Spaces:
Paused
Paused
File size: 24,537 Bytes
bb6befb b08ca35 bb6befb 712c3a2 bb6befb d57c4c9 362d099 d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 c5f7d50 d57c4c9 9418431 c5f7d50 9418431 d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 cbd516d bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 9603f60 d57c4c9 bb6befb 9e0b064 f0449c9 9418431 f0449c9 d57c4c9 b08ca35 d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 46161ea d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb 5e42dc3 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 0ba42cf d57c4c9 0ba42cf bb6befb d57c4c9 0ba42cf d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb d57c4c9 bb6befb b08ca35 bb6befb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
import os
import sys
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
import gradio as gr
import torch
from huggingface_hub import snapshot_download
from huggingface_hub import hf_hub_download
from PIL import Image
import random
import numpy as np
import spaces
import gc
# Import for Stable Diffusion XL
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from compel import Compel, ReturnedEmbeddingsType
# Import for Wan2.2
import wan
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from wan.utils.utils import cache_video
# --- Global Setup ---
print("Starting Integrated Text-to-Image-to-Video App...")
# --- 1. Setup Text-to-Image Model (SDXL) ---
print("Loading Stable Diffusion XL model...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize SDXL pipeline
sdxl_pipe = StableDiffusionXLPipeline.from_pretrained(
"votepurchase/pornmasterPro_noobV3VAE",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
)
# sdxl_pipe = StableDiffusionXLPipeline.from_pretrained(
# "stablediffusionapi/omnigenxl-nsfw-sfw",
# torch_dtype=torch.float16,
# variant="fp16",
# use_safetensors=True
# )
sdxl_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sdxl_pipe.scheduler.config)
sdxl_pipe.to(device)
# Force all components to use the same dtype
sdxl_pipe.text_encoder.to(torch.float16)
sdxl_pipe.text_encoder_2.to(torch.float16)
sdxl_pipe.vae.to(torch.float16)
sdxl_pipe.unet.to(torch.float16)
# Initialize Compel for long prompt processing
compel = Compel(
tokenizer=[sdxl_pipe.tokenizer, sdxl_pipe.tokenizer_2],
text_encoder=[sdxl_pipe.text_encoder, sdxl_pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True],
truncate_long_prompts=False
)
# --- 2. Setup Image-to-Video Model (Wan2.2) ---
print("Loading Wan 2.2 TI2V-5B model...")
# Download model snapshots
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
print(f"Downloading/loading checkpoints for {repo_id}...")
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
print(f"Using checkpoints from {ckpt_dir}")
# Load the model configuration
TASK_NAME = 'ti2v-5B'
cfg = WAN_CONFIGS[TASK_NAME]
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 121
# Instantiate the pipeline
device_id = 0 if torch.cuda.is_available() else -1
wan_pipeline = wan.WanTI2V(
config=cfg,
checkpoint_dir=ckpt_dir,
device_id=device_id,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_sp=False,
t5_cpu=False,
init_on_cpu=False,
convert_model_dtype=True,
)
###LORA ####
# LORA_REPO_ID = "Kijai/WanVideo_comfy"
# LORA_FILENAME = "Wan22-Lightning/Wan2.2-Lightning_T2V-A14B-4steps-lora_LOW_fp16.safetensors"
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# wan_pipeline.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# wan_pipeline.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# wan_pipeline.fuse_lora()
print("All models loaded and ready.")
# --- Constants ---
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
# --- Helper Functions ---
def clear_gpu_memory():
"""Clear GPU memory more thoroughly"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
gc.collect()
def process_long_prompt(prompt, negative_prompt=""):
"""Simple long prompt processing using Compel"""
try:
conditioning, pooled = compel([prompt, negative_prompt])
return conditioning, pooled
except Exception as e:
print(f"Long prompt processing failed: {e}, falling back to standard processing")
return None, None
def select_best_size_for_image(image, available_sizes):
"""Select the size option with aspect ratio closest to the input image."""
if image is None:
return available_sizes[0]
img_width, img_height = image.size
img_aspect_ratio = img_height / img_width
best_size = available_sizes[0]
best_diff = float('inf')
for size_str in available_sizes:
height, width = map(int, size_str.split('*'))
size_aspect_ratio = height / width
diff = abs(img_aspect_ratio - size_aspect_ratio)
if diff < best_diff:
best_diff = diff
best_size = size_str
return best_size
def validate_video_inputs(image, prompt, duration_seconds):
"""Validate user inputs for video generation"""
errors = []
if not prompt or len(prompt.strip()) < 5:
errors.append("Prompt must be at least 5 characters long.")
