Spaces:
Sleeping
Sleeping
First Commit
Browse filesFirst Commit
First Commit
- .gradio/certificate.pem +31 -0
- README.md +48 -43
- WHAM +1 -0
- app.py +522 -250
- estimator.py +408 -0
- prompts/stage1.txt +18 -0
- prompts/stage2.txt +85 -0
- prompts/stage3.txt +12 -0
- requirements.txt +33 -4
- smplx/smpl/SMPL_NEUTRAL.pkl +3 -0
- tracking_results.pth +3 -0
.gradio/certificate.pem
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
+
-----END CERTIFICATE-----
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🎬
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
@@ -9,61 +9,66 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
# 🎬
|
13 |
|
14 |
-
|
15 |
|
16 |
-
##
|
17 |
|
18 |
-
- 📹
|
19 |
-
- 🤖 **Pose Estimation**:
|
20 |
-
- ⏱️
|
21 |
-
- 🧠 **AI
|
22 |
-
- 🐍 **Python
|
23 |
-
- 📊
|
|
|
24 |
|
25 |
-
##
|
26 |
|
27 |
-
1.
|
28 |
-
2. **Pose Estimation** →
|
29 |
-
3.
|
30 |
-
4. **
|
31 |
-
5. **Python
|
32 |
-
6.
|
|
|
33 |
|
34 |
-
##
|
35 |
|
36 |
-
1.
|
37 |
-
2.
|
38 |
-
3.
|
39 |
-
4.
|
40 |
-
5.
|
41 |
|
42 |
-
##
|
43 |
|
44 |
-
-
|
45 |
-
-
|
46 |
-
-
|
47 |
-
-
|
48 |
-
- **部署平台**: Hugging Face Spaces
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
4. 添加错误处理和日志记录
|
58 |
|
59 |
-
|
|
|
|
|
60 |
|
61 |
-
1. 创建新的Space
|
62 |
-
2. 选择Gradio SDK
|
63 |
-
3. 上传所有文件
|
64 |
-
4. 配置环境变量 (如API密钥)
|
65 |
-
5. 启动应用
|
66 |
|
67 |
-
## 许可证
|
68 |
|
69 |
-
|
|
|
|
|
|
1 |
---
|
2 |
+
title: AI Sports Coaching
|
3 |
emoji: 🎬
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
|
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# 🎬 AI Sports Coaching System
|
13 |
|
14 |
+
A video-based pose estimation and AI analysis platform powered by Vision-Language Models (VLMs). Users can upload videos, perform pose detection, temporal downsampling, and get intelligent feedback.
|
15 |
|
16 |
+
## Features
|
17 |
|
18 |
+
- 📹 **Video Upload**: Support for multiple video formats
|
19 |
+
- 🤖 **Pose Estimation**: Human keypoint detection
|
20 |
+
- ⏱️ **Temporal Downsampling**: Configurable frame rate reduction
|
21 |
+
- 🧠 **AI Analysis**: Integrate LLMs/VLMs for intelligent insights
|
22 |
+
- 🐍 **Python Processing**: Custom data processing and analysis pipelines
|
23 |
+
- 📊 **Result Visualization**: Multi-dimensional result display
|
24 |
+
- ⭐ **Scoring Mechanism**: User feedback scoring for outputs
|
25 |
|
26 |
+
## Workflow
|
27 |
|
28 |
+
1. **Video Upload** → Upload one or more videos for analysis
|
29 |
+
2. **Pose Estimation** → Extract human keypoint data
|
30 |
+
3. **Temporal Downsampling** → Reduce frame rate according to settings
|
31 |
+
4. **AI Analysis** → Use VLM/LLM to analyze pose features
|
32 |
+
5. **Python Processing** → Run custom analysis scripts
|
33 |
+
6. **Result Generation** → Produce a comprehensive analysis report
|
34 |
+
7. **Scoring** → User rates output quality (e.g., 1–5)
|
35 |
|
36 |
+
## Usage
|
37 |
|
38 |
+
1. Upload video file(s)
|
39 |
+
2. Configure downsampling rate (e.g., 1–10)
|
40 |
+
3. Click “Start Processing”
|
41 |
+
4. View results in different tabs (pose visualization, analysis report, charts, etc.)
|
42 |
+
5. Provide feedback score for the outputs
|
43 |
|
44 |
+
## TODO
|
45 |
|
46 |
+
- **Accelerate Pose Estimation**
|
47 |
+
- Optimize model inference (e.g., model pruning/quantization, GPU/CPU parallelism)
|
48 |
+
- Batch processing for multiple videos or frames
|
49 |
+
- Investigate lightweight architectures or delegate to hardware accelerators
|
|
|
50 |
|
51 |
+
- **Local Deployment of VLMs**
|
52 |
+
- Documentation for downloading and setting up VLM weights locally
|
53 |
+
- Instructions for environment configuration (dependencies, hardware requirements)
|
54 |
+
- Offline inference capabilities and fallback strategies
|
55 |
+
- Security considerations for storing API keys or model files
|
56 |
|
57 |
+
- **Support Multiple Video Formats**
|
58 |
+
- Automatic compatibility check and conversion (e.g., mp4, avi, mov, webm)
|
59 |
+
- Integrate ffmpeg (or similar) for on-the-fly format handling
|
60 |
+
- Graceful fallback or user guidance when format is unsupported
|
61 |
|
62 |
+
- **Extend Scoring & Feedback Loop**
|
63 |
+
- Store user scores along with video metadata
|
64 |
+
- Use scores to fine-tune or adjust analysis parameters over time
|
|
|
65 |
|
66 |
+
- **Support Different Language**
|
67 |
+
- Use different language prompts for different language
|
68 |
+
- Update prompts for stable language-control
|
69 |
|
|
|
|
|
|
|
|
|
|
|
70 |
|
|
|
71 |
|
72 |
+
## License
|
73 |
+
|
74 |
+
MIT License
|
WHAM
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 2b54f7797391c94876848b905ed875b154c4a295
|
app.py
CHANGED
@@ -2,288 +2,560 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
import json
|
5 |
-
import
|
6 |
-
from typing import Tuple, Dict, Any
|
7 |
-
import tempfile
|
8 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
class PoseEstimationApp:
|
11 |
-
def __init__(self):
|
12 |
self.processing_steps = [
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
18 |
-
"
|
|
|
|
|
19 |
]
|
20 |
-
|
21 |
-
|
22 |
-
"""
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
frame_count = 0
|
26 |
-
|
27 |
while True:
|
28 |
ret, frame = cap.read()
|
29 |
if not ret:
|
30 |
break
|
31 |
-
|
32 |
-
# 根据下采样率选择帧
|
33 |
if frame_count % downsample_rate == 0:
|
34 |
-
|
35 |
-
|
36 |
frame_count += 1
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
cap.release()
|
39 |
-
return frames
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
# 这里应该是真实的pose estimation代码
|
44 |
-
# 目前返回模拟数据
|
45 |
-
pose_data = []
|
46 |
-
for i, frame in enumerate(frames):
|
47 |
-
# 模拟关键点数据 (17个关键点,每个点有x,y,confidence)
|
48 |
-
keypoints = np.random.rand(17, 3).tolist()
|
49 |
-
pose_data.append({
|
50 |
-
"frame_id": i,
|
51 |
-
"keypoints": keypoints,
|
52 |
-
"timestamp": i * 0.033 # 假设30fps
|
53 |
-
})
|
54 |
-
return pose_data
|
55 |
-
|
56 |
-
def mock_chatgpt_analysis(self, pose_data, custom_prompt):
|
57 |
-
"""模拟ChatGPT分析"""
|
58 |
-
# 这里应该调用实际的ChatGPT API
|
59 |
-
analysis = f"""
|
60 |
-
基于您的提示词: "{custom_prompt}"
|
61 |
-
|
62 |
-
姿态分析结果:
|
63 |
-
- 检测到 {len(pose_data)} 个有效帧
|
64 |
-
- 主要动作模式:步行/站立
|
65 |
-
- 姿态稳定性:良好
|
66 |
-
- 运动幅度:中等
|
67 |
-
- 异常检测:未发现明显异常
|
68 |
-
|
69 |
-
建议:保持当前运动模式,注意关节角度的稳定性。
|
70 |
"""
|
71 |
-
|
72 |
-
|
73 |
-
def mock_python_processing(self, chatgpt_result):
|
74 |
-
"""模拟Python程序处理"""
|
75 |
-
# 这里应该运行实际的Python分析程序
|
76 |
-
python_output = f"""
|
77 |
-
执行Python分析程序...
|
78 |
-
|
79 |
-
处理ChatGPT结果: {len(chatgpt_result)} 字符
|
80 |
-
计算统计指标...
|
81 |
-
生成可视化图表...
|
82 |
-
|
83 |
-
结果摘要:
|
84 |
-
- 处理状态: 成功
|
85 |
-
- 分析维度: 多维度姿态分析
|
86 |
-
- 输出格式: JSON + 可视化
|
87 |
-
- 置信度: 0.87
|
88 |
"""
|
89 |
-
return python_output
|
90 |
-
|
91 |
-
def generate_final_result(self, pose_data, chatgpt_analysis, python_output):
|
92 |
-
"""生成最终结果"""
|
93 |
-
final_result = {
|
94 |
-
"summary": {
|
95 |
-
"total_frames": len(pose_data),
|
96 |
-
"processing_time": "模拟处理",
|
97 |
-
"confidence_score": 0.87
|
98 |
-
},
|
99 |
-
"pose_analysis": "姿态数据已提取",
|
100 |
-
"ai_insights": chatgpt_analysis,
|
101 |
-
"technical_analysis": python_output,
|
102 |
-
"recommendations": [
|
103 |
-
"继续保持良好的运动姿态",
|
104 |
-
"注意关节角度的协调性",
|
105 |
-
"建议增加运动的多样性"
|
106 |
-
]
|
107 |
-
}
|
108 |
-
return json.dumps(final_result, indent=2, ensure_ascii=False)
|
109 |
-
|
110 |
-
def process_video(self, video_file, downsample_rate, custom_prompt, progress=gr.Progress()):
|
111 |
-
"""主要的视频处理函数"""
|
112 |
if video_file is None:
|
113 |
-
return "
|
114 |
-
|
115 |
try:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
progress(0.7, desc="ChatGPT分析中...")
