Spaces:
Paused
Paused
Create app_t2v.py
Browse files- app_t2v.py +229 -0
app_t2v.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
|
4 |
+
|
5 |
+
#import subprocess
|
6 |
+
#subprocess.run('pip install flash-attn==2.7.4.post1 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
7 |
+
|
8 |
+
# wan2.2-main/gradio_ti2v.py
|
9 |
+
import gradio as gr
|
10 |
+
import torch
|
11 |
+
from huggingface_hub import snapshot_download
|
12 |
+
from PIL import Image
|
13 |
+
import random
|
14 |
+
import numpy as np
|
15 |
+
import spaces
|
16 |
+
|
17 |
+
import wan
|
18 |
+
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
|
19 |
+
from wan.utils.utils import cache_video
|
20 |
+
|
21 |
+
import gc
|
22 |
+
|
23 |
+
# --- 1. Global Setup and Model Loading ---
|
24 |
+
|
25 |
+
print("Starting Gradio App for Wan 2.2 TI2V-5B...")
|
26 |
+
|
27 |
+
# Download model snapshots from Hugging Face Hub
|
28 |
+
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
|
29 |
+
print(f"Downloading/loading checkpoints for {repo_id}...")
|
30 |
+
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
|
31 |
+
print(f"Using checkpoints from {ckpt_dir}")
|
32 |
+
|
33 |
+
# Load the model configuration
|
34 |
+
TASK_NAME = 'ti2v-5B'
|
35 |
+
cfg = WAN_CONFIGS[TASK_NAME]
|
36 |
+
FIXED_FPS = 24
|
37 |
+
MIN_FRAMES_MODEL = 8
|
38 |
+
MAX_FRAMES_MODEL = 121
|
39 |
+
|
40 |
+
# Instantiate the pipeline in the global scope
|
41 |
+
print("Initializing WanTI2V pipeline...")
|
42 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
+
device_id = 0 if torch.cuda.is_available() else -1
|
44 |
+
pipeline = wan.WanTI2V(
|
45 |
+
config=cfg,
|
46 |
+
checkpoint_dir=ckpt_dir,
|
47 |
+
device_id=device_id,
|
48 |
+
rank=0,
|
49 |
+
t5_fsdp=False,
|
50 |
+
dit_fsdp=False,
|
51 |
+
use_sp=False,
|
52 |
+
t5_cpu=False,
|
53 |
+
init_on_cpu=False,
|
54 |
+
convert_model_dtype=True,
|
55 |
+
)
|
56 |
+
print("Pipeline initialized and ready.")
|
57 |
+
|
58 |
+
# --- Helper Functions ---
|
59 |
+
def select_best_size_for_image(image, available_sizes):
|
60 |
+
"""Select the size option with aspect ratio closest to the input image."""
|
61 |
+
if image is None:
|
62 |
+
return available_sizes[0] # Return first option if no image
|
63 |
+
|
64 |
+
img_width, img_height = image.size
|
65 |
+
img_aspect_ratio = img_height / img_width
|
66 |
+
|
67 |
+
best_size = available_sizes[0]
|
68 |
+
best_diff = float('inf')
|
69 |
+
|
70 |
+
for size_str in available_sizes:
|
71 |
+
# Parse size string like "704*1280"
|
72 |
+
height, width = map(int, size_str.split('*'))
|
73 |
+
size_aspect_ratio = height / width
|
74 |
+
diff = abs(img_aspect_ratio - size_aspect_ratio)
|
75 |
+
|
76 |
+
if diff < best_diff:
|
77 |
+
best_diff = diff
|
78 |
+
best_size = size_str
|
79 |
+
|
80 |
+
return best_size
|
81 |
+
|
82 |
+
def handle_image_upload(image):
|
83 |
+
"""Handle image upload and return the best matching size."""
|
84 |
+
if image is None:
|
85 |
+
return gr.update()
|
86 |
+
|
87 |
+
pil_image = Image.fromarray(image).convert("RGB")
|
88 |
+
available_sizes = list(SUPPORTED_SIZES[TASK_NAME])
|
89 |
+
best_size = select_best_size_for_image(pil_image, available_sizes)
|
90 |
+
|
91 |
+
return gr.update(value=best_size)
|
92 |
+
|
93 |
+
def get_duration(
|
94 |
+
prompt,
|
95 |
+
size,
|
96 |
+
duration_seconds,
|
97 |
+
sampling_steps,
|
98 |
+
guide_scale,
|
99 |
+
shift,
|
100 |
+
seed,
|
101 |
+
progress):
|
102 |
+
"""Calculate dynamic GPU duration based on parameters."""
|
103 |
+
if sampling_steps > 35 and duration_seconds >= 2:
|
104 |
+
return 120
|
105 |
+
elif sampling_steps < 35 or duration_seconds < 2:
|
106 |
+
return 105
|
107 |
+
else:
|
108 |
+
return 90
|
109 |
+
|
110 |
+
# --- 2. Gradio Inference Function ---
|
111 |
+
@spaces.GPU(duration=get_duration)
|
112 |
+
def generate_video(
|
113 |
+
|
114 |
+
prompt,
|
115 |
+
size,
|
116 |
+
duration_seconds,
|
117 |
+
sampling_steps,
|
118 |
+
guide_scale,
|
119 |
+
shift,
|
120 |
+
seed,
|
121 |
+
progress=gr.Progress(track_tqdm=True)
|
122 |
+
):
|
123 |
+
"""The main function to generate video, called by the Gradio interface."""
