Commit
·
610cb41
1
Parent(s):
44bf44b
Modificación del proceso de creación de tickets y se agregan dependencias necesarias
Browse files- app.py +39 -25
- requirements.txt +3 -1
app.py
CHANGED
@@ -5,7 +5,6 @@ import json
|
|
5 |
import random
|
6 |
import requests
|
7 |
import gradio as gr
|
8 |
-
import pandas as pd
|
9 |
import torch
|
10 |
from dotenv import load_dotenv
|
11 |
from transformers import pipeline, AutoTokenizer
|
@@ -13,8 +12,8 @@ from transformers import pipeline, AutoTokenizer
|
|
13 |
# Cargar variables de entorno
|
14 |
load_dotenv()
|
15 |
|
16 |
-
# 1. Configuración del modelo
|
17 |
-
MODEL_NAME = "
|
18 |
CATEGORIES = ["logística", "pagos", "producto defectuoso", "cuenta", "facturación", "otros"]
|
19 |
URGENCY_PATTERNS = [
|
20 |
r"\b(urgente|inmediato|cr[íi]tico|asap)\b",
|
@@ -109,33 +108,52 @@ class TicketSystem:
|
|
109 |
with open(filename, 'w') as f:
|
110 |
json.dump(self.tickets, f, indent=2)
|
111 |
|
112 |
-
# 3. Cargar modelo de clasificación
|
|
|
|
|
|
|
113 |
try:
|
|
|
114 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
115 |
classifier = pipeline(
|
116 |
"zero-shot-classification",
|
117 |
model=MODEL_NAME,
|
118 |
-
|
119 |
-
device=0 if torch.cuda.is_available() else -1,
|
120 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
121 |
)
|
122 |
MODEL_LOADED = True
|
|
|
123 |
except Exception as e:
|
124 |
-
print(f"Error cargando
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
# 4. Funciones de clasificación
|
128 |
def is_urgent(text: str) -> bool:
|
129 |
text = text.lower()
|
130 |
-
|
131 |
-
return True
|
132 |
-
return False
|
133 |
|
134 |
def classify_text(text: str) -> str:
|
135 |
-
if not MODEL_LOADED:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
return random.choice(CATEGORIES)
|
137 |
-
result = classifier(text, CATEGORIES, multi_label=False)
|
138 |
-
return result['labels'][0]
|
139 |
|
140 |
# 5. Inicializar sistema de tickets
|
141 |
ticket_system = TicketSystem()
|
@@ -151,18 +169,14 @@ def process_ticket(text):
|
|
151 |
# Crear ticket en el sistema
|
152 |
ticket = ticket_system.create_ticket(text, category, urgent)
|
153 |
|
154 |
-
|
155 |
-
if isinstance(ticket, dict) and "error" in ticket:
|
156 |
-
status = f"🔴 ERROR: {ticket['error']}"
|
157 |
-
else:
|
158 |
-
status = "🔴 URGENTE - Asignado a Agente Humano" if urgent else "🟢 Enviado a Sistema Automático"
|
159 |
|
160 |
return category, "SÍ" if urgent else "NO", status
|
161 |
|
162 |
# 7. Interfaz de usuario con Gradio
|
163 |
with gr.Blocks(title="Sistema de Soporte Inteligente", theme=gr.themes.Soft()) as demo:
|
164 |
gr.Markdown("# 🚀 Sistema Clasificador de Tickets")
|
165 |
-
gr.Markdown(f"**Modo actual:** `{ticket_system.mode.upper()}` |
|
166 |
|
167 |
with gr.Row():
|
168 |
with gr.Column():
|
@@ -194,10 +208,10 @@ with gr.Blocks(title="Sistema de Soporte Inteligente", theme=gr.themes.Soft()) a
|
|
194 |
ticket_db = gr.JSON(label="Tickets Registrados")
|
195 |
update_btn = gr.Button("Actualizar Base de Datos")
|
196 |
|
197 |
-
with gr.Accordion("
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
|
202 |
# Event handlers
|
203 |
submit_btn.click(
|
|
|
5 |
import random
|
6 |
import requests
|
7 |
import gradio as gr
|
|
|
8 |
import torch
|
9 |
from dotenv import load_dotenv
|
10 |
from transformers import pipeline, AutoTokenizer
|
|
|
12 |
# Cargar variables de entorno
|
13 |
load_dotenv()
|
14 |
|
15 |
+
# 1. Configuración del modelo VERIFICADO
|
16 |
+
MODEL_NAME = "facebook/bart-large-mnli" # Modelo verificado y disponible
|
17 |
CATEGORIES = ["logística", "pagos", "producto defectuoso", "cuenta", "facturación", "otros"]