if image is not None:
if isinstance(image, np.ndarray):
img = Image.fromarray(image)
else:
img = image
if img.size[0] * img.size[1] > 4096 * 4096:
errors.append("Image size is too large (maximum 4096x4096).")
if duration_seconds > 5.0 and image is None:
errors.append("Videos longer than 5 seconds require an input image.")
return errors
# --- Text-to-Image Generation Function ---
def get_t_duration(prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps, progress):
"""Calculate dynamic GPU duration for video generation"""
if sampling_steps > 35 and duration_seconds >= 2:
return 4
elif sampling_steps < 35 or duration_seconds < 2:
return 105
else:
return 90
@spaces.GPU(duration=50)
def generate_image(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True)
):
"""Generate image from text prompt"""
progress(0, desc="Initializing image generation...")
use_long_prompt = len(prompt.split()) > 60 or len(prompt) > 300
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
try:
progress(0.3, desc="Processing prompt...")
if use_long_prompt:
print("Using long prompt processing...")
conditioning, pooled = process_long_prompt(prompt, negative_prompt)
if conditioning is not None:
progress(0.5, desc="Generating image...")
output_image = sdxl_pipe(
prompt_embeds=conditioning[0:1],
pooled_prompt_embeds=pooled[0:1],
negative_prompt_embeds=conditioning[1:2],
negative_pooled_prompt_embeds=pooled[1:2],
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
progress(1.0, desc="Complete!")
return output_image, seed
# Fall back to standard processing
progress(0.5, desc="Generating image...")
output_image = sdxl_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
progress(1.0, desc="Complete!")
return output_image, seed
except RuntimeError as e:
print(f"Error during generation: {e}")
error_img = Image.new('RGB', (width, height), color=(0, 0, 0))
return error_img, seed
finally:
clear_gpu_memory()
# --- Image-to-Video Generation Function ---
def get_video_duration(image, prompt, size, duration_seconds, sampling_steps, guide_scale, shift, seed, progress):
"""Calculate dynamic GPU duration for video generation"""
if sampling_steps > 35 and duration_seconds >= 2:
return 120
elif sampling_steps < 35 or duration_seconds < 2:
return 105
else:
return 90
@spaces.GPU(duration=120)
def generate_video(
image,
prompt,
size,
duration_seconds,
sampling_steps,
guide_scale,
shift,
seed,
progress=gr.Progress(track_tqdm=True)
):
"""Generate video from image and prompt"""
errors = validate_video_inputs(image, prompt, duration_seconds)
if errors:
raise gr.Error("\n".join(errors))
progress(0, desc="Setting up video generation...")
if seed == -1:
seed = random.randint(0, sys.maxsize)
progress(0.1, desc="Processing image...")
input_image = None
if image is not None:
if isinstance(image, np.ndarray):
input_image = Image.fromarray(image).convert("RGB")
else:
input_image = image.convert("RGB")
# Resize image to match selected size
target_height, target_width = map(int, size.split('*'))
input_image = input_image.resize((target_width, target_height))
# Calculate number of frames based on duration
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
progress(0.2, desc="Generating video...")
try:
video_tensor = wan_pipeline.generate(
input_prompt=prompt,
img=input_image,
size=SIZE_CONFIGS[size],
max_area=MAX_AREA_CONFIGS[size],
frame_num=num_frames,
shift=shift,
sample_solver='unipc',
sampling_steps=int(sampling_steps),
guide_scale=guide_scale,
seed=seed,
offload_model=True
)
progress(0.9, desc="Saving video...")
video_path = cache_video(
tensor=video_tensor[None],
save_file=None,
fps=cfg.sample_fps,
normalize=True,
value_range=(-1, 1)
)
progress(1.0, desc="Complete!")
except torch.cuda.OutOfMemoryError:
clear_gpu_memory()
raise gr.Error("GPU out of memory. Please try with lower settings.")