|
132 |
-
if not custom_prompt.strip():
|
133 |
-
custom_prompt = "请分析这个视频中的姿态特征"
|
134 |
-
chatgpt_result = self.mock_chatgpt_analysis(pose_data, custom_prompt)
|
135 |
-
time.sleep(2)
|
136 |
-
|
137 |
-
# 步骤5: Python程序处理
|
138 |
-
progress(0.9, desc="运行Python分析程序...")
|
139 |
-
python_result = self.mock_python_processing(chatgpt_result)
|
140 |
-
time.sleep(1)
|
141 |
-
|
142 |
-
# 步骤6: 生成最终结果
|
143 |
-
progress(1.0, desc="生成最终结果")
|
144 |
-
final_result = self.generate_final_result(pose_data, chatgpt_result, python_result)
|
145 |
-
|
146 |
-
# 格式化pose数据用于显示
|
147 |
-
pose_summary = f"提取了 {len(pose_data)} 帧数据\n"
|
148 |
-
pose_summary += f"原始帧数: {total_frames}\n"
|
149 |
-
pose_summary += f"下采样率: {downsample_rate}\n"
|
150 |
-
pose_summary += f"有效关键点数: {len(pose_data[0]['keypoints']) if pose_data else 0}"
|
151 |
-
|
152 |
-
return pose_summary, chatgpt_result, python_result, final_result
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
except Exception as e:
|
155 |
-
|
|
|
|
|
156 |
|
157 |
-
# 创建应用实例
|
158 |
app = PoseEstimationApp()
|
159 |
|
160 |
-
# 创建Gradio界面
|
161 |
def create_interface():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
with gr.Blocks(
|
163 |
theme=gr.themes.Soft(),
|
164 |
-
title="
|
165 |
css="""
|
166 |
-
.gradio-container {
|
167 |
-
|
168 |
-
}
|
169 |
-
.tab-nav {
|
170 |
-
background: linear-gradient(90deg, #667eea, #764ba2) !important;
|
171 |
-
}
|
172 |
"""
|
173 |
) as demo:
|
174 |
-
|
175 |
-
gr.
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
)
|
184 |
-
|
|
|
185 |
with gr.Row():
|
186 |
with gr.Column(scale=1):
|
187 |
-
gr.Markdown("
|
188 |
-
|
189 |
-
video_input = gr.Video(
|
190 |
-
label="上传视频文件",
|
191 |
-
sources=["upload"],
|
192 |
-
height=300
|
193 |
-
)
|
194 |
-
|
195 |
with gr.Row():
|
196 |
-
downsample_rate = gr.Slider(
|
197 |
-
|
198 |
-
|
199 |
-
value=2,
|
200 |
-
step=1,
|
201 |
-
label="时序下采样率",
|
202 |
-
info="每N帧取1帧"
|
203 |
-
)
|
204 |
-
|
205 |
-
custom_prompt = gr.Textbox(
|
206 |
-
label="ChatGPT提示词",
|
207 |
-
placeholder="请输入分析姿态数据的提示词...",
|
208 |
-
lines=3,
|
209 |
-
value="请详细分析这个视频中的人体姿态特征,包括运动模式、稳定性和任何异常情况。"
|
210 |
-
)
|
211 |
-
|
212 |
with gr.Row():
|
213 |
-
process_btn = gr.Button("
|
214 |
-
clear_btn = gr.Button("
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
label="
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
-
# 创建并启动应用
|
282 |
if __name__ == "__main__":
|
283 |
demo = create_interface()
|
284 |
-
demo.launch(
|
285 |
-
server_name="0.0.0.0",
|
286 |
-
server_port=7860,
|
287 |
-
share=True,
|
288 |
-
show_error=True
|
289 |
-
)
|
|
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
import json
|
5 |
+
import subprocess
|
|
|
|
|
6 |
import os
|
7 |
+
from typing import Tuple, List, Dict, Any
|
8 |
+
import tempfile
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
|
10 |
+
import torch
|
11 |
+
from PIL import Image
|
12 |
+
import datetime
|
13 |
+
import uuid
|
14 |
+
from PIL import Image
|
15 |
+
import io, base64
|
16 |
+
|
17 |
+
# Use HuggingFace remote inference
|
18 |
+
try:
|
19 |
+
from huggingface_hub import InferenceClient
|
20 |
+
except ImportError:
|
21 |
+
InferenceClient = None
|
22 |
|
23 |
class PoseEstimationApp:
|
24 |
+
def __init__(self, model_name: str = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", use_remote: bool = True, max_history_turns: int = 50):
|
25 |
self.processing_steps = [
|
26 |
+
"Video upload completed",
|
27 |
+
"Starting video downsampling...",
|
28 |
+
"Executing Pose Estimation...",
|
29 |
+
"Running Stage1 prompt...",
|
30 |
+
"Running Stage2 prompt...",
|
31 |
+
"Running Evaluator...",
|
32 |
+
"Running Stage3 prompt...",
|
33 |
+
"Generating final result"
|
34 |
]
|
35 |
+
self.use_remote = use_remote
|
36 |
+
self.model_name = model_name
|
37 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
+
if not use_remote:
|
39 |
+
raise RuntimeError("Remote inference only supported, please set use_remote=True and provide HF_TOKEN environment variable.")
|
40 |
+
if InferenceClient is None:
|
41 |
+
raise RuntimeError("huggingface_hub not installed, please install to use remote inference.")
|
42 |
+
token = os.getenv("HF_TOKEN")
|
43 |
+
if not token:
|
44 |
+
raise RuntimeError("HF_TOKEN environment variable not set, please set the access token in deployment environment.")
|
45 |
+
try:
|
46 |
+
self.client = InferenceClient(model=model_name, token=token)
|
47 |
+
except Exception as e:
|
48 |
+
raise RuntimeError(f"Failed to initialize remote inference client: {e}")
|
49 |
+
|
50 |
+
# Conversation history management
|
51 |
+
# Use a list to store several rounds of conversation, each item is a dict containing 'role' ('user' or 'assistant') and 'content'
|
52 |
+
self.conversation_history: List[Dict[str, str]] = []
|
53 |
+
# Keep the most recent number of rounds (user+assistant), truncate when exceeded
|
54 |
+
self.max_history_turns = max_history_turns
|
55 |
+
|
56 |
+
def reset_history(self):
|
57 |
+
"""
|
58 |
+
Clear conversation history, call when starting a new multi-turn conversation scenario.
|
59 |
+
"""
|
60 |
+
self.conversation_history = []
|
61 |
+
|
62 |
+
def add_user_message(self, message: str):
|
63 |
+
self.conversation_history.append({"role": "user", "content": message})
|
64 |
+
# If exceeding maximum rounds (here a round refers to user+assistant), remove earliest rounds
|
65 |
+
# Calculate current entries, if len > 2 * max_history_turns, truncate the earliest two entries
|
66 |
+
max_items = 2 * self.max_history_turns
|
67 |
+
if len(self.conversation_history) > max_items:
|
68 |
+
# Discard the earliest two entries
|
69 |
+
self.conversation_history = self.conversation_history[-max_items:]
|
70 |
+
|
71 |
+
def add_assistant_message(self, message: str):
|
72 |
+
self.conversation_history.append({"role": "assistant", "content": message})
|
73 |
+
# Similarly truncate history
|
74 |
+
max_items = 2 * self.max_history_turns
|
75 |
+
if len(self.conversation_history) > max_items:
|
76 |
+
self.conversation_history = self.conversation_history[-max_items:]
|
77 |
+
|
78 |
+
def build_prompt_with_history(self, new_user_input: str) -> str:
|
79 |
+
"""
|
80 |
+
Concatenate history rounds with current user input into a prompt string.
|
81 |
+
Example:
|
82 |
+
User: ...
|
83 |
+
Assistant: ...
