File size: 15,378 Bytes
447adea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b39f1
447adea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
from typing import Tuple, List
import torch
import torch.nn.functional as F
from smplx.lbs import batch_rodrigues

import json
from typing import Dict
import numpy as np
import joblib
import sys
import argparse

def get_rotated_axes(global_orient):
    """
    输入:
        global_orient: [T, 3] numpy array (axis-angle)
    输出:
        rotated_axes: dict of [T, 3] numpy arrays for X, Y, Z
    """
    R = batch_rodrigues(torch.tensor(global_orient).float())  # [T, 3, 3]

    # 局部单位坐标轴
    x_local = torch.tensor([1.0, 0.0, 0.0])  # X轴:右→左
    y_local = torch.tensor([0.0, 1.0, 0.0])  # Y轴:下→上
    z_local = torch.tensor([0.0, 0.0, 1.0])  # Z轴:后→前

    # 应用旋转
    x_world = torch.matmul(R, x_local)  # [T, 3]
    y_world = torch.matmul(R, y_local)
    z_world = torch.matmul(R, z_local)

    return {
        'x': x_world.numpy(),
        'y': y_world.numpy(),
        'z': z_world.numpy()
    }



class BaseEvaluator:
    def __init__(self):
        pass

    def evaluate(self, joints: torch.Tensor, **kwargs) -> torch.Tensor:
        raise NotImplementedError


class ThreeJointAngleEvaluator(BaseEvaluator):
    def __init__(self, joint_indices: Tuple[int, int, int], threshold: float, greater_than: bool = True):
        super().__init__()
        self.a, self.b, self.c = joint_indices
        self.threshold = threshold
        self.greater_than = greater_than

    def evaluate(self, joints: torch.Tensor, **kwargs) -> torch.Tensor:
        ba = F.normalize(joints[:, self.a] - joints[:, self.b], dim=-1)
        bc = F.normalize(joints[:, self.c] - joints[:, self.b], dim=-1)
        cos_angle = (ba * bc).sum(dim=-1).clamp(-1.0, 1.0)
        angles = torch.acos(cos_angle) * 180.0 / torch.pi
        return angles > self.threshold if self.greater_than else angles < self.threshold


class VectorAngleEvaluator(BaseEvaluator):
    def __init__(self, pair1: Tuple[int, int], pair2: Tuple[int, int], threshold: float, less_than=True):
        super().__init__()
        self.a1, self.a2 = pair1
        self.b1, self.b2 = pair2
        self.threshold = threshold
        self.less_than = less_than

    def evaluate(self, joints: torch.Tensor, **kwargs) -> torch.Tensor:
        v1 = F.normalize(joints[:, self.a1] - joints[:, self.a2], dim=-1)
        v2 = F.normalize(joints[:, self.b1] - joints[:, self.b2], dim=-1)
        angle = torch.acos((v1 * v2).sum(dim=-1).clamp(-1.0, 1.0)) * 180.0 / torch.pi
        return angle < self.threshold if self.less_than else angle > self.threshold


class SingleAxisComparisonEvaluator(BaseEvaluator):
    def __init__(self, joint_a: int, joint_b: int, axis: str, greater_than=True):
        super().__init__()
        self.joint_a = joint_a
        self.joint_b = joint_b
        self.axis = axis
        self.greater_than = greater_than

    def evaluate(self, joints: torch.Tensor, global_orient, **kwargs) -> torch.Tensor:
        T = joints.shape[0]
        assert self.axis in ["x", "y", "z"]
        rotated_axes = get_rotated_axes(global_orient)
        assert rotated_axes[self.axis].shape == (T, 3)

        axis_tensor = torch.tensor(rotated_axes[self.axis], dtype=joints.dtype, device=joints.device)  # [T, 3]

        vec_a = joints[:, self.joint_a, :]  # [T, 3]
        vec_b = joints[:, self.joint_b, :]  # [T, 3]