except Exception as e:
raise gr.Error(f"Video generation failed: {str(e)}")
finally:
if 'video_tensor' in locals():
del video_tensor
clear_gpu_memory()
return video_path
# --- Combined Generation Function ---
def generate_image_to_video(
img_prompt,
img_negative_prompt,
img_seed,
img_randomize_seed,
img_width,
img_height,
img_guidance_scale,
img_num_inference_steps,
video_prompt,
video_size,
video_duration,
video_sampling_steps,
video_guide_scale,
video_shift,
video_seed
):
"""Generate image from text, then use it to generate video"""
# First generate image
generated_image, used_seed = generate_image(
img_prompt,
img_negative_prompt,
img_seed,
img_randomize_seed,
img_width,
img_height,
img_guidance_scale,
img_num_inference_steps
)
# Update the best video size based on generated image
available_sizes = list(SUPPORTED_SIZES[TASK_NAME])
best_size = select_best_size_for_image(generated_image, available_sizes)
# Then generate video using the generated image
video_path = generate_video(
generated_image,
video_prompt,
best_size, # Use auto-selected size
video_duration,
video_sampling_steps,
video_guide_scale,
video_shift,
video_seed
)
return generated_image, video_path, used_seed, best_size
# --- Gradio Interface ---
css = """
.gradio-container {max-width: 1400px !important; margin: 0 auto}
#output_video {height: 500px;}
#input_image {height: 400px;}
#generated_image {height: 400px;}
.tab-nav button {font-size: 18px !important; padding: 10px 20px !important;}
"""
# Prompt templates
video_templates = {
"Cinematic": "cinematic shot of {subject}, professional lighting, smooth camera movement, 4k quality",
"Animation": "animated style {subject}, vibrant colors, fluid motion, dynamic movement",
"Nature": "nature documentary footage of {subject}, wildlife photography, natural movement",
"Slow Motion": "slow motion capture of {subject}, high speed camera, detailed motion",
"Action": "dynamic action shot of {subject}, fast paced movement, energetic motion"
}
def apply_template(template, current_prompt):
"""Apply prompt template"""
if "{subject}" in template:
subject = current_prompt.split(",")[0] if "," in current_prompt else current_prompt
return template.replace("{subject}", subject)
return template + " " + current_prompt
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🎨 Integrated Text-to-Image-to-Video Generator
Generate images from text and convert them to high-quality videos using:
- Text-to-Image generation
- **Wan 2.2 5B** for Image-to-Video generation
### ✨ Features:
- 📝 **Text-to-Image**: Generate images from text descriptions
- 🎬 **Image-to-Video**: Convert images (uploaded or generated) to videos
- 🔄 **Text-to-Image-to-Video**: Complete pipeline from text to video
""")
# Badge section
with gr.Tabs() as tabs:
# Tab 1: Text-to-Image
with gr.Tab("Text to Image", id="t2i_tab"):
with gr.Row():
with gr.Column(scale=1):
t2i_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the image you want to generate...",
lines=3
)
t2i_negative_prompt = gr.Textbox(
label="Negative Prompt",
value=" (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn",
lines=2
)
with gr.Row():
t2i_width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
t2i_height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Accordion("Advanced Settings", open=False):
t2i_seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
t2i_randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
t2i_guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=20.0, step=0.1, value=7)
t2i_num_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=28)
t2i_generate_btn = gr.Button("Generate Image", variant="primary", size="lg")
with gr.Column(scale=1):
t2i_output = gr.Image(label="Generated Image", elem_id="generated_image")
t2i_seed_output = gr.Number(label="Used Seed", interactive=False)
# Tab 2: Image-to-Video
with gr.Tab("Image to Video", id="i2v_tab"):
with gr.Row():
with gr.Column(scale=1):
i2v_image = gr.Image(type="numpy", label="Input Image", elem_id="input_image")
i2v_prompt = gr.Textbox(
label="Video Prompt",
value="Generate a video with smooth and natural movement. Objects should have visible motion while maintaining fluid transitions.",
lines=3
)
with gr.Accordion("Prompt Templates", open=False):
gr.Markdown("Click a template to apply it to your prompt:")
template_buttons = {}
for name, template in video_templates.items():
btn = gr.Button(name, size="sm")
template_buttons[name] = (btn, template)
i2v_duration = gr.Slider(
label="Duration (seconds)",
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1),
step=0.1,
value=2.0
)
i2v_size = gr.Dropdown(
label="Output Resolution",
choices=list(SUPPORTED_SIZES[TASK_NAME]),
value="704*1280"
)
with gr.Accordion("Advanced Settings", open=False):
i2v_steps = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, value=38, step=1)
i2v_guide_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