|
18 |
URGENCY_PATTERNS = [
|
19 |
r"\b(urgente|inmediato|cr[íi]tico|asap)\b",
|
|
|
108 |
with open(filename, 'w') as f:
|
109 |
json.dump(self.tickets, f, indent=2)
|
110 |
|
111 |
+
# 3. Cargar modelo de clasificación con manejo de errores
|
112 |
+
MODEL_LOADED = False
|
113 |
+
classifier = None
|
114 |
+
|
115 |
try:
|
116 |
+
# Intentar cargar el modelo principal
|
117 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
118 |
classifier = pipeline(
|
119 |
"zero-shot-classification",
|
120 |
model=MODEL_NAME,
|
121 |
+
device=0 if torch.cuda.is_available() else -1
|
|
|
|
|
122 |
)
|
123 |
MODEL_LOADED = True
|
124 |
+
print("✅ Modelo cargado exitosamente")
|
125 |
except Exception as e:
|
126 |
+
print(f"⚠️ Error cargando modelo principal: {e}")
|
127 |
+
try:
|
128 |
+
# Intentar modelo alternativo
|
129 |
+
MODEL_NAME = "valhalla/distilbart-mnli-12-1"
|
130 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
131 |
+
classifier = pipeline(
|
132 |
+
"zero-shot-classification",
|
133 |
+
model=MODEL_NAME,
|
134 |
+
device=0 if torch.cuda.is_available() else -1
|
135 |
+
)
|
136 |
+
MODEL_LOADED = True
|
137 |
+
print("✅ Modelo alternativo cargado exitosamente")
|
138 |
+
except Exception as alt_e:
|
139 |
+
print(f"⚠️ Error cargando modelo alternativo: {alt_e}")
|
140 |
+
print("🔶 Usando clasificador aleatorio como fallback")
|
141 |
|
142 |
# 4. Funciones de clasificación
|
143 |
def is_urgent(text: str) -> bool:
|
144 |
text = text.lower()
|
145 |
+
return any(re.search(pattern, text, flags=re.IGNORECASE) for pattern in URGENCY_PATTERNS)
|
|
|
|
|
146 |
|
147 |
def classify_text(text: str) -> str:
|
148 |
+
if not MODEL_LOADED or classifier is None:
|
149 |
+
return random.choice(CATEGORIES)
|
150 |
+
|
151 |
+
try:
|
152 |
+
result = classifier(text, CATEGORIES, multi_label=False)
|
153 |
+
return result['labels'][0]
|
154 |
+
except Exception as e:
|
155 |
+
print(f"⚠️ Error en clasificación: {e}")
|
156 |
return random.choice(CATEGORIES)
|
|
|
|
|
157 |
|
158 |
# 5. Inicializar sistema de tickets
|
159 |
ticket_system = TicketSystem()
|
|
|
169 |
# Crear ticket en el sistema
|
170 |
ticket = ticket_system.create_ticket(text, category, urgent)
|
171 |
|
172 |
+
status = "🔴 URGENTE - Asignado a Agente Humano" if urgent else "🟢 Enviado a Sistema Automático"
|
|
|
|
|
|
|
|
|
173 |
|
174 |
return category, "SÍ" if urgent else "NO", status
|
175 |
|
176 |
# 7. Interfaz de usuario con Gradio
|
177 |
with gr.Blocks(title="Sistema de Soporte Inteligente", theme=gr.themes.Soft()) as demo:
|
178 |
gr.Markdown("# 🚀 Sistema Clasificador de Tickets")
|
179 |
+
gr.Markdown(f"**Modo actual:** `{ticket_system.mode.upper()}` | **Modelo:** `{MODEL_NAME if MODEL_LOADED else 'RANDOM'}`")
|
180 |
|
181 |
with gr.Row():
|
182 |
with gr.Column():
|
|
|
208 |
ticket_db = gr.JSON(label="Tickets Registrados")
|
209 |
update_btn = gr.Button("Actualizar Base de Datos")
|
210 |
|
211 |
+
with gr.Accordion("Información del Sistema", open=False):
|
212 |
+
gr.Markdown(f"**Modelo de clasificación:** `{MODEL_NAME if MODEL_LOADED else 'ALEATORIO (fallback)'}`")
|
213 |
+
gr.Markdown(f"**Tickets procesados:** `{len(ticket_system.tickets)}`")
|
214 |
+
gr.Markdown(f"**Última actualización:** `{time.strftime('%Y-%m-%d %H:%M:%S')}`")
|
215 |
|
216 |
# Event handlers
|
217 |
submit_btn.click(
|
requirements.txt
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
torch
|
2 |
transformers
|
3 |
pandas
|
4 |
-
gradio
|
|
|
|
|
|
1 |
torch
|
2 |
transformers
|
3 |
pandas
|
4 |
+
gradio
|
5 |
+
python-dotenv
|
6 |
+
requests
|