        # 投影到当前帧坐标轴方向
        a_proj = torch.sum(vec_a * axis_tensor, dim=1)  # [T]
        b_proj = torch.sum(vec_b * axis_tensor, dim=1)  # [T]

        return a_proj > b_proj if self.greater_than else a_proj < b_proj


class JointDistanceEvaluator(BaseEvaluator):
    def __init__(self, joint_a: int, joint_b: int, threshold: float, greater_than=True):
        super().__init__()
        self.joint_a = joint_a
        self.joint_b = joint_b
        self.threshold = threshold
        self.greater_than = greater_than

    def evaluate(self, joints: torch.Tensor, **kwargs) -> torch.Tensor:
        dist = torch.norm(joints[:, self.joint_a] - joints[:, self.joint_b], dim=-1)
        return dist > self.threshold if self.greater_than else dist < self.threshold


class RelativeOffsetDirectionEvaluator(BaseEvaluator):
    def __init__(self, joint_a: int, joint_b: int, axis: str, threshold: float, greater_than=True):
        super().__init__()
        assert axis in ["x", "y", "z"]
        self.joint_a = joint_a
        self.joint_b = joint_b
        self.axis = axis
        self.threshold = threshold
        self.greater_than = greater_than

    def evaluate(self, joints: torch.Tensor, global_orient, **kwargs) -> torch.Tensor:
        T = joints.shape[0]
        rotated_axes = get_rotated_axes(global_orient)
        assert self.axis in rotated_axes
        assert rotated_axes[self.axis].shape == (T, 3)

        axis_tensor = torch.tensor(rotated_axes[self.axis], dtype=joints.dtype, device=joints.device)  # [T, 3]

        offset_vec = joints[:, self.joint_a, :] - joints[:, self.joint_b, :]  # [T, 3]
        projection = torch.sum(offset_vec * axis_tensor, dim=1)  # [T]

        return projection > self.threshold if self.greater_than else projection < self.threshold


class VelocityThresholdEvaluator(BaseEvaluator):
    def __init__(self, joint: int, axis: str, threshold: float, greater_than=True):
        super().__init__()
        assert axis in ["x", "y", "z"]
        self.joint = joint
        self.axis = axis
        self.threshold = threshold
        self.greater_than = greater_than

    def evaluate(self, joints: torch.Tensor, global_orient, dt: float = 1.0, **kwargs) -> torch.Tensor:
        T = joints.shape[0]
        rotated_axes = get_rotated_axes(global_orient)
        assert self.axis in rotated_axes
        assert rotated_axes[self.axis].shape == (T, 3)

        axis_tensor = torch.tensor(rotated_axes[self.axis], dtype=joints.dtype, device=joints.device)  # [T, 3]

        # 对关节位置沿当前坐标轴进行投影
        joint_pos = joints[:, self.joint, :]  # [T, 3]
        projection = torch.sum(joint_pos * axis_tensor, dim=1)  # [T]

        # 计算速度(时间差分)
        velocity = (projection[1:] - projection[:-1]) / dt  # [T-1]

        # 比较阈值
        result = velocity > self.threshold if self.greater_than else velocity < self.threshold

        # 补齐长度
        return result


class AccelerationThresholdEvaluator(BaseEvaluator):
    def __init__(self, joint: int, axis: str, threshold: float, greater_than=True):
        super().__init__()
        assert axis in ["x", "y", "z"]
        self.joint = joint
        self.axis = axis
        self.threshold = threshold
        self.greater_than = greater_than

    def evaluate(self, joints: torch.Tensor, global_orient, dt: float = 1.0, **kwargs) -> torch.Tensor:
        T = joints.shape[0]
        rotated_axes = get_rotated_axes(global_orient)
        assert self.axis in rotated_axes
        assert rotated_axes[self.axis].shape == (T, 3)

        axis_tensor = torch.tensor(rotated_axes[self.axis], dtype=joints.dtype, device=joints.device)  # [T, 3]
        joint_pos = joints[:, self.joint, :]  # [T, 3]
        projection = torch.sum(joint_pos * axis_tensor, dim=1)  # [T]

        velocity = (projection[1:] - projection[:-1]) / dt        # [T-1]
        acceleration = (velocity[1:] - velocity[:-1]) / dt        # [T-2]

        result = acceleration > self.threshold if self.greater_than else acceleration < self.threshold
        return result  # shape: [T-2]


class AngleRangeEvaluator(BaseEvaluator):
    def __init__(self, joint_indices: Tuple[int, int, int], threshold: float, greater_than=True):
        super().__init__()
        self.a, self.b, self.c = joint_indices
        self.threshold = threshold
        self.greater_than = greater_than

