model_name
        self.precision = precision
        self.config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
        self.model_type = self.config.model_type

    def get_model_precision_bits(self):
        """Returns bit width used by the given quantization format."""
        if self.precision == 'float32':
            return 4
        if self.precision in ['float16', 'bfloat16']:
            return 2
        if self.precision in ['int8', 'fp8']:
            return 1
        if self.precision in ['int4', 'fp4', 'gptq', 'awq']:
            return 0.5
        raise ValueError(f"Unsupported precision: {self.precision}")

    def get_attention_info(self):
        """Returns attention-related info"""
        return {
            'num_attention_heads': getattr(self.config, "num_attention_heads", None),
            'num_key_value_heads': getattr(self.config, "num_key_value_heads", getattr(self.config, "num_kv_heads", None)),
            'head_dim': getattr(self.config, "head_dim", getattr(self.config, "hidden_size", None) // getattr(self.config, "num_attention_heads", 1))
        }

    def get_rope_info(self):
        """Returns RoPE (rotary embedding) info if available"""
        if hasattr(self.config, "rope_scaling"):
            return {
                "type": self.config.rope_scaling.get("type"),
                "factor": self.config.rope_scaling.get("factor")
            }
        elif hasattr(self.config, "use_alibi"):
            return {"type": "alibi", "enabled": self.config.use_alibi}
        else:
            return {"type": "none"}

    def get_moe_info(self, d_model=None):
        """Returns MoE configuration such as number of experts and FFN dim"""
        if d_model is None:
            d_model = getattr(self.config, "hidden_size", None)

        num_experts = (
            getattr(self.config, "num_local_experts", None) or
            getattr(self.config, "num_experts", None) or
            getattr(self.config, "n_routed_experts", None) or
            getattr(getattr(self.config, "ffn_config", {}), "moe_num_experts", None) or
            1
        )
        n_experts_per_tok = (
            getattr(self.config, "num_experts_per_tok", None) or
            getattr(self.config, "num_selected_experts", None) or
            getattr(getattr(self.config, "ffn_config", {}), "moe_top_k", None) or
            1
        )
        d_ff = (
            getattr(self.config, "ffn_dim", None) or
            getattr(self.config, "intermediate_size", None) or
            getattr(self.config, "d_ff", None) or
            (d_model * getattr(self.config, "ff_ratio", 4)) or
            getattr(getattr(self.config, "ffn_config", {}), "ffn_hidden_size", None) or
            (4 * d_model)
        )

        return {
            "num_experts": num_experts,
            "experts_per_token": n_experts_per_tok,
            "ffn_dim": d_ff
        }

    def get_architecture_info(self):
        """Returns model-wide architecture info"""
        return {
            "model_type": self.model_type,
            "hidden_size": getattr(self.config, "hidden_size", None),
            "num_hidden_layers": getattr(self.config, "num_hidden_layers", None),
            "max_position_embeddings": getattr(self.config, "max_position_embeddings", None),
            "vocab_size": getattr(self.config, "vocab_size", None),
            "architectures": getattr(self.config, "architectures", []),
        }

    def summarize(self):
        """Aggregate all extracted info in a dictionary"""
        d_model = getattr(self.config, "hidden_size", None)
        return {
            "model_name": self.model_name,
            "model_type": self.model_type,
            "precision_bits": self.get_model_precision_bits(),
            "architecture": self.get_architecture_info(),
            "attention": self.get_attention_info(),
            "rope": self.get_rope_info(),
            "moe": self.get_moe_info(d_model)
        }
    


# if __name__ == "__main__":
#     print(analyze_gpu_stats(parse_nvidia_smi()))
#     print(get_gpu_details())