|
84 |
+
User: new_user_input
|
85 |
+
Assistant:
|
86 |
+
"""
|
87 |
+
prompt_parts = []
|
88 |
+
for turn in self.conversation_history:
|
89 |
+
if turn["role"] == "user":
|
90 |
+
prompt_parts.append(f"User: {turn['content']}")
|
91 |
+
else:
|
92 |
+
prompt_parts.append(f"Assistant: {turn['content']}")
|
93 |
+
# Add new user input, model reply will be generated at the end
|
94 |
+
prompt_parts.append(f"User: {new_user_input}")
|
95 |
+
prompt_parts.append("Assistant:") # Guide model generation
|
96 |
+
full_prompt = "\n".join(prompt_parts)
|
97 |
+
return full_prompt
|
98 |
+
|
99 |
+
def image_to_datauri(self, img: Image.Image, max_size=640, jpeg_quality=70):
|
100 |
+
# 先按最长边缩放到 max_size
|
101 |
+
w, h = img.size
|
102 |
+
scale = max_size / max(w, h)
|
103 |
+
if scale < 1.0:
|
104 |
+
new_w, new_h = int(w*scale), int(h*scale)
|
105 |
+
img = img.resize((new_w, new_h), Image.BILINEAR)
|
106 |
+
# 转 JPEG
|
107 |
+
buffered = io.BytesIO()
|
108 |
+
img.save(buffered, format="JPEG", quality=jpeg_quality)
|
109 |
+
img_b64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
110 |
+
return f"data:image/jpeg;base64,{img_b64}"
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
def query_llm_multimodal(self, text: str, indexed_images: list, use_history: bool = True, max_tokens: int = 1024):
|
115 |
+
messages = []
|
116 |
+
if use_history:
|
117 |
+
for turn in self.conversation_history:
|
118 |
+
messages.append({"role": turn['role'], "content": turn['content']})
|
119 |
+
# 先处理文字部分(如果有)
|
120 |
+
if text:
|
121 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": text}]})
|
122 |
+
self.add_user_message(text)
|
123 |
+
# 逐帧添加图片输入
|
124 |
+
for clip_idx, (video_idx, img) in enumerate(indexed_images):
|
125 |
+
uri = self.image_to_datauri(img, max_size=512, jpeg_quality=60)
|
126 |
+
# 只对最关键的少量帧调用,或在调用前筛选
|
127 |
+
msg_content = [
|
128 |
+
{"type":"image_url","image_url": {"url": uri}},
|
129 |
+
{"type":"text","text":f"The {clip_idx}th image is the {video_idx+1}th frame in the video, please analyze and summarize the content. Use the original frame index ({video_idx+1}) for reminder."}
|
130 |
+
]
|
131 |
+
messages.append({"role":"user","content":msg_content})
|
132 |
+
self.add_user_message(f"[IMAGE frame {video_idx}]")
|
133 |
+
# 如帧过多,可在此处 break,或只处理前 K 帧
|
134 |
+
try:
|
135 |
+
response = self.client.chat.completions.create(messages=messages, max_tokens=max_tokens)
|
136 |
+
reply = response.choices[0].message.content
|
137 |
+
except Exception as e:
|
138 |
+
raise RuntimeError(f"Multimodal inference error: {e}")
|
139 |
+
self.add_assistant_message(reply)
|
140 |
+
return reply
|
141 |
+
|
142 |
+
def query_llm(self, prompt: str, max_length: int = 2048, use_history: bool = True) -> str:
|
143 |
+
if use_history:
|
144 |
+
messages = []
|
145 |
+
for turn in self.conversation_history:
|
146 |
+
messages.append({"role": turn['role'], "content": turn['content']})
|
147 |
+
messages.append({"role": "user", "content": prompt})
|
148 |
+
self.add_user_message(prompt)
|
149 |
+
else:
|
150 |
+
messages = [{"role": "user", "content": prompt}]
|
151 |
+
try:
|
152 |
+
response = self.client.chat.completions.create(messages=messages, max_tokens=max_length)
|
153 |
+
reply = response.choices[0].message.content
|
154 |
+
except Exception as e:
|
155 |
+
raise RuntimeError(f"Remote inference error: {e}")
|
156 |
+
self.add_assistant_message(reply)
|
157 |
+
return reply
|
158 |
+
|
159 |
+
# Other methods remain unchanged...
|
160 |
+
def downsample_video(self, input_path: str, output_path: str, downsample_rate: int) -> Tuple[str, int]:
|
161 |
+
cap = cv2.VideoCapture(input_path)
|
162 |
+
if not cap.isOpened():
|
163 |
+
raise RuntimeError(f"Cannot open video file {input_path}")
|
164 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
165 |
+
new_fps = max(1, int(fps / downsample_rate))
|
166 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
167 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
168 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
169 |
+
out = cv2.VideoWriter(output_path, fourcc, new_fps, (width, height))
|
170 |
frame_count = 0
|
171 |
+
frames = []
|
172 |
while True:
|
173 |
ret, frame = cap.read()
|
174 |
if not ret:
|
175 |
break
|
|
|
|
|
176 |
if frame_count % downsample_rate == 0:
|
177 |
+
out.write(frame)
|
178 |
+
frames.append((frame_count, Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))))
|
179 |
frame_count += 1
|
180 |
+
cap.release()
|
181 |
+
out.release()
|
182 |
+
return output_path, new_fps, frames
|
183 |
+
|
184 |
+
def run_pose_estimation(self, tmp_dir, video_path: str) -> str:
|
185 |
+
base_name = os.path.splitext(os.path.basename(video_path))[0]
|
186 |
+
out_dir = os.path.join(tmp_dir, "output")
|
187 |
+
os.makedirs(out_dir, exist_ok=True)
|
188 |
+
cmd = [
|
189 |
+
"python", "WHAM/demo.py",
|
190 |
+
"--video", video_path,
|
191 |
+
"--save_pkl",
|
192 |
+
"--output_pth", out_dir
|
193 |
+
]
|
194 |
+
out_dir = os.path.join(out_dir, base_name)
|
195 |
+
result = subprocess.run(cmd, capture_output=True, text=True)
|
196 |
+
if result.returncode != 0:
|
197 |
+
raise RuntimeError(f"Pose Estimation failed: {result.stderr}")
|
198 |
+
result_path = os.path.join(out_dir, "wham_output.pkl")
|
199 |
+
if not os.path.exists(result_path):
|
200 |
+
raise FileNotFoundError(f"Result file not found: {result_path}")
|
201 |
+
return result_path
|
202 |
+
|
203 |
+
def load_pose_data(self, pth_path: str):
|
204 |
+
try:
|
205 |
+
data = torch.load(pth_path, map_location="cpu")
|
206 |
+
return data
|
207 |
+
except Exception as e:
|
208 |
+
raise RuntimeError(f"Failed to load Pose data: {e}")
|
209 |
+
|
210 |
+
def extract_frames(self, video_path: str, frame_skip: int = 1) -> List[Tuple[int, Image.Image]]:
|
211 |
+
"""
|
212 |
+
Eagerly read and return all frames as a list of (frame_index, PIL.Image).
|
213 |
+
"""
|
214 |
+
frames = []
|
215 |
+
cap = cv2.VideoCapture(video_path)
|
216 |
+
if not cap.isOpened():
|
217 |
+
return frames
|
218 |
+
idx = 0
|
219 |
+
while True:
|
220 |
+
ret, frame = cap.read()
|
221 |
+
if not ret:
|
222 |
+
break
|
223 |
+
if idx % frame_skip == 0:
|
224 |
+
img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
225 |
+
frames.append((idx, img))
|
226 |
+
idx += 1
|
227 |
cap.release()
|
228 |
+
return frames
|
229 |
+
|
230 |
+
|
231 |
+
def process_video(self, video_file, downsample_rate, progress=gr.Progress()):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
"""
|
233 |
+
修改:process_video 返回 (result_text, downsampled_video_path, downsample_rate) 三元组
|
234 |
+
以便界面显示视频并存储。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
if video_file is None:
|
237 |
+
return "Please upload a video file first", None, None
|
|
|
238 |
try:
|
239 |
+
self.reset_history()
|
240 |
+
|
241 |
+
progress(0.1, desc=self.processing_steps[0])
|
242 |
+
tmp_dir = tempfile.mkdtemp()
|
243 |
+
if hasattr(video_file, 'name'):
|
244 |
+
orig_ext = os.path.splitext(video_file.name)[1] # e.g. ".avi"
|
245 |
+
else:
|
246 |
+
orig_ext = os.path.splitext(video_file)[1]
|
247 |
+
input_path = os.path.join(tmp_dir, f"input{orig_ext}")
|
248 |
+
os.replace(video_file, input_path)
|
249 |
+
|
250 |
+
|
251 |
+
progress(0.2, desc=self.processing_steps[1])
|
252 |
+
downsampled_tmp = os.path.join(tmp_dir, "downsample.mp4")
|
253 |
+
downsampled_path, new_fps, frames = self.downsample_video(input_path, downsampled_tmp, downsample_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
+
print(type(frames), len(frames))
|
256 |
+
frr = self.extract_frames(downsampled_path)
|
257 |
+
print(type(frr), len(frr))
|
258 |
+
|
259 |
+
results_dir = "results"
|
260 |
+
os.makedirs(results_dir, exist_ok=True)
|
261 |
+
unique_name = datetime.datetime.now().strftime("%Y%m%d%H%M%S") + "_" + str(uuid.uuid4())[:8] + ".mp4"
|
262 |
+
persistent_path = os.path.join(results_dir, unique_name)
|
263 |
+
# 复制文件
|
264 |
+
import shutil
|
265 |
+