    def evaluate(self, joints: torch.Tensor, **kwargs) -> torch.Tensor:
        ba = F.normalize(joints[:, self.a] - joints[:, self.b], dim=-1)
        bc = F.normalize(joints[:, self.c] - joints[:, self.b], dim=-1)
        cos_angle = (ba * bc).sum(dim=-1).clamp(-1.0, 1.0)
        angles = torch.acos(cos_angle) * 180.0 / torch.pi
        motion_range = angles.max() - angles.min()
        return torch.tensor([motion_range > self.threshold]) if self.greater_than else torch.tensor([motion_range < self.threshold])


class AngleChangeEvaluator(BaseEvaluator):
    def __init__(self, joint_indices: Tuple[int, int, int], frame1: int, frame2: int, threshold: float, greater_than=True):
        super().__init__()
        self.a, self.b, self.c = joint_indices
        self.frame1 = frame1
        self.frame2 = frame2
        self.threshold = threshold
        self.greater_than = greater_than

    def evaluate(self, joints: torch.Tensor, **kwargs) -> torch.Tensor:
        def compute_angle(frame_idx):
            ba = F.normalize(joints[frame_idx, self.a] - joints[frame_idx, self.b], dim=-1)
            bc = F.normalize(joints[frame_idx, self.c] - joints[frame_idx, self.b], dim=-1)
            cos_angle = (ba * bc).sum().clamp(-1.0, 1.0)
            return torch.acos(cos_angle) * 180.0 / torch.pi

        angle_diff = torch.abs(compute_angle(-1) - compute_angle(0))
        return torch.tensor([angle_diff > self.threshold]) if self.greater_than else torch.tensor([angle_diff < self.threshold])



# Joint name to index mapping (for SMPL 24-joint model, common names)
SMPL_JOINT_NAMES = {
    "pelvis": 0,
    "left_hip": 1,
    "right_hip": 2,
    "spine1": 3,
    "left_knee": 4,
    "right_knee": 5,
    "spine2": 6,
    "left_ankle": 7,
    "right_ankle": 8,
    "spine3": 9,
    "left_foot": 10,
    "right_foot": 11,
    "neck": 12,
    "left_collar": 13,
    "right_collar": 14,
    "head": 15,
    "left_shoulder": 16,
    "right_shoulder": 17,
    "left_elbow": 18,
    "right_elbow": 19,
    "left_wrist": 20,
    "right_wrist": 21,
    "left_hand": 22,
    "right_hand": 23,
}

# Mapping from JSON "type" to class constructor
EVALUATOR_CLASSES = {
    "ThreeJointAngle": ThreeJointAngleEvaluator,
    "VectorAngle": VectorAngleEvaluator,
    "SingleAxisComparison": SingleAxisComparisonEvaluator,
    "JointDistance": JointDistanceEvaluator,
    "RelativeOffsetDirection": RelativeOffsetDirectionEvaluator,
    "VelocityThreshold": VelocityThresholdEvaluator,
    "AccelerationThreshold": AccelerationThresholdEvaluator,
    "AngleRange": AngleRangeEvaluator,
    "AngleChange": AngleChangeEvaluator,
    # PositionRange can reuse RelativeOffset with a max-min wrapper
}


def get_joint_index(name: str) -> int:
    if name not in SMPL_JOINT_NAMES:
        raise ValueError(f"Unknown joint name: {name}")
    return SMPL_JOINT_NAMES[name]


def build_evaluator_from_json(json_data: Dict) -> BaseEvaluator:
    etype = json_data["type"]


    if etype == "ThreeJointAngle":
        a = get_joint_index(json_data["joint_a"])
        b = get_joint_index(json_data["joint_b"])
        c = get_joint_index(json_data["joint_c"])
        return ThreeJointAngleEvaluator((a, b, c), json_data["threshold"], json_data.get("greater_than", True))

    elif etype == "VectorAngle":
        a1 = get_joint_index(json_data["joint_a1"])
        a2 = get_joint_index(json_data["joint_a2"])
        b1 = get_joint_index(json_data["joint_b1"])
        b2 = get_joint_index(json_data["joint_b2"])
        return VectorAngleEvaluator((a1, a2), (b1, b2), json_data["threshold"], json_data.get("less_than", True))