|
124 |
+
if seed == -1:
|
125 |
+
seed = random.randint(0, sys.maxsize)
|
126 |
+
|
127 |
+
# input_image = None
|
128 |
+
# if image is not None:
|
129 |
+
# input_image = Image.fromarray(image).convert("RGB")
|
130 |
+
# # Resize image to match selected size
|
131 |
+
# target_height, target_width = map(int, size.split('*'))
|
132 |
+
# input_image = input_image.resize((target_width, target_height))
|
133 |
+
|
134 |
+
# Calculate number of frames based on duration
|
135 |
+
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
|
136 |
+
|
137 |
+
video_tensor = pipeline.generate(
|
138 |
+
input_prompt=prompt,
|
139 |
+
img=None # Pass None for T2V, Image for I2V
|
140 |
+
size=SIZE_CONFIGS[size],
|
141 |
+
max_area=MAX_AREA_CONFIGS[size],
|
142 |
+
frame_num=num_frames, # Use calculated frames instead of cfg.frame_num
|
143 |
+
shift=shift,
|
144 |
+
sample_solver='unipc',
|
145 |
+
sampling_steps=int(sampling_steps),
|
146 |
+
guide_scale=guide_scale,
|
147 |
+
seed=seed,
|
148 |
+
offload_model=True
|
149 |
+
)
|
150 |
+
|
151 |
+
# Save the video to a temporary file
|
152 |
+
video_path = cache_video(
|
153 |
+
tensor=video_tensor[None], # Add a batch dimension
|
154 |
+
save_file=None, # cache_video will create a temp file
|
155 |
+
fps=cfg.sample_fps,
|
156 |
+
normalize=True,
|
157 |
+
value_range=(-1, 1)
|
158 |
+
)
|
159 |
+
del video_tensor
|
160 |
+
gc.collect()
|
161 |
+
return video_path
|
162 |
+
|
163 |
+
|
164 |
+
# --- 3. Gradio Interface ---
|
165 |
+
css = ".gradio-container {max-width: 1100px !important; margin: 0 auto} #output_video {height: 500px;} #input_image {height: 500px;}"
|
166 |
+
|
167 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
|
168 |
+
gr.Markdown("# Wan 2.2 TI2V 5B")
|
169 |
+
gr.Markdown("generate high quality videos using **Wan 2.2 5B Text-Image-to-Video model**,[[model]](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B),[[paper]](https://arxiv.org/abs/2503.20314)")
|
170 |
+
|
171 |
+
with gr.Row():
|
172 |
+
with gr.Column(scale=2):
|
173 |
+
#image_input = gr.Image(type="numpy", label="Input Image (Optional)", elem_id="input_image")
|
174 |
+
prompt_input = gr.Textbox(label="Prompt", value="A beautiful waterfall in a lush jungle, cinematic.", lines=3)
|
175 |
+
duration_input = gr.Slider(
|
176 |
+
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
|
177 |
+
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1),
|
178 |
+
step=0.1,
|
179 |
+
value=2.0,
|
180 |
+
label="Duration (seconds)",
|
181 |
+
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
|
182 |
+
)
|
183 |
+
size_input = gr.Dropdown(label="Output Resolution", choices=list(SUPPORTED_SIZES[TASK_NAME]), value="704*1280")
|
184 |
+
with gr.Column(scale=2):
|
185 |
+
video_output = gr.Video(label="Generated Video", elem_id="output_video")
|
186 |
+
|
187 |
+
|
188 |
+
with gr.Accordion("Advanced Settings", open=False):
|
189 |
+
steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, value=38, step=1)
|
190 |
+
scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
|
191 |
+
shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
|
192 |
+
seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
|
193 |
+
|
194 |
+
run_button = gr.Button("Generate Video", variant="primary")
|
195 |
+
|
196 |
+
# Add image upload handler
|
197 |
+
# image_input.upload(
|
198 |
+
# fn=handle_image_upload,
|
199 |
+
# inputs=[image_input],
|
200 |
+
# outputs=[size_input]
|
201 |
+
# )
|
202 |
+
|
203 |
+
# image_input.clear(
|
204 |
+
# fn=handle_image_upload,
|
205 |
+
# inputs=[image_input],
|
206 |
+
# outputs=[size_input]
|
207 |
+
# )
|
208 |
+
|
209 |
+
# example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
|
210 |
+
# gr.Examples(
|
211 |
+
# examples=[
|
212 |
+
# [example_image_path, "The cat removes the glasses from its eyes.", "1280*704", 1.5],
|
213 |
+
# [None, "A cinematic shot of a boat sailing on a calm sea at sunset.", "1280*704", 2.0],
|
214 |
+
# [None, "Drone footage flying over a futuristic city with flying cars.", "1280*704", 2.0],
|
215 |
+
# ],
|
216 |
+
inputs=[prompt_input, size_input, duration_input],
|
217 |
+
outputs=video_output,
|
218 |
+
fn=generate_video,
|
219 |
+
cache_examples=False,
|
220 |
+
)
|
221 |
+
|
222 |
+
run_button.click(
|
223 |
+
fn=generate_video,
|
224 |
+
inputs=[ prompt_input, size_input, duration_input, steps_input, scale_input, shift_input, seed_input],
|
225 |
+
outputs=video_output
|
226 |
+
)
|
227 |
+
|
228 |
+
if __name__ == "__main__":
|
229 |
+
demo.launch()
|