Spaces:
Running
Running
A newer version of the Gradio SDK is available:
5.41.1
metadata
title: Research Tracker MCP
emoji: 🔬
colorFrom: red
colorTo: yellow
sdk: gradio
sdk_version: 5.38.2
app_file: app.py
pinned: false
Research Tracker MCP Server
A robust, performant MCP (Model Context Protocol) server that provides research inference utilities following MCP best practices. This server extracts research metadata from paper URLs, repository links, or research names using intelligent scraping and API integration.
Features
- Author inference from papers and repositories
- Cross-platform resource discovery (papers, code, models, datasets)
- Research metadata extraction (names, dates, licenses)
- URL classification and relationship mapping
- Comprehensive research ecosystem analysis
- Rate limiting to prevent API abuse
- Request caching with TTL for performance
- Robust error handling with typed exceptions
- Security validation for all URLs
- Retry logic with exponential backoff
Available MCP Tools
All functions are optimized for MCP usage with clear type hints and docstrings:
infer_authors
- Extract author names from papers and repositoriesinfer_paper_url
- Find associated research paper URLsinfer_code_repository
- Discover code repository linksinfer_research_name
- Extract research project namesclassify_research_url
- Classify URL types (paper/code/model/etc.)infer_organizations
- Identify affiliated organizationsinfer_publication_date
- Extract publication datesinfer_model
- Find associated HuggingFace modelsinfer_dataset
- Find associated HuggingFace datasetsinfer_space
- Find associated HuggingFace spacesinfer_license
- Extract license informationfind_research_relationships
- Comprehensive research ecosystem analysis
Input Support
- arXiv paper URLs (https://arxiv.org/abs/...)
- HuggingFace paper URLs (https://huggingface.co/papers/...) - Preferred over arXiv for better resource discovery
- GitHub repository URLs (https://github.com/...)
- HuggingFace model/dataset/space URLs
- Research paper titles and project names
- Project page URLs (github.io)
MCP Best Practices Implementation
This server follows official MCP best practices:
- Security: URL validation, domain allowlisting, input sanitization
- Performance: Request caching, rate limiting, connection pooling
- Reliability: Retry logic, graceful error handling, timeout management
- Documentation: Comprehensive docstrings with examples for all tools
- Error Handling: Typed exceptions for different failure scenarios
Environment Variables
HF_TOKEN
- Hugging Face API token (required)GITHUB_AUTH
- GitHub API token (optional, enables enhanced GitHub integration)
Usage
The server automatically launches as an MCP server when run. All inference functions are exposed as MCP tools for seamless integration with Claude and other AI assistants.
Example
Test with the 3D Arena paper:
Input: https://arxiv.org/abs/2506.18787
Finds: dataset (dylanebert/iso3d), space (dylanebert/LGM-tiny), and more
Rate Limits
- 30 requests per minute per tool
- Automatic caching reduces duplicate requests
- Graceful error messages when limits exceeded
Error Handling
The server provides clear error messages:
ValidationError
: Invalid or malicious URLsExternalAPIError
: External service failuresMCPError
: Rate limiting or other MCP issues