File size: 7,546 Bytes
ddda64f
 
1b4bea8
ddda64f
 
 
 
 
 
 
 
 
 
 
 
60e2f92
4d099cd
dc20980
 
 
322605d
60e2f92
 
322605d
06920a9
 
8477430
 
 
ddda64f
 
8477430
 
ddda64f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322605d
ddda64f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322605d
 
64ed80a
322605d
dd21833
61b4df1
64ed80a
60e2f92
cf842b1
 
60e2f92
 
cf842b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc20980
 
60e2f92
 
64ed80a
dc20980
 
 
 
cf842b1
6ef16d2
322605d
ddda64f
 
61b4df1
ddda64f
 
 
 
 
 
 
 
 
 
 
264984d
ddda64f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool

os.environ["RWKV_V7_ON"] = '1' # ==> enable RWKV-7 mode
os.environ['RWKV_JIT_ON'] = '1' # '1' for better speed
os.environ["RWKV_CUDA_ON"] = '0' # '1' to compile CUDA kernel (10x faster), requires c++ compiler & cuda libraries

from huggingface_hub import hf_hub_download
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS

load_dotenv()

class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
        self.graph = build_graph()
        
    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        messages = [HumanMessage(content=question)]
        messages = self.graph.invoke({"messages": messages})
        answer = messages['messages'][-1].content
        return answer[14:]

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.

    Args:
        a: first int
        b: second int
    """
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a - b

@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.
    
    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    
    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"wiki_results": formatted_search_docs}

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    
    Args:
        query: The search query."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"web_results": formatted_search_docs}

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}



# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()


tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
]

# Build graph function
def build_graph(provider: str = "rwkv"):
    """Build the graph"""
    # Load environment variables from .env file
    if provider == "google":
        # Google Gemini
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "groq":
        # Groq https://console.groq.com/docs/models
        llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
    elif provider == "huggingface":
        # TODO: Add huggingface endpoint
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                temperature=0,
            ),
        )
    elif provider == "rwkv":
        # --- BEGIN RWKV SETUP ---
        title = "rwkv7-g1-1.5b-20250429-ctx4096"
        pth = hf_hub_download(repo_id="BlinkDL/rwkv7-g1", filename=f"{title}.pth")
        model_path = pth.replace(".pth", "")

        raw_llm = RWKV(model=model_path, strategy='cpu fp16')
        pipeline = PIPELINE(raw_llm, "rwkv_vocab_v20230424")

        class RWKVWithTools:
            def __init__(self, pipeline, system_prompt: str):
                self.pipeline = pipeline
                self.system_prompt = system_prompt
                self.tools = []

            def bind_tools(self, tools):
                self.tools = tools
                return self

            def invoke(self, messages):
                # Build a tools spec block
                specs = []
                for t in self.tools:
                    specs.append(f"- {t.name}({getattr(t, 'args_schema', {})}): {t.description}")

                header = (
                    f"{self.system_prompt}\n\n"
                    "TOOLS AVAILABLE:\n"
                    + "\n".join(specs)
                    + "\n\n"
                    "To call a tool, respond exactly with:\n"
                    "`<tool_name>(arg1=…,arg2=…)` and nothing else.\n\n"
                )

                # Reconstruct conversation
                convo = "\n".join(
                    f"{'User:' if isinstance(m, HumanMessage) else 'Assistant:'} {m.content}"
                    for m in messages
                )

                prompt = header + convo

                print(f'Prompt: {prompt}')
                
                # delegate to RWKV invoke()
                out_str = self.pipeline.generate(prompt, token_count=300)

                print(f'Response: {out_str}')

                return out_str

        llm = RWKVWithTools(pipeline, system_prompt=system_prompt)
        # --- END RWKV SETUP ---
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")

    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)

    # Node
    def assistant(state: MessagesState):
        """Assistant node"""
        return {"messages": [llm_with_tools.invoke(state["messages"])]}

    builder = StateGraph(MessagesState)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "assistant")
    builder.add_conditional_edges(
        "assistant",
        tools_condition,
    )
    builder.add_edge("tools", "assistant")

    # Compile graph
    return builder.compile()