shutil.copyfile(downsampled_path, persistent_path)
|
266 |
+
|
267 |
+
|
268 |
+
progress(0.3, desc=self.processing_steps[2])
|
269 |
+
#pth_path = self.run_pose_estimation(tmp_dir, input_path)
|
270 |
+
pth_path = "C:\\Users\\fqh13\\AppData\\Local\\Temp\\tmpdy5roav4\\output\\input\\wham_output.pkl"
|
271 |
+
with open(pth_path, "rb") as f:
|
272 |
+
import joblib
|
273 |
+
pkl_file = joblib.load(f)
|
274 |
+
subjs = len(pkl_file.keys())
|
275 |
+
if subjs < 1:
|
276 |
+
return "Failed to detect characters from the video, please update a new video with higher frame rate and .", None, None
|
277 |
+
|
278 |
+
|
279 |
+
#pth_path = "wham_output.pth"
|
280 |
+
|
281 |
+
# Stage1
|
282 |
+
progress(0.4, desc=self.processing_steps[3])
|
283 |
+
stage1_path = os.path.join("prompts", "stage1.txt")
|
284 |
+
if not os.path.exists(stage1_path):
|
285 |
+
raise RuntimeError("Missing prompts/stage1.txt prompt file")
|
286 |
+
with open(stage1_path, 'r', encoding='utf-8') as f:
|
287 |
+
prompt1 = f.read()
|
288 |
+
prompt1_1 = prompt1.split("[IMAGEFLAG]")[0].strip()
|
289 |
+
prompt1_2 = prompt1.split("[IMAGEFLAG]")[1].strip()
|
290 |
+
out_stage1_1 = self.query_llm(prompt1_1, use_history=True)
|
291 |
+
out_images = self.query_llm_multimodal(text="", indexed_images=frames, use_history=True)
|
292 |
+
out_stage1_part2 = self.query_llm(prompt1_2, use_history=True)
|
293 |
+
print(out_images)
|
294 |
+
print("-------")
|
295 |
+
print(out_stage1_part2)
|
296 |
+
# Stage2
|
297 |
+
progress(0.5, desc=self.processing_steps[4])
|
298 |
+
stage2_path = os.path.join("prompts", "stage2.txt")
|
299 |
+
if not os.path.exists(stage2_path):
|
300 |
+
raise RuntimeError("Missing prompts/stage2.txt prompt file")
|
301 |
+
with open(stage2_path, 'r', encoding='utf-8') as f:
|
302 |
+
prompt2 = f.read()
|
303 |
+
prompt2 = prompt2.replace("[FRAMERATE]", str(new_fps))
|
304 |
+
max_retries = 3
|
305 |
+
out_stage2 = ""
|
306 |
+
temp_json_path = os.path.join(tmp_dir, "temp_json.json")
|
307 |
+
for attempt in range(max_retries):
|
308 |
+
out_stage2 = self.query_llm(prompt2, use_history=True)
|
309 |
+
try:
|
310 |
+
parsed = json.loads(out_stage2)
|
311 |
+
with open(temp_json_path, 'w', encoding='utf-8') as f:
|
312 |
+
json.dump(parsed, f, ensure_ascii=False, indent=2)
|
313 |
+
break
|
314 |
+
except json.JSONDecodeError:
|
315 |
+
prompt2 = "The previous output was not valid JSON. Please output only valid JSON without any extra content." + "\n" + out_stage2
|
316 |
+
if attempt == max_retries - 1:
|
317 |
+
with open(temp_json_path, 'w', encoding='utf-8') as f:
|
318 |
+
f.write(out_stage2)
|
319 |
+
|
320 |
+
# Evaluator
|
321 |
+
progress(0.6, desc=self.processing_steps[5])
|
322 |
+
evaluator_cmd = ["python", "estimator.py", pth_path, temp_json_path]
|
323 |
+
result = subprocess.run(evaluator_cmd, capture_output=True, text=True)
|
324 |
+
if result.returncode != 0:
|
325 |
+
raise RuntimeError(f"Evaluator error: {result.stderr}")
|
326 |
+
output_txt_path = os.path.join(tmp_dir, "temp_json_output.txt")
|
327 |
+
with open(output_txt_path, 'r', encoding='utf-8') as f:
|
328 |
+
evaluator_output = f.read()
|
329 |
+
|
330 |
+
# Stage3
|
331 |
+
progress(0.7, desc=self.processing_steps[6])
|
332 |
+
stage3_path = os.path.join("prompts", "stage3.txt")
|
333 |
+
if not os.path.exists(stage3_path):
|
334 |
+
raise RuntimeError("Missing prompts/stage3.txt prompt file")
|
335 |
+
with open(stage3_path, 'r', encoding='utf-8') as f:
|
336 |
+
prompt3 = f.read()
|
337 |
+
prompt3 = prompt3.replace("[RESULTS]", evaluator_output)
|
338 |
+
out_stage3 = self.query_llm(prompt3, use_history=True)
|
339 |
+
|
340 |
+
progress(1.0, desc=self.processing_steps[7])
|
341 |
+
# 返回最终文本、持久化保存的视频路径、下采样率
|
342 |
+
return out_stage3, persistent_path, downsample_rate
|
343 |
except Exception as e:
|
344 |
+
# 出错返回三个值,其中视频路径和下采样率为 None
|
345 |
+
return "Processing error: " + str(e), None, None
|
346 |
+
|
347 |
|
|
|
348 |
app = PoseEstimationApp()
|
349 |
|
|
|
350 |
def create_interface():
|
351 |
+
# 预定义两种语言下的文本
|
352 |
+
texts = {
|
353 |
+
"en": {
|
354 |
+
"title_md": "# 🎬 Video Pose Estimation Processing Platform",
|
355 |
+
"description_md": "Upload a video to downsample and perform pose estimation, combine multimodal LLM analysis to generate intelligent insights",
|
356 |
+
"input_settings": "## 📤 Input Settings",
|
357 |
+
"video_label": "Upload video file",
|
358 |
+
"downsample_label": "Temporal downsampling rate",
|
359 |
+
"downsample_info": "Take 1 frame every N frames and reduce frame rate. Higher rate runs faster, lower rate yields more accurate results.",
|
360 |
+
"process_btn": "🚀 Start Processing",
|
361 |
+
"clear_btn": "🔄 Clear",
|
362 |
+
"results_md": "## 📊 Processing Results",
|
363 |
+
"final_tab": "Final Result",
|
364 |
+
"final_label": "Final Comprehensive Result",
|
365 |
+
"rating_label": "Please rate the result (1–5):",
|
366 |
+
"submit_rating_btn": "Submit Rating",
|
367 |
+
"thankyou_msg": "Thank you for your feedback!",
|
368 |
+
"instructions_md": """
|
369 |
+
## 💡 Instructions
|
370 |
+
1. After uploading a video, the system will generate downsample.mp4 based on the downsampling rate.
|
371 |
+
2. Run WHAM/demo.py for Pose Estimation; results are saved in output/<video_name>/wham_output.pth.
|
372 |
+
3. The system will automatically read prompts/stage1.txt, stage2.txt, stage3.txt; user custom prompts are not accepted.
|
373 |
+
4. Stage1: prompts/stage1.txt can include [POSE_SUMMARY] placeholder, auto-replaced with pose summary.
|
374 |
+
5. Stage2: prompts/stage2.txt can include [FRAMERATE] and [STAGE1_RESULT] placeholders, auto-replaced.
|
375 |
+
6. Prompts will be forced to output JSON format for Evaluator use.
|
376 |
+
7. After Evaluator runs, it generates output.txt; content is automatically passed to Stage3.
|
377 |
+
8. Deployment requires HF_TOKEN environment variable set for HuggingFace access token; code uses it automatically.
|
378 |
+
9. Ensure project root contains prompts/stage1.txt, stage2.txt, stage3.txt and WHAM/demo.py, evaluator.py.
|
379 |
+
"""
|
380 |
+
},
|
381 |
+
"zh": {
|
382 |
+
"title_md": "# 🎬 视频姿态估计处理平台",
|
383 |
+
"description_md": "上传视频进行降采样和姿态估计,结合多模态 LLM 分析生成智能化见解",
|
384 |
+
"input_settings": "## 📤 输入设置",
|
385 |
+
"video_label": "上传视频文件",
|
386 |
+
"downsample_label": "时间降采样率",
|
387 |
+
"downsample_info": "每隔 N 帧取 1 帧并降低帧率。更高的采样率速度更快,但精度可能下降;更低采样率更准确。",
|
388 |
+
"process_btn": "🚀 开始处理",
|
389 |
+
"clear_btn": "🔄 清除",
|
390 |
+
"results_md": "## 📊 处理结果",
|
391 |
+
"final_tab": "最终结果",
|
392 |
+
"final_label": "最终综合结果",
|
393 |
+
"rating_label": "请对结果进行评分 (1–5):",
|
394 |
+
"submit_rating_btn": "提交评分",
|
395 |
+
"thankyou_msg": "感谢您的反馈!",
|
396 |
+
"instructions_md": """
|
397 |
+
## 💡 使用说明
|
398 |
+
1. 上传视频后,系统会根据降采样率生成 downsample.mp4。
|
399 |
+
2. 运行 WHAM/demo.py 进行姿态估计;结果保存在 output/<video_name>/wham_output.pth。
|
400 |
+
3. 系统会自动读取 prompts/stage1.txt、stage2.txt、stage3.txt;不接受用户自定义提示。
|
401 |
+
4. Stage1: prompts/stage1.txt 可包含 [POSE_SUMMARY] 占位符,将被自动替换。
|
402 |
+
5. Stage2: prompts/stage2.txt 可包含 [FRAMERATE] 和 [STAGE1_RESULT] 占位符,将被自动替换。
|
403 |
+
6. 提示将被强制输出 JSON 格式以供 Evaluator 使用。
|
404 |
+
7. Evaluator 运行后会生成 output.txt;内容会自动传递到 Stage3。
|
405 |
+
8. 部署需要设置 HF_TOKEN 环境变量以获得 HuggingFace 访问令牌;代码会自动使用。
|
406 |
+
9. 确保项目根目录下包含 prompts/stage1.txt、stage2.txt、stage3.txt 以及 WHAM/demo.py、evaluator.py。
|
407 |
+
"""
|
408 |
+
}
|
409 |
+
}
|
410 |
+
|
411 |
with gr.Blocks(
|
412 |
theme=gr.themes.Soft(),
|
413 |
+
title="Video Pose Estimation Processing Platform",
|
414 |
css="""
|
415 |
+
.gradio-container { max-width: 1200px !important; }
|
416 |
+
.tab-nav { background: linear-gradient(90deg, #667eea, #764ba2) !important; }
|
|
|
|
|
|
|
|
|
417 |
"""
|
418 |
) as demo:
|
419 |
+
# 语言状态
|
420 |
+
lang_state = gr.State("en")
|
421 |
+
# 隐藏状态:存储最近处理的视频路径和下采样率
|
422 |
+
last_video_path = gr.State(None)
|
423 |
+
last_downsample_rate = gr.State(None)
|
424 |
+
|
425 |
+
# 语言切换按钮
|
426 |
+