    elif etype == "SingleAxisComparison":
        a = get_joint_index(json_data["joint_a"])
        b = get_joint_index(json_data["joint_b"])
        return SingleAxisComparisonEvaluator(a, b, json_data["axis"], json_data.get("greater_than", True))

    elif etype == "JointDistance":
        a = get_joint_index(json_data["joint_a"])
        b = get_joint_index(json_data["joint_b"])
        return JointDistanceEvaluator(a, b, json_data["threshold"], json_data.get("greater_than", True))

    elif etype == "RelativeOffsetDirection":
        a = get_joint_index(json_data["joint_a"])
        b = get_joint_index(json_data["joint_b"])
        return RelativeOffsetDirectionEvaluator(a, b, json_data["axis"], json_data["threshold"], json_data.get("greater_than", True))

    elif etype == "VelocityThreshold":
        j = get_joint_index(json_data["joint"])
        return VelocityThresholdEvaluator(j, json_data["axis"], json_data["threshold"], json_data.get("greater_than", True))

    elif etype == "AccelerationThreshold":
        j = get_joint_index(json_data["joint"])
        return AccelerationThresholdEvaluator(j, json_data["axis"], json_data["threshold"], json_data.get("greater_than", True))

    elif etype == "AngleRange":
        a = get_joint_index(json_data["joint_a"])
        b = get_joint_index(json_data["joint_b"])
        c = get_joint_index(json_data["joint_c"])
        return AngleRangeEvaluator((a, b, c), json_data["threshold"], json_data.get("greater_than", True))

    elif etype == "AngleChange":
        a = get_joint_index(json_data["joint_a"])
        b = get_joint_index(json_data["joint_b"])
        c = get_joint_index(json_data["joint_c"])
        return AngleChangeEvaluator((a, b, c), json_data["frame1"], json_data["frame2"], json_data["threshold"], json_data.get("greater_than", True))

    else:
        raise ValueError(f"Unknown evaluator type: {etype}")



# Main function: load motion tensor and json, return evaluation result
def evaluate_motion_from_json(
    json_path: str,
    motion_tensor: torch.Tensor,
    global_orient_tensor: torch.Tensor = None
) -> Dict[str, List[bool]]:
    with open(json_path, "r") as f:
        configs = json.load(f)

    results = {}
    for idx, cfg in enumerate(configs):
        try:
            evalr = build_evaluator_from_json(cfg)
        except:
            continue
        name = cfg.get("name", f"eval_{idx}")

        # 切片
        if "start_frame" in cfg and "end_frame" in cfg:
            s, e = cfg["start_frame"], cfg["end_frame"]
            seg = motion_tensor[s - 1 : e]           # [T_seg, J, 3]
            orient_seg = None
            if global_orient_tensor is not None:
                orient_seg = global_orient_tensor[s - 1 : e]
        elif "frame" in cfg:
            # 兼容旧版
            f0 = cfg["frame"]
            seg = motion_tensor[f0 - 1 : f0]
            orient_seg = None
            if global_orient_tensor is not None:
                orient_seg = global_orient_tensor[f0 - 1 : f0]
        else:
            seg = motion_tensor
            orient_seg = None
            if global_orient_tensor is not None:
                orient_seg = global_orient_tensor

        # 调用
        if orient_seg is not None:
            out = evalr.evaluate(seg, global_orient=orient_seg)
        else:
            out = evalr.evaluate(seg)
        results[name] = out.tolist()

    # 保存
    out_path = json_path.replace(".json", "_output.txt")
    with open(out_path, "w") as f:
        json.dump(results, f)

    return results

if __name__ == "__main__":
    pkl_file_path = sys.argv[1]
    json_file_path = sys.argv[2]


    with open(pkl_file_path, 'rb') as f:
        pose = joblib.load(f)

    global_orient = pose[0]['pose_world'][:, :3]
    global_orient_tensor = torch.from_numpy(global_orient)

    pose = pose[0]['joint'].reshape(-1, 45, 3)[:, :24, :]
    pose = torch.from_numpy(pose)

    evaluate_motion_from_json(json_file_path, pose, global_orient)