i2v_shift = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
i2v_seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
i2v_generate_btn = gr.Button("Generate Video", variant="primary", size="lg")
with gr.Column(scale=1):
i2v_output = gr.Video(label="Generated Video", elem_id="output_video")
# Tab 3: Text-to-Image-to-Video
with gr.Tab("Text to Image to Video", id="t2i2v_tab"):
gr.Markdown("### 🎯 Complete Pipeline: Generate an image from text, then convert it to video")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### Step 1: Image Generation Settings")
t2i2v_img_prompt = gr.Textbox(
label="Image Prompt",
placeholder="Describe the image to generate...",
lines=3
)
t2i2v_img_negative = gr.Textbox(
label="Negative Prompt",
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn",
lines=2
)
with gr.Row():
t2i2v_img_width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
t2i2v_img_height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Accordion("Image Advanced Settings", open=False):
t2i2v_img_seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
t2i2v_img_randomize = gr.Checkbox(label="Randomize seed", value=True)
t2i2v_img_guidance = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=20.0, step=0.1, value=7)
t2i2v_img_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=28)
gr.Markdown("#### Step 2: Video Generation Settings")
t2i2v_video_prompt = gr.Textbox(
label="Video Prompt",
value="Generate a video with smooth and natural movement. Objects should have visible motion while maintaining fluid transitions.",
lines=3
)
t2i2v_video_duration = gr.Slider(
label="Duration (seconds)",
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1),
step=0.1,
value=2.0
)
# Add the missing video size dropdown component
t2i2v_video_size = gr.Dropdown(
label="Video Output Resolution",
choices=list(SUPPORTED_SIZES[TASK_NAME]),
value="704*1280",
info="This will be auto-adjusted based on generated image aspect ratio"
)
with gr.Accordion("Video Advanced Settings", open=False):
t2i2v_video_steps = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, value=38, step=1)
t2i2v_video_guide = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
t2i2v_video_shift = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
t2i2v_video_seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
t2i2v_generate_btn = gr.Button("Generate Image → Video", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("#### Results")
t2i2v_image_output = gr.Image(label="Generated Image", elem_id="generated_image")
t2i2v_video_output = gr.Video(label="Generated Video", elem_id="output_video")
with gr.Row():
t2i2v_seed_output = gr.Number(label="Image Seed Used", interactive=False)
t2i2v_size_output = gr.Textbox(label="Video Size Used", interactive=False)
# Event handlers
# Tab 1: Text-to-Image
t2i_generate_btn.click(
fn=generate_image,
inputs=[
t2i_prompt, t2i_negative_prompt, t2i_seed, t2i_randomize_seed,
t2i_width, t2i_height, t2i_guidance_scale, t2i_num_steps
],
outputs=[t2i_output, t2i_seed_output]
)
# Tab 2: Image-to-Video
# Connect template buttons
for name, (btn, template) in template_buttons.items():
btn.click(
fn=lambda t=template, p=i2v_prompt: apply_template(t, p),
inputs=[i2v_prompt],
outputs=i2v_prompt
)
# Auto-select best size when image is uploaded
def handle_image_upload(image):
if image is None:
return gr.update()
pil_image = Image.fromarray(image).convert("RGB")
available_sizes = list(SUPPORTED_SIZES[TASK_NAME])
best_size = select_best_size_for_image(pil_image, available_sizes)
return gr.update(value=best_size)
i2v_image.upload(
fn=handle_image_upload,
inputs=[i2v_image],
outputs=[i2v_size]
)
i2v_generate_btn.click(
fn=generate_video,
inputs=[
i2v_image, i2v_prompt, i2v_size, i2v_duration,
i2v_steps, i2v_guide_scale, i2v_shift, i2v_seed
],
outputs=i2v_output
)
# Tab 3: Text-to-Image-to-Video
t2i2v_generate_btn.click(
fn=generate_image_to_video,
inputs=[
t2i2v_img_prompt, t2i2v_img_negative, t2i2v_img_seed, t2i2v_img_randomize,
t2i2v_img_width, t2i2v_img_height, t2i2v_img_guidance, t2i2v_img_steps,
t2i2v_video_prompt, t2i2v_video_size, t2i2v_video_duration,
t2i2v_video_steps, t2i2v_video_guide, t2i2v_video_shift, t2i2v_video_seed
],
outputs=[t2i2v_image_output, t2i2v_video_output, t2i2v_seed_output, t2i2v_size_output]
)
# Examples
gr.Examples(
examples=[
["A majestic lion sitting on a rock at sunset, golden hour lighting, photorealistic", "Generate a video with the lion slowly turning its head and mane flowing in the wind"],
["A futuristic cyberpunk city with neon lights and flying cars", "Cinematic shot with smooth camera movement through the city streets"],
["A serene Japanese garden with cherry blossoms and a koi pond", "Gentle breeze causing cherry blossoms to fall, ripples in the pond"],
],
inputs=[t2i2v_img_prompt, t2i2v_video_prompt],
label="Example Prompts"
)
if __name__ == "__main__":
demo.launch() |