lang_btn = gr.Button("中文") # 初始语言 en,所以按钮文字为“中文”
|
427 |
+
# 头部 Markdown
|
428 |
+
header_md = gr.Markdown(texts["en"]["title_md"])
|
429 |
+
desc_md = gr.Markdown(texts["en"]["description_md"])
|
430 |
+
|
431 |
with gr.Row():
|
432 |
with gr.Column(scale=1):
|
433 |
+
input_md = gr.Markdown(texts["en"]["input_settings"])
|
434 |
+
video_input = gr.Video(label=texts["en"]["video_label"], sources=["upload"], height=300)
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
with gr.Row():
|
436 |
+
downsample_rate = gr.Slider(minimum=1, maximum=30, value=10, step=1,
|
437 |
+
label=texts["en"]["downsample_label"],
|
438 |
+
info=texts["en"]["downsample_info"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
with gr.Row():
|
440 |
+
process_btn = gr.Button(texts["en"]["process_btn"], variant="primary", size="lg")
|
441 |
+
clear_btn = gr.Button(texts["en"]["clear_btn"], variant="secondary")
|
442 |
+
|
443 |
+
with gr.Column(scale=2):
|
444 |
+
results_md = gr.Markdown(texts["en"]["results_md"])
|
445 |
+
with gr.Tabs() as tabs:
|
446 |
+
with gr.TabItem(texts["en"]["final_tab"]):
|
447 |
+
final_output = gr.Textbox(label=texts["en"]["final_label"], lines=12, max_lines=20)
|
448 |
+
# 新增:显示降采样视频预览
|
449 |
+
downsampled_video_output = gr.Video(label="Downsampled Video", interactive=False)
|
450 |
+
# 新增:评分滑块和按钮
|
451 |
+
rating_slider = gr.Slider(minimum=1, maximum=5, step=1,
|
452 |
+
label=texts["en"]["rating_label"])
|
453 |
+
submit_rating_btn = gr.Button(value=texts["en"]["submit_rating_btn"])
|
454 |
+
# 用于显示提交后的感谢信息
|
455 |
+
thankyou_text = gr.Markdown("") # 初始为空
|
456 |
+
|
457 |
+
# 语言切换回调
|
458 |
+
def toggle_language(current_lang):
|
459 |
+
# current_lang: "en" 或 "zh",返回新的 current_lang 以及一系列组件更新
|
460 |
+
new_lang = "zh" if current_lang == "en" else "en"
|
461 |
+
t = texts[new_lang]
|
462 |
+
# 更新各个组件文本
|
463 |
+
updates = {
|
464 |
+
lang_state: new_lang,
|
465 |
+
header_md: gr.update(value=t["title_md"]),
|
466 |
+
desc_md: gr.update(value=t["description_md"]),
|
467 |
+
input_md: gr.update(value=t["input_settings"]),
|
468 |
+
video_input: gr.update(label=t["video_label"]),
|
469 |
+
downsample_rate: gr.update(label=t["downsample_label"], info=t["downsample_info"]),
|
470 |
+
process_btn: gr.update(value=t["process_btn"]),
|
471 |
+
clear_btn: gr.update(value=t["clear_btn"]),
|
472 |
+
results_md: gr.update(value=t["results_md"]),
|
473 |
+
final_output: gr.update(label=t["final_label"]),
|
474 |
+
rating_slider: gr.update(label=t["rating_label"]),
|
475 |
+
submit_rating_btn: gr.update(value=t["submit_rating_btn"]),
|
476 |
+
thankyou_text: gr.update(value="") # 切换语言时清空感谢信息
|
477 |
+
}
|
478 |
+
# 语言切换按钮文字也需更新:若当前是英文,则按钮显示“中文”,反之显示“English”
|
479 |
+
btn_text = "English" if new_lang == "zh" else "中文"
|
480 |
+
updates[lang_btn] = gr.update(value=btn_text)
|
481 |
+
return updates
|
482 |
+
|
483 |
+
lang_btn.click(fn=toggle_language,
|
484 |
+
inputs=[lang_state],
|
485 |
+
outputs=[lang_state,
|
486 |
+
header_md, desc_md,
|
487 |
+
input_md, video_input, downsample_rate, process_btn, clear_btn,
|
488 |
+
results_md, final_output, rating_slider, submit_rating_btn, thankyou_text,
|
489 |
+
lang_btn])
|
490 |
+
|
491 |
+
# 处理视频的回调:process_video 返回 (result_text, video_path, downsample_rate)
|
492 |
+
def on_process(video, rate):
|
493 |
+
result_text, video_path, dr = app.process_video(video, rate)
|
494 |
+
# 更新状态
|
495 |
+
# 如果成功,video_path 不为 None
|
496 |
+
return result_text, video_path, dr, gr.update(value=None), gr.update(value=None), gr.update(value="")
|
497 |
+
|
498 |
+
# 注意:outputs 顺序对应 on_process 返回值
|
499 |
+
# outputs: final_output (文本), downsampled_video_output (视频), last_video_path (state), last_downsample_rate (state), rating_slider (复位), thankyou_text (清空)
|
500 |
+
process_btn.click(fn=on_process,
|
501 |
+
inputs=[video_input, downsample_rate],
|
502 |
+
outputs=[final_output, downsampled_video_output,
|
503 |
+
last_video_path, last_downsample_rate,
|
504 |
+
rating_slider, thankyou_text])
|
505 |
+
|
506 |
+
# 清除按钮:重置所有
|
507 |
+
def on_clear():
|
508 |
+
return None, 10, None, None, gr.update(value=10), gr.update(value=""), "中文" if lang_state.value=="en" else "English"
|
509 |
+
# 返回顺序:video_input, downsample_rate, last_video_path, last_downsample_rate, rating_slider, thankyou_text, lang_btn
|
510 |
+
clear_btn.click(fn=on_clear,
|
511 |
+
outputs=[video_input, downsample_rate,
|
512 |
+
last_video_path, last_downsample_rate,
|
513 |
+
rating_slider, thankyou_text, lang_btn])
|
514 |
+
|
515 |
+
# 提交评分回调:读取 last_video_path, last_downsample_rate, rating_slider.value
|
516 |
+
def save_rating(video_path, dr, rating, current_lang):
|
517 |
+
# video_path 可能为 None,需检查
|
518 |
+
if (video_path is None) or (dr is None):
|
519 |
+
# 没有有效的视频,忽略
|
520 |
+
msg = texts[current_lang]["thankyou_msg"]
|
521 |
+
return msg
|
522 |
+
# 确保 results_dir 中存在 ratings.json
|
523 |
+
ratings_file = "results/ratings.json"
|
524 |
+
os.makedirs("results", exist_ok=True)
|
525 |
+
record = {
|
526 |
+
"timestamp": datetime.datetime.now().isoformat(),
|
527 |
+
"video_path": video_path,
|
528 |
+
"downsample_rate": dr,
|
529 |
+
"rating": int(rating)
|
530 |
+
}
|
531 |
+
# 如果文件存在,先读,然后 append;否则新建
|
532 |
+
try:
|
533 |
+
if os.path.exists(ratings_file):
|
534 |
+
with open(ratings_file, "r", encoding="utf-8") as f:
|
535 |
+
data = json.load(f)
|
536 |
+
if not isinstance(data, list):
|
537 |
+
data = []
|
538 |
+
else:
|
539 |
+
data = []
|
540 |
+
except Exception:
|
541 |
+
data = []
|
542 |
+
data.append(record)
|
543 |
+
# 写回
|
544 |
+
with open(ratings_file, "w", encoding="utf-8") as f:
|
545 |
+
json.dump(data, f, ensure_ascii=False, indent=2)
|
546 |
+
# 返回感谢信息
|
547 |
+
return texts[current_lang]["thankyou_msg"]
|
548 |
+
|
549 |
+
# 绑定评分提交按钮
|
550 |
+
submit_rating_btn.click(fn=save_rating,
|
551 |
+
inputs=[last_video_path, last_downsample_rate, rating_slider, lang_state],
|
552 |
+
outputs=[thankyou_text])
|
553 |
+
|
554 |
+
# 底部说明
|
555 |
+
instructions_md = gr.Markdown(texts["en"]["instructions_md"])
|
556 |
+
# 当切换语言时,上面 toggle_language 已更新 instructions_md
|
557 |
+
return demo
|
558 |
|
|
|
559 |
if __name__ == "__main__":
|
560 |
demo = create_interface()
|
561 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=True, show_error=True)
|
|
|
|
|
|
|
|
|
|
estimator.py
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, List
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from smplx.lbs import batch_rodrigues
|
5 |
+
|
6 |
+
import json
|
7 |
+
from typing import Dict
|
8 |
+
import numpy as np
|
9 |
+
import joblib
|
10 |
+
import sys
|
11 |
+
import argparse
|
12 |
+
|
13 |
+
def get_rotated_axes(global_orient):
|
14 |
+
"""
|
15 |
+
输入:
|
16 |
+
global_orient: [T, 3] numpy array (axis-angle)
|
17 |
+
输出:
|
18 |
+
rotated_axes: dict of [T, 3] numpy arrays for X, Y, Z
|
19 |
+
"""
|
20 |
+
R = batch_rodrigues(torch.tensor(global_orient).float()) # [T, 3, 3]
|
21 |
+
|
22 |
+
# 局部单位坐标轴
|
23 |
+
x_local = torch.tensor([1.0, 0.0, 0.0]) # X轴:右→左
|
24 |
+
y_local = torch.tensor([0.0, 1.0, 0.0]) # Y轴:下→上
|
25 |
+
z_local = torch.tensor([0.0, 0.0, 1.0]) # Z轴:后→前
|
26 |
+
|
27 |
+
# 应用旋转
|
28 |
+
x_world = torch.matmul(R, x_local) # [T, 3]
|
29 |
+
y_world = torch.matmul(R, y_local)
|
30 |
+
z_world = torch.matmul(R, z_local)
|
31 |
+
|
32 |
+
return {
|
33 |
+
'x': x_world.numpy(),
|
34 |
+
'y': y_world.numpy(),
|
35 |
+
'z': z_world.numpy()
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
class BaseEvaluator:
|
41 |
+
def __init__(self):
|
42 |
+
pass
|
43 |
+
|
44 |
+
def evaluate(self, joints: torch.Tensor, **kwargs) -> torch.Tensor:
|
45 |
+
raise NotImplementedError
|
46 |
+
|
47 |
+
|
48 |
+
class ThreeJointAngleEvaluator(BaseEvaluator):
|
49 |
+
def __init__(self, joint_indices: Tuple[int, int, int], threshold: float, greater_than: bool = True):
|
50 |
+
super().__init__()
|
51 |
+
self.a, self.b, self.c = joint_indices
|
52 |
+
self.threshold = threshold
|
53 |
+
self.greater_than = greater_than
