File size: 7,546 Bytes
ddda64f 1b4bea8 ddda64f 60e2f92 4d099cd dc20980 322605d 60e2f92 322605d 06920a9 8477430 ddda64f 8477430 ddda64f 322605d ddda64f 322605d 64ed80a 322605d dd21833 61b4df1 64ed80a 60e2f92 cf842b1 60e2f92 cf842b1 dc20980 60e2f92 64ed80a dc20980 cf842b1 6ef16d2 322605d ddda64f 61b4df1 ddda64f 264984d ddda64f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
os.environ["RWKV_V7_ON"] = '1' # ==> enable RWKV-7 mode
os.environ['RWKV_JIT_ON'] = '1' # '1' for better speed
os.environ["RWKV_CUDA_ON"] = '0' # '1' to compile CUDA kernel (10x faster), requires c++ compiler & cuda libraries
from huggingface_hub import hf_hub_download
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
load_dotenv()
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
self.graph = build_graph()
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
messages = [HumanMessage(content=question)]
messages = self.graph.invoke({"messages": messages})
answer = messages['messages'][-1].content
return answer[14:]
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
]
# Build graph function
def build_graph(provider: str = "rwkv"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "google":
# Google Gemini
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
# Groq https://console.groq.com/docs/models
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
elif provider == "huggingface":
# TODO: Add huggingface endpoint
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
temperature=0,
),
)
elif provider == "rwkv":
# --- BEGIN RWKV SETUP ---
title = "rwkv7-g1-1.5b-20250429-ctx4096"
pth = hf_hub_download(repo_id="BlinkDL/rwkv7-g1", filename=f"{title}.pth")
model_path = pth.replace(".pth", "")
raw_llm = RWKV(model=model_path, strategy='cpu fp16')
pipeline = PIPELINE(raw_llm, "rwkv_vocab_v20230424")
class RWKVWithTools:
def __init__(self, pipeline, system_prompt: str):
self.pipeline = pipeline
self.system_prompt = system_prompt
self.tools = []
def bind_tools(self, tools):
self.tools = tools
return self
def invoke(self, messages):
# Build a tools spec block
specs = []
for t in self.tools:
specs.append(f"- {t.name}({getattr(t, 'args_schema', {})}): {t.description}")
header = (
f"{self.system_prompt}\n\n"
"TOOLS AVAILABLE:\n"
+ "\n".join(specs)
+ "\n\n"
"To call a tool, respond exactly with:\n"
"`<tool_name>(arg1=…,arg2=…)` and nothing else.\n\n"
)
# Reconstruct conversation
convo = "\n".join(
f"{'User:' if isinstance(m, HumanMessage) else 'Assistant:'} {m.content}"
for m in messages
)
prompt = header + convo
print(f'Prompt: {prompt}')
# delegate to RWKV invoke()
out_str = self.pipeline.generate(prompt, token_count=300)
print(f'Response: {out_str}')
return out_str
llm = RWKVWithTools(pipeline, system_prompt=system_prompt)
# --- END RWKV SETUP ---
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile() |