budivoy commited on
Commit
ddda64f
·
verified ·
1 Parent(s): ad804a3

Copy code from https://huggingface.co/spaces/baixianger/RobotPai/blob/main/app.py

Browse files
Files changed (1) hide show
  1. agents.py +207 -3
agents.py CHANGED
@@ -1,8 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  class BasicAgent:
2
  def __init__(self):
3
  print("BasicAgent initialized.")
 
 
4
  def __call__(self, question: str) -> str:
5
  print(f"Agent received question (first 50 chars): {question[:50]}...")
6
- fixed_answer = "This is a default answer."
7
- print(f"Agent returning fixed answer: {fixed_answer}")
8
- return fixed_answer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """LangGraph Agent"""
2
+ import os
3
+ from langgraph.graph import START, StateGraph, MessagesState
4
+ from langgraph.prebuilt import tools_condition
5
+ from langgraph.prebuilt import ToolNode
6
+ from langchain_google_genai import ChatGoogleGenerativeAI
7
+ from langchain_groq import ChatGroq
8
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
9
+ from langchain_community.tools.tavily_search import TavilySearchResults
10
+ from langchain_community.document_loaders import WikipediaLoader
11
+ from langchain_community.document_loaders import ArxivLoader
12
+ from langchain_community.vectorstores import SupabaseVectorStore
13
+ from langchain_core.messages import SystemMessage, HumanMessage
14
+ from langchain_core.tools import tool
15
+ from langchain.tools.retriever import create_retriever_tool
16
+ from supabase.client import Client, create_client
17
+
18
  class BasicAgent:
19
  def __init__(self):
20
  print("BasicAgent initialized.")
21
+ self.graph = build_graph()
22
+
23
  def __call__(self, question: str) -> str:
24
  print(f"Agent received question (first 50 chars): {question[:50]}...")
25
+ messages = [HumanMessage(content=question)]
26
+ messages = self.graph.invoke({"messages": messages})
27
+ answer = messages['messages'][-1].content
28
+ return answer[14:]
29
+
30
+ @tool
31
+ def multiply(a: int, b: int) -> int:
32
+ """Multiply two numbers.
33
+
34
+ Args:
35
+ a: first int
36
+ b: second int
37
+ """
38
+ return a * b
39
+
40
+ @tool
41
+ def add(a: int, b: int) -> int:
42
+ """Add two numbers.
43
+
44
+ Args:
45
+ a: first int
46
+ b: second int
47
+ """
48
+ return a + b
49
+
50
+ @tool
51
+ def subtract(a: int, b: int) -> int:
52
+ """Subtract two numbers.
53
+
54
+ Args:
55
+ a: first int
56
+ b: second int
57
+ """
58
+ return a - b
59
+
60
+ @tool
61
+ def divide(a: int, b: int) -> int:
62
+ """Divide two numbers.
63
+
64
+ Args:
65
+ a: first int
66
+ b: second int
67
+ """
68
+ if b == 0:
69
+ raise ValueError("Cannot divide by zero.")
70
+ return a / b
71
+
72
+ @tool
73
+ def modulus(a: int, b: int) -> int:
74
+ """Get the modulus of two numbers.
75
+
76
+ Args:
77
+ a: first int
78
+ b: second int
79
+ """
80
+ return a % b
81
+
82
+ @tool
83
+ def wiki_search(query: str) -> str:
84
+ """Search Wikipedia for a query and return maximum 2 results.
85
+
86
+ Args:
87
+ query: The search query."""
88
+ search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
89
+ formatted_search_docs = "\n\n---\n\n".join(
90
+ [
91
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
92
+ for doc in search_docs
93
+ ])
94
+ return {"wiki_results": formatted_search_docs}
95
+
96
+ @tool
97
+ def web_search(query: str) -> str:
98
+ """Search Tavily for a query and return maximum 3 results.
99
+
100
+ Args:
101
+ query: The search query."""
102
+ search_docs = TavilySearchResults(max_results=3).invoke(query=query)
103
+ formatted_search_docs = "\n\n---\n\n".join(
104
+ [
105
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
106
+ for doc in search_docs
107
+ ])
108
+ return {"web_results": formatted_search_docs}
109
+
110
+ @tool
111
+ def arvix_search(query: str) -> str:
112
+ """Search Arxiv for a query and return maximum 3 result.
113
+
114
+ Args:
115
+ query: The search query."""
116
+ search_docs = ArxivLoader(query=query, load_max_docs=3).load()
117
+ formatted_search_docs = "\n\n---\n\n".join(
118
+ [
119
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
120
+ for doc in search_docs
121
+ ])
122
+ return {"arvix_results": formatted_search_docs}
123
+
124
+
125
+
126
+ # load the system prompt from the file
127
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
128
+ system_prompt = f.read()
129
+
130
+ # System message
131
+ sys_msg = SystemMessage(content=system_prompt)
132
+
133
+ # build a retriever
134
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
135
+ supabase: Client = create_client(
136
+ os.environ.get("SUPABASE_URL"),
137
+ os.environ.get("SUPABASE_SERVICE_KEY"))
138
+ vector_store = SupabaseVectorStore(
139
+ client=supabase,
140
+ embedding= embeddings,
141
+ table_name="documents",
142
+ query_name="match_documents_langchain",
143
+ )
144
+ create_retriever_tool = create_retriever_tool(
145
+ retriever=vector_store.as_retriever(),
146
+ name="Question Search",
147
+ description="A tool to retrieve similar questions from a vector store.",
148
+ )
149
+
150
+
151
+
152
+ tools = [
153
+ multiply,
154
+ add,
155
+ subtract,
156
+ divide,
157
+ modulus,
158
+ wiki_search,
159
+ web_search,
160
+ arvix_search,
161
+ ]
162
+
163
+ # Build graph function
164
+ def build_graph(provider: str = "groq"):
165
+ """Build the graph"""
166
+ # Load environment variables from .env file
167
+ if provider == "google":
168
+ # Google Gemini
169
+ llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
170
+ elif provider == "groq":
171
+ # Groq https://console.groq.com/docs/models
172
+ llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
173
+ elif provider == "huggingface":
174
+ # TODO: Add huggingface endpoint
175
+ llm = ChatHuggingFace(
176
+ llm=HuggingFaceEndpoint(
177
+ url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
178
+ temperature=0,
179
+ ),
180
+ )
181
+ else:
182
+ raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
183
+ # Bind tools to LLM
184
+ llm_with_tools = llm.bind_tools(tools)
185
+
186
+ # Node
187
+ def assistant(state: MessagesState):
188
+ """Assistant node"""
189
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
190
+
191
+ def retriever(state: MessagesState):
192
+ """Retriever node"""
193
+ similar_question = vector_store.similarity_search(state["messages"][0].content)
194
+ example_msg = HumanMessage(
195
+ content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
196
+ )
197
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
198
+
199
+ builder = StateGraph(MessagesState)
200
+ builder.add_node("retriever", retriever)
201
+ builder.add_node("assistant", assistant)
202
+ builder.add_node("tools", ToolNode(tools))
203
+ builder.add_edge(START, "retriever")
204
+ builder.add_edge("retriever", "assistant")
205
+ builder.add_conditional_edges(
206
+ "assistant",
207
+ tools_condition,
208
+ )
209
+ builder.add_edge("tools", "assistant")
210
+
211
+ # Compile graph
212
+ return builder.compile()