|
54 |
+
|
55 |
+
def evaluate(self, joints: torch.Tensor, **kwargs) -> torch.Tensor:
|
56 |
+
ba = F.normalize(joints[:, self.a] - joints[:, self.b], dim=-1)
|
57 |
+
bc = F.normalize(joints[:, self.c] - joints[:, self.b], dim=-1)
|
58 |
+
cos_angle = (ba * bc).sum(dim=-1).clamp(-1.0, 1.0)
|
59 |
+
angles = torch.acos(cos_angle) * 180.0 / torch.pi
|
60 |
+
return angles > self.threshold if self.greater_than else angles < self.threshold
|
61 |
+
|
62 |
+
|
63 |
+
class VectorAngleEvaluator(BaseEvaluator):
|
64 |
+
def __init__(self, pair1: Tuple[int, int], pair2: Tuple[int, int], threshold: float, less_than=True):
|
65 |
+
super().__init__()
|
66 |
+
self.a1, self.a2 = pair1
|
67 |
+
self.b1, self.b2 = pair2
|
68 |
+
self.threshold = threshold
|
69 |
+
self.less_than = less_than
|
70 |
+
|
71 |
+
def evaluate(self, joints: torch.Tensor, **kwargs) -> torch.Tensor:
|
72 |
+
v1 = F.normalize(joints[:, self.a1] - joints[:, self.a2], dim=-1)
|
73 |
+
v2 = F.normalize(joints[:, self.b1] - joints[:, self.b2], dim=-1)
|
74 |
+
angle = torch.acos((v1 * v2).sum(dim=-1).clamp(-1.0, 1.0)) * 180.0 / torch.pi
|
75 |
+
return angle < self.threshold if self.less_than else angle > self.threshold
|
76 |
+
|
77 |
+
|
78 |
+
class SingleAxisComparisonEvaluator(BaseEvaluator):
|
79 |
+
def __init__(self, joint_a: int, joint_b: int, axis: str, greater_than=True):
|
80 |
+
super().__init__()
|
81 |
+
self.joint_a = joint_a
|
82 |
+
self.joint_b = joint_b
|
83 |
+
self.axis = axis
|
84 |
+
self.greater_than = greater_than
|
85 |
+
|
86 |
+
def evaluate(self, joints: torch.Tensor, global_orient, **kwargs) -> torch.Tensor:
|
87 |
+
T = joints.shape[0]
|
88 |
+
assert self.axis in ["x", "y", "z"]
|
89 |
+
rotated_axes = get_rotated_axes(global_orient)
|
90 |
+
assert rotated_axes[self.axis].shape == (T, 3)
|
91 |
+
|
92 |
+
axis_tensor = torch.tensor(rotated_axes[self.axis], dtype=joints.dtype, device=joints.device) # [T, 3]
|
93 |
+
|
94 |
+
vec_a = joints[:, self.joint_a, :] # [T, 3]
|
95 |
+
vec_b = joints[:, self.joint_b, :] # [T, 3]
|
96 |
+
|
97 |
+
# 投影到当前帧坐标轴方向
|
98 |
+
a_proj = torch.sum(vec_a * axis_tensor, dim=1) # [T]
|
99 |
+
b_proj = torch.sum(vec_b * axis_tensor, dim=1) # [T]
|
100 |
+
|
101 |
+
return a_proj > b_proj if self.greater_than else a_proj < b_proj
|
102 |
+
|
103 |
+
|
104 |
+
class JointDistanceEvaluator(BaseEvaluator):
|
105 |
+
def __init__(self, joint_a: int, joint_b: int, threshold: float, greater_than=True):
|
106 |
+
super().__init__()
|
107 |
+
self.joint_a = joint_a
|
108 |
+
self.joint_b = joint_b
|
109 |
+
self.threshold = threshold
|
110 |
+
self.greater_than = greater_than
|
111 |
+
|
112 |
+
def evaluate(self, joints: torch.Tensor, **kwargs) -> torch.Tensor:
|
113 |
+
dist = torch.norm(joints[:, self.joint_a] - joints[:, self.joint_b], dim=-1)
|
114 |
+
return dist > self.threshold if self.greater_than else dist < self.threshold
|
115 |
+
|
116 |
+
|
117 |
+
class RelativeOffsetDirectionEvaluator(BaseEvaluator):
|
118 |
+
def __init__(self, joint_a: int, joint_b: int, axis: str, threshold: float, greater_than=True):
|
119 |
+
super().__init__()
|
120 |
+
assert axis in ["x", "y", "z"]
|
121 |
+
self.joint_a = joint_a
|
122 |
+
self.joint_b = joint_b
|
123 |
+
self.axis = axis
|
124 |
+
self.threshold = threshold
|
125 |
+
self.greater_than = greater_than
|
126 |
+
|
127 |
+
def evaluate(self, joints: torch.Tensor, global_orient, **kwargs) -> torch.Tensor:
|
128 |
+
T = joints.shape[0]
|
129 |
+
rotated_axes = get_rotated_axes(global_orient)
|
130 |
+
assert self.axis in rotated_axes
|
131 |
+
assert rotated_axes[self.axis].shape == (T, 3)
|
132 |
+
|
133 |
+
axis_tensor = torch.tensor(rotated_axes[self.axis], dtype=joints.dtype, device=joints.device) # [T, 3]
|
134 |
+
|
135 |
+
offset_vec = joints[:, self.joint_a, :] - joints[:, self.joint_b, :] # [T, 3]
|
136 |
+
projection = torch.sum(offset_vec * axis_tensor, dim=1) # [T]
|
137 |
+
|
138 |
+
return projection > self.threshold if self.greater_than else projection < self.threshold
|
139 |
+
|
140 |
+
|
141 |
+
class VelocityThresholdEvaluator(BaseEvaluator):
|
142 |
+
def __init__(self, joint: int, axis: str, threshold: float, greater_than=True):
|
143 |
+
super().__init__()
|
144 |
+
assert axis in ["x", "y", "z"]
|
145 |
+
self.joint = joint
|
146 |
+
self.axis = axis
|
147 |
+
self.threshold = threshold
|
148 |
+
self.greater_than = greater_than
|
149 |
+
|
150 |
+
def evaluate(self, joints: torch.Tensor, global_orient, dt: float = 1.0, **kwargs) -> torch.Tensor:
|
151 |
+
T = joints.shape[0]
|
152 |
+
rotated_axes = get_rotated_axes(global_orient)
|
153 |
+
assert self.axis in rotated_axes
|
154 |
+
assert rotated_axes[self.axis].shape == (T, 3)
|
155 |
+
|
156 |
+
axis_tensor = torch.tensor(rotated_axes[self.axis], dtype=joints.dtype, device=joints.device) # [T, 3]
|
157 |
+
|
158 |
+
# 对关节位置沿当前坐标轴进行投影
|
159 |
+
joint_pos = joints[:, self.joint, :] # [T, 3]
|
160 |
+
projection = torch.sum(joint_pos * axis_tensor, dim=1) # [T]
|
161 |
+
|
162 |
+
# 计算速度(时间差分)
|
163 |
+
velocity = (projection[1:] - projection[:-1]) / dt # [T-1]
|
164 |
+
|
165 |
+
# 比较阈值
|
166 |
+
result = velocity > self.threshold if self.greater_than else velocity < self.threshold
|
167 |
+
|
168 |
+
# 补齐长度
|
169 |
+
return result
|
170 |
+
|
171 |
+
|
172 |
+
class AccelerationThresholdEvaluator(BaseEvaluator):
|
173 |
+
def __init__(self, joint: int, axis: str, threshold: float, greater_than=True):
|
174 |
+
super().__init__()
|
175 |
+
assert axis in ["x", "y", "z"]
|
176 |
+
self.joint = joint
|
177 |
+
self.axis = axis
|
178 |
+
self.threshold = threshold
|
179 |
+
self.greater_than = greater_than
|
180 |
+
|
181 |
+
def evaluate(self, joints: torch.Tensor, global_orient, dt: float = 1.0, **kwargs) -> torch.Tensor:
|
182 |
+
T = joints.shape[0]
|
183 |
+
rotated_axes = get_rotated_axes(global_orient)
|
184 |
+
assert self.axis in rotated_axes
|
185 |
+
assert rotated_axes[self.axis].shape == (T, 3)
|
186 |
+
|
187 |
+
axis_tensor = torch.tensor(rotated_axes[self.axis], dtype=joints.dtype, device=joints.device) # [T, 3]
|
188 |
+
joint_pos = joints[:, self.joint, :] # [T, 3]
|
189 |
+
projection = torch.sum(joint_pos * axis_tensor, dim=1) # [T]
|
190 |
+
|
191 |
+
velocity = (projection[1:] - projection[:-1]) / dt # [T-1]
|
192 |
+
acceleration = (velocity[1:] - velocity[:-1]) / dt # [T-2]
|
193 |
+
|
194 |
+
result = acceleration > self.threshold if self.greater_than else acceleration < self.threshold
|
195 |
+
return result # shape: [T-2]
|
196 |
+
|
197 |
+
|
198 |
+
class AngleRangeEvaluator(BaseEvaluator):
|
199 |
+
def __init__(self, joint_indices: Tuple[int, int, int], threshold: float, greater_than=True):
|
200 |
+
super().__init__()
|
201 |
+
self.a, self.b, self.c = joint_indices
|
202 |
+
self.threshold = threshold
|
203 |
+
self.greater_than = greater_than
|
204 |
+
|
205 |
+
def evaluate(self, joints: torch.Tensor, **kwargs) -> torch.Tensor:
|
206 |
+
ba = F.normalize(joints[:, self.a] - joints[:, self.b], dim=-1)
|
207 |
+
bc = F.normalize(joints[:, self.c] - joints[:, self.b], dim=-1)
|
208 |
+
cos_angle = (ba * bc).sum(dim=-1).clamp(-1.0, 1.0)
|
209 |
+
angles = torch.acos(cos_angle) * 180.0 / torch.pi
|
210 |
+
motion_range = angles.max() - angles.min()
|
211 |
+
return torch.tensor([motion_range > self.threshold]) if self.greater_than else torch.tensor([motion_range < self.threshold])
|
212 |
+
|
213 |
+
|
214 |
+
class AngleChangeEvaluator(BaseEvaluator):
|
215 |
+
def __init__(self, joint_indices: Tuple[int, int, int], frame1: int, frame2: int, threshold: float, greater_than=True):
|
216 |
+
super().__init__()
|
217 |
+
self.a, self.b, self.c = joint_indices
|
218 |
+
self.frame1 = frame1
|
219 |
+
self.frame2 = frame2
|
220 |
+
self.threshold = threshold
|
221 |
+
self.greater_than = greater_than
|
222 |
+
|
223 |
+
def evaluate(self, joints: torch.Tensor, **kwargs) -> torch.Tensor:
|
224 |
+
def compute_angle(frame_idx):
|
225 |
+
ba = F.normalize(joints[frame_idx, self.a] - joints[frame_idx, self.b], dim=-1)
|
226 |
+
bc = F.normalize(joints[frame_idx, self.c] - joints[frame_idx, self.b], dim=-1)
|
227 |
+
cos_angle = (ba * bc).sum().clamp(-1.0, 1.0)
|
228 |
+
return torch.acos(cos_angle) * 180.0 / torch.pi
|
229 |
+
|
230 |
+
angle_diff = torch.abs(compute_angle(self.frame2) - compute_angle(self.frame1))
|
231 |
+
return torch.tensor([angle_diff > self.threshold]) if self.greater_than else torch.tensor([angle_diff < self.threshold])
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
# Joint name to index mapping (for SMPL 24-joint model, common names)
|
236 |
+
SMPL_JOINT_NAMES = {
|
237 |
+
"pelvis": 0,
|
238 |
+
"left_hip": 1,
|
239 |
+
"right_hip": 2,
|
240 |
+
"spine1": 3,
|
241 |
+
"left_knee": 4,
|
242 |
+
"right_knee": 5,
|
243 |
+
"spine2": 6,
|
244 |
+
"left_ankle": 7,
|
245 |
+
"right_ankle": 8,
|
246 |
+
"spine3": 9,
|
247 |
+
"left_foot": 10,
|
248 |
+
"right_foot": 11,
|
249 |
+
"neck": 12,
|
250 |
+
"left_collar": 13,
|
251 |
+
"right_collar": 14,
|
252 |
+
"head": 15,
|
253 |
+
"left_shoulder": 16,
|
254 |
+
"right_shoulder": 17,
|
255 |
+
"left_elbow": 18,
|
256 |
+
"right_elbow": 19,
|
257 |
+
"left_wrist": 20,
|
258 |
+
"right_wrist": 21,
|
259 |
+
"left_hand": 22,
|
260 |
+
"right_hand": 23,
|
261 |
+
}
|
262 |
+
|
263 |
+
# Mapping from JSON "type" to class constructor
|
264 |
+
EVALUATOR_CLASSES = {
|
265 |
+
"ThreeJointAngle": ThreeJointAngleEvaluator,
|
266 |
+
"VectorAngle": VectorAngleEvaluator,
|
267 |
+
"SingleAxisComparison": SingleAxisComparisonEvaluator,
|
268 |
+
"JointDistance": JointDistanceEvaluator,
|
269 |
+
"RelativeOffsetDirection": RelativeOffsetDirectionEvaluator,
|
270 |
+
"VelocityThreshold": VelocityThresholdEvaluator,
|
271 |
+
"AccelerationThreshold": AccelerationThresholdEvaluator,
|
272 |
+
"AngleRange": AngleRangeEvaluator,
|
273 |
+
"AngleChange": AngleChangeEvaluator,
|
274 |
+
# PositionRange can reuse RelativeOffset with a max-min wrapper
|
275 |
+
}
|
276 |
+
|
277 |
+
|
278 |
+
def get_joint_index(name: str) -> int:
|
279 |
+
if name not in SMPL_JOINT_NAMES:
|
280 |
+
raise ValueError(f"Unknown joint name: {name}")
|
281 |
+
return SMPL_JOINT_NAMES[name]
|
282 |
+
|
283 |
+
|
284 |
+
def build_evaluator_from_json(json_data: Dict) -> BaseEvaluator:
|
285 |
+
etype = json_data["type"]
|
286 |
+
|
287 |
+
|
288 |
+
if etype == "ThreeJointAngle":
|
289 |
+
a = get_joint_index(json_data["joint_a"])
|
290 |
+
b = get_joint_index(json_data["joint_b"])
|
291 |
+
c = get_joint_index(json_data["joint_c"])
|
292 |
+
return ThreeJointAngleEvaluator((a, b, c), json_data["threshold"], json_data.get("greater_than", True))
|
293 |
+
|
294 |
+
elif etype == "VectorAngle":
|
295 |
+
a1 = get_joint_index(json_data["joint_a1"])
|
296 |
+
a2 = get_joint_index(json_data["joint_a2"])
|
297 |
+
b1 = get_joint_index(json_data["joint_b1"])
|
298 |
+
b2 = get_joint_index(json_data["joint_b2"])
|
299 |
+
return VectorAngleEvaluator((a1, a2), (b1, b2), json_data["threshold"], json_data.get("less_than", True))
|
300 |
+
|
301 |
+
elif etype == "SingleAxisComparison":
|
302 |
+
a = get_joint_index(json_data["joint_a"])
|
303 |
+
b = get_joint_index(json_data["joint_b"])
|
304 |
+
return SingleAxisComparisonEvaluator(a, b, json_data["axis"], json_data.get("greater_than", True))
|
305 |
+
|
306 |
+
elif etype == "JointDistance":
|
307 |
+
a = get_joint_index(json_data["joint_a"])
|
308 |
+
b = get_joint_index(json_data["joint_b"])
|
309 |
+
return JointDistanceEvaluator(a, b, json_data["threshold"], json_data.get("greater_than", True))
|
310 |
+
|
311 |
+
elif etype == "RelativeOffsetDirection":
|
312 |
+
a = get_joint_index(json_data["joint_a"])
|
313 |
+
b = get_joint_index(json_data["joint_b"])
|
314 |
+
return RelativeOffsetDirectionEvaluator(a, b, json_data["axis"], json_data["threshold"], json_data.get("greater_than", True))
|
315 |
+
|
316 |
+
elif etype == "VelocityThreshold":
|
317 |
+
j = get_joint_index(json_data["joint"])
|
318 |
+
return VelocityThresholdEvaluator(j, json_data["axis"], json_data["threshold"], json_data.get("greater_than", True))
|
319 |
+
|
320 |
+
elif etype == "AccelerationThreshold":
|
321 |
+
j = get_joint_index(json_data["joint"])
|
322 |
+
return AccelerationThresholdEvaluator(j, json_data["axis"], json_data["threshold"], json_data.get("greater_than", True))
|
323 |
+
|
324 |
+
elif etype == "AngleRange":
|
325 |
+
a = get_joint_index(json_data["joint_a"])
|
326 |
+
b = get_joint_index(json_data["joint_b"])
|
327 |
+
c = get_joint_index(json_data["joint_c"])
|
328 |
+
return AngleRangeEvaluator((a, b, c), json_data["threshold"], json_data.get("greater_than", True))
|
329 |
+
|
330 |
+
elif etype == "AngleChange":
|
331 |
+
a = get_joint_index(json_data["joint_a"])
|
332 |
+
b = get_joint_index(json_data["joint_b"])
|
333 |
+
c = get_joint_index(json_data["joint_c"])
|
334 |
+
return AngleChangeEvaluator((a, b, c), json_data["frame1"], json_data["frame2"], json_data["threshold"], json_data.get("greater_than", True))
|
335 |
+
|
336 |
+
else:
|
337 |
+
raise ValueError(f"Unknown evaluator type: {etype}")
|
338 |
+
|
339 |
+
|
340 |
+
|
341 |
+
# Main function: load motion tensor and json, return evaluation result
|
342 |
+
def evaluate_motion_from_json(
|
343 |
+
json_path: str,
|
344 |
+
motion_tensor: torch.Tensor,
|
345 |
+
global_orient_tensor: torch.Tensor = None
|
346 |
+
) -> Dict[str, List[bool]]:
|
347 |
+
with open(json_path, "r") as f:
|
348 |
+
configs = json.load(f)
|
349 |
+
|
350 |
+
results = {}
|
351 |
+
for idx, cfg in enumerate(configs):
|
352 |
+
try:
|
353 |
+
evalr = build_evaluator_from_json(cfg)
|
354 |
+
except:
|
355 |
+
continue
|
356 |
+
name = cfg.get("name", f"eval_{idx}")
|
357 |
+
|
358 |
+
# 切片
|
359 |
+
if "start_frame" in cfg and "end_frame" in cfg:
|
360 |
+
s, e = cfg["start_frame"], cfg["end_frame"]
|
361 |
+
seg = motion_tensor[s - 1 : e] # [T_seg, J, 3]
|
362 |
+
orient_seg = None
|
363 |
+
if global_orient_tensor is not None:
|
364 |
+
orient_seg = global_orient_tensor[s - 1 : e]
|
365 |
+
elif "frame" in cfg:
|
366 |
+
# 兼容旧版
|
367 |
+
f0 = cfg["frame"]
|
368 |
+
seg = motion_tensor[f0 - 1 : f0]
|
369 |
+
orient_seg = None
|
370 |
+
if global_orient_tensor is not None:
|
371 |
+
orient_seg = global_orient_tensor[f0 - 1 : f0]
|
372 |
+
else:
|
373 |
+
seg = motion_tensor
|
374 |
+
orient_seg = None
|
375 |
+
if global_orient_tensor is not None:
|
376 |
+
orient_seg = global_orient_tensor
|
377 |
+
|
378 |
+
# 调用
|
379 |
+
if orient_seg is not None:
|
380 |
+
out = evalr.evaluate(seg, global_orient=orient_seg)
|
381 |
+
else:
|
382 |
+
out = evalr.evaluate(seg)
|
383 |
+
results[name] = out.tolist()
|
384 |
+
|
385 |
+
# 保存
|
386 |
+
out_path = json_path.replace(".json", "_output.txt")
|
387 |
+
with open(out_path, "w") as f:
|
388 |
+
json.dump(results, f)
|
389 |
+
|
390 |
+
return results
|
391 |
+
|
392 |
+
if __name__ == "__main__":
|
393 |
+
pkl_file_path = sys.argv[1]
|
394 |
+
json_file_path = sys.argv[2]
|
395 |
+
|
396 |
+
|
397 |
+
with open(pkl_file_path, 'rb') as f:
|
398 |
+
pose = joblib.load(f)
|
399 |
+
|
400 |
+
global_orient = pose[0]['pose_world'][:, :3]
|
401 |
+
global_orient_tensor = torch.from_numpy(global_orient)
|
402 |
+
|
403 |
+
pose = pose[0]['joint'].reshape(-1, 45, 3)[:, :24, :]
|
404 |
+
pose = torch.from_numpy(pose)
|
405 |
+
|
406 |
+
evaluate_motion_from_json(json_file_path, pose, global_orient)
|
407 |
+
|
408 |
+
|
prompts/stage1.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are a sports motion analyst and coach, helping to evaluate technical correctness of an athletic motion based on 10 sampled keyframes from a video (e.g., of a tennis backhand). I will provide you with several frame images or descriptions. When I upload all the frames, I'll tell you. Before I uploads all the frames, please wait and you can analyze and summarize the content of each picture to facilitate subsequent understanding.
|
2 |
+
|
3 |
+
[IMAGEFLAG]
|
4 |
+
|
5 |
+
All the frames are uploaded, please analyze the frames based on my further instructions.
|
6 |
+
---
|
7 |
+
|
8 |
+
### 🥇 Step 1: Phase Assignment
|
9 |
+
|
10 |
+
Please assign each of the frames to one of several **action phases** (e.g., "ready position", "backswing", "forward swing", "contact", "follow through"). Label each frame like:
|
11 |
+
- Frame 5: [phase]
|
12 |
+
- Frame 10: [phase]
|
13 |
+
...
|
14 |
+
- Frame 45: [phase]
|
15 |
+
|
16 |
+
After phase labeling, determine the **segment boundaries**: for every point where the phase changes (e.g., Frame 3→4), treat it as the **midpoint of a transition segment**. Your job is to design evaluation rules for each segment.
|
17 |
+
|
18 |
+
|
prompts/stage2.txt
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### 🧠 Step 2: Generate Evaluation Rules
|
2 |
+
|
3 |
+
For each phase, please output a list of JSON rules that check whether this phase was performed correctly.
|
4 |
+
|
5 |
+
The unit of distance is meter and the frame rate is [FRAMERATE]. Each rule must use one of the 10 allowed evaluator types (defined below), and use **SMPL joint names**. Output the rules as a JSON list, following this format:
|
6 |
+
|
7 |
+
---
|
8 |
+
|
9 |
+
**Coordinate System (negative → positive):**
|
10 |
+
- **X axis**: right → left
|
11 |
+
- **Y axis**: down → up
|
12 |
+
- **Z axis**: back → front
|
13 |
+
|
14 |
+
### 🎯 Available evaluator types:
|
15 |
+
|
16 |
+
1. ThreeJointAngle
|
17 |
+
→ Checks angle(A, B, C)
|
18 |
+
Fields: phase, start_frame, end_frame, joint_a, joint_b, joint_c, threshold, greater_than
|
19 |
+
|
20 |
+
2. VectorAngle
|
21 |
+
→ Angle between two joint vectors
|
22 |
+
Fields: phase, start_frame, end_frame, joint_a1, joint_a2, joint_b1, joint_b2, threshold, less_than
|
23 |
+
|
24 |
+
3. SingleAxisComparison
|
25 |
+
→ Compares one joint's value vs another's along x/y/z
|
26 |
+
Fields: phase, start_frame, end_frame, joint_a, joint_b, axis, greater_than
|
27 |
+
|
28 |
+
4. JointDistance
|
29 |
+
→ Distance between two joints
|
30 |
+
Fields: phase, start_frame, end_frame, joint_a, joint_b, threshold, greater_than
|
31 |
+
|
32 |
+
5. RelativeOffsetDirection
|
33 |
+
→ Whether joint A is in front/above/etc. of joint B
|
34 |
+
Fields: phase, start_frame, end_frame, joint_a, joint_b, axis, threshold, greater_than
|
35 |
+
|
36 |
+
6. VelocityThreshold
|
37 |
+
→ Movement speed along a joint's axis
|
38 |
+
Fields: phase, start_frame, end_frame, joint, axis, threshold, greater_than
|
39 |
+
|
40 |
+
7. AccelerationThreshold
|
41 |
+
→ Change in joint velocity
|
42 |
+
Fields: phase, start_frame, end_frame, joint, axis, threshold, greater_than
|
43 |
+
|
44 |
+
8. AngleRange
|
45 |
+
→ Angle variation over time
|
46 |
+
Fields: phase, start_frame, end_frame, joint_a, joint_b, joint_c, threshold, greater_than
|
47 |
+
|
48 |
+
9. AngleChange
|
49 |
+
→ Angle difference between two specific frames
|
50 |
+
Fields: phase, start_frame, end_frame, joint_a, joint_b, joint_c, frame1, frame2, threshold, greater_than
|
51 |
+
|
52 |
+
10. PositionRange
|
53 |
+
→ Spatial displacement of a joint over time
|
54 |
+
Fields: phase, start_frame, end_frame, joint, axis, threshold, greater_than
|
55 |
+
|
56 |
+
Note that, for the axis, you need to select a axis from [x, y, x]. For all the distance, the unit is meter.
|
57 |
+
---
|
58 |
+
|
59 |
+
### ✅ SMPL joint names:
|
60 |
+
|
61 |
+
pelvis, left_hip, right_hip, spine1, left_knee, right_knee, spine2, left_ankle, right_ankle,
|
62 |
+
spine3, left_foot, right_foot, neck, left_collar, right_collar, head,
|
63 |
+
left_shoulder, right_shoulder, left_elbow, right_elbow, left_wrist, right_wrist, left_hand, right_hand
|
64 |
+
|
65 |
+
---
|
66 |
+
|
67 |
+
### ✅ Output format:
|
68 |
+
|
69 |
+
You MUST output only a JSON list, with no explanatory text, no markdown, no code fences. Output must start with [ and end with ].
|
70 |
+
Example:
|
71 |
+
[
|
72 |
+
{
|
73 |
+
"type": "ThreeJointAngle",
|
74 |
+
"name": "elbow_straightens",
|
75 |
+
"start_frame": "10",
|
76 |
+
"end_frame": "20",
|
77 |
+
"joint_a": "left_shoulder",
|
78 |
+
"joint_b": "left_elbow",
|
79 |
+
"joint_c": "left_wrist",
|
80 |
+
"threshold": 160,
|
81 |
+
"greater_than": true
|
82 |
+
},
|
83 |
+
...
|
84 |
+
]
|
85 |
+
|
prompts/stage3.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### 🧩 Step 3: Interpret binary detection results
|
2 |
+
After you've generated evaluation rules, I will run them through a system and return a dict of boolean results, where each key is a rule name and each value is a list of True/False results per frame.
|
3 |
+
|
4 |
+
Your job:
|
5 |
+
|
6 |
+
Analyze which rules failed (False in any frame).
|
7 |
+
|
8 |
+
Provide concise, practical feedback about the motion technique (e.g., "Elbow should be more extended at contact", "Backswing was too short", etc.) Use clear language suitable for an athlete or coach.
|
9 |
+
|
10 |
+
|
11 |
+
The boolean results:
|
12 |
+
[RESULTS]
|
requirements.txt
CHANGED
@@ -1,6 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
gradio>=4.0.0
|
2 |
-
|
3 |
-
numpy>=1.24.0
|
4 |
-
Pillow>=9.5.0
|
5 |
requests>=2.31.0
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python 基础库
|
2 |
+
numpy==1.24.3
|
3 |
+
yacs
|
4 |
+
joblib
|
5 |
+
scikit-image
|
6 |
+
opencv-python
|
7 |
+
imageio[ffmpeg]
|
8 |
+
matplotlib
|
9 |
+
tensorboard
|
10 |
+
smplx
|
11 |
+
progress
|
12 |
+
einops
|
13 |
+
munkres
|
14 |
+
xtcocotools>=1.8
|
15 |
+
loguru
|
16 |
+
tqdm
|
17 |
+
ultralytics
|
18 |
+
gdown==4.6.0
|
19 |
+
smplx
|
20 |
gradio>=4.0.0
|
21 |
+
python-multipart>=0.0.6
|
|
|
|
|
22 |
requests>=2.31.0
|
23 |
+
Pillow>=9.5.0
|
24 |
+
transformers>=4.28.0
|
25 |
+
accelerate
|
26 |
+
torch==2.7.0
|
27 |
+
torchvision==0.15.2
|
28 |
+
torchaudio
|
29 |
+
chumpy @ git+https://github.com/mattloper/chumpy
|
30 |
+
mmcv==1.3.9
|
31 |
+
timm==0.4.9
|
32 |
+
setuptools==59.5.0
|
33 |
+
|
34 |
+
-e ./third-party/ViTPose
|
35 |
+
torch-scatter @ https://data.pyg.org/whl/torch-2.7.0+cpu.html
|
smplx/smpl/SMPL_NEUTRAL.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4924f235e63f7c5d5b690acedf736419c2edb846a2d69fc0956169615fa75688
|
3 |
+
size 247186228
|
tracking_results.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aac30cfd9715393f0d600a72c27687ff3866c9a7969cc0d3b8dfc93a84642d82
|
3 |
+
size 66
|