|
"""LangGraph Agent""" |
|
import os |
|
from dotenv import load_dotenv |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.prebuilt import ToolNode |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
from langchain.tools.retriever import create_retriever_tool |
|
from supabase.client import Client, create_client |
|
from langchain_openai import ChatOpenAI |
|
|
|
from langchain.tools import Tool |
|
from code_interpreter import CodeInterpreter |
|
|
|
from langchain_core.messages import AIMessage |
|
|
|
interpreter_instance = CodeInterpreter() |
|
|
|
|
|
load_dotenv() |
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
SUPABASE_URL = os.environ.get("SUPABASE_URL") |
|
SUPABASE_SERVICE_KEY = os.environ.get("SUPABASE_SERVICE_KEY") |
|
|
|
|
|
|
|
def multiply(a: int, b: int) -> int: |
|
return a * b |
|
|
|
multiply_tool = Tool( |
|
name="multiply", |
|
func=multiply, |
|
description="Multiply two numbers. Args (a: first int, b: second int)" |
|
) |
|
|
|
def add(a: int, b: int) -> int: |
|
return a + b |
|
|
|
add_tool = Tool( |
|
name="add", |
|
func=add, |
|
description="Add two numbers. Args (a: first int, b: second int)" |
|
) |
|
|
|
def substract(a: int, b: int) -> int: |
|
return a - b |
|
|
|
substract_tool = Tool( |
|
name="substract", |
|
func=substract, |
|
description="Substract two numbers. Args (a: first int, b: second int)" |
|
) |
|
|
|
def divide(a: int, b: int) -> int: |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
divide_tool = Tool( |
|
name="divide", |
|
func=divide, |
|
description="Divide two numbers. Args (a: first int, b: second int)" |
|
) |
|
|
|
def modulus(a: int, b: int) -> int: |
|
return a % b |
|
|
|
modulus_tool = Tool( |
|
name="modulus", |
|
func=modulus, |
|
description="Modulus two numbers. Args (a: first int, b: second int)" |
|
) |
|
|
|
def power(a: float, b: float) -> float: |
|
return a**b |
|
|
|
power_tool = Tool( |
|
name="power", |
|
func=power, |
|
description="Power two numbers. Args (a: first float, b: second float)" |
|
) |
|
|
|
def square_root(a: float) -> float | complex: |
|
if a >= 0: |
|
return a**0.5 |
|
return cmath.sqrt(a) |
|
|
|
square_root_power = Tool( |
|
name="square_root", |
|
func=square_root, |
|
description="Square two numbers. Args (a: float)" |
|
) |
|
|
|
|
|
|
|
|
|
def wiki_search(query: str) -> str: |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"wiki_results": formatted_search_docs} |
|
|
|
wiki_search_tool = Tool( |
|
name="wiki_search", |
|
func=wiki_search, |
|
description="Search Wikipedia for a query and return maximum 2 results. Args (query: the search query)" |
|
) |
|
|
|
def web_search(query: str) -> str: |
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"web_results": formatted_search_docs} |
|
|
|
web_search_tool = Tool( |
|
name="web_search", |
|
func=web_search, |
|
description="Search Tavily for a query and return maximum 3 results. Args (query: the search query)" |
|
) |
|
|
|
def arvix_search(query: str) -> str: |
|
"""Search Arxiv for a query and return maximum 3 result. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"arvix_results": formatted_search_docs} |
|
|
|
arvix_search_tool = Tool( |
|
name="arvix_search", |
|
func=arvix_search, |
|
description="Search Arxiv for a query and return maximum 3 result. Args (query: the search query)" |
|
) |
|
|
|
|
|
|
|
|
|
def execute_code_multilang(code: str, language: str = "python") -> str: |
|
"""Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results. |
|
Args: |
|
code (str): The source code to execute. |
|
language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java". |
|
Returns: |
|
A string summarizing the execution results (stdout, stderr, errors, plots, dataframes if any). |
|
""" |
|
supported_languages = ["python", "bash", "sql", "c", "java"] |
|
language = language.lower() |
|
|
|
if language not in supported_languages: |
|
return f"❌ Unsupported language: {language}. Supported languages are: {', '.join(supported_languages)}" |
|
|
|
result = interpreter_instance.execute_code(code, language=language) |
|
|
|
response = [] |
|
|
|
if result["status"] == "success": |
|
response.append(f"✅ Code executed successfully in **{language.upper()}**") |
|
|
|
if result.get("stdout"): |
|
response.append( |
|
"\n**Standard Output:**\n```\n" + result["stdout"].strip() + "\n```" |
|
) |
|
|
|
if result.get("stderr"): |
|
response.append( |
|
"\n**Standard Error (if any):**\n```\n" |
|
+ result["stderr"].strip() |
|
+ "\n```" |
|
) |
|
|
|
if result.get("result") is not None: |
|
response.append( |
|
"\n**Execution Result:**\n```\n" |
|
+ str(result["result"]).strip() |
|
+ "\n```" |
|
) |
|
|
|
if result.get("dataframes"): |
|
for df_info in result["dataframes"]: |
|
response.append( |
|
f"\n**DataFrame `{df_info['name']}` (Shape: {df_info['shape']})**" |
|
) |
|
df_preview = pd.DataFrame(df_info["head"]) |
|
response.append("First 5 rows:\n```\n" + str(df_preview) + "\n```") |
|
|
|
if result.get("plots"): |
|
response.append( |
|
f"\n**Generated {len(result['plots'])} plot(s)** (Image data returned separately)" |
|
) |
|
|
|
else: |
|
response.append(f"❌ Code execution failed in **{language.upper()}**") |
|
if result.get("stderr"): |
|
response.append( |
|
"\n**Error Log:**\n```\n" + result["stderr"].strip() + "\n```" |
|
) |
|
|
|
return "\n".join(response) |
|
|
|
execute_code_multilang_tool = Tool( |
|
name="execute_code_multilang", |
|
func=execute_code_multilang, |
|
description="""Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results. |
|
Args: |
|
code (str): The source code to execute. |
|
language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java". |
|
""" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
|
|
""" |
|
Using chroma database |
|
|
|
vector_store = Chroma( |
|
collection_name="gaia_dataset", |
|
embedding_function=embeddings, |
|
persist_directory="./data/chroma_langchain_db", # Where to save data locally, remove if not necessary |
|
) |
|
# It's not going to be used later |
|
create_retriever_tool = create_retriever_tool( |
|
retriever=vector_store.as_retriever(), |
|
name="Question Search", |
|
description="A tool to retrieve similar questions from a vector store.", |
|
) |
|
""" |
|
|
|
|
|
|
|
supabase: Client = create_client(SUPABASE_URL, SUPABASE_SERVICE_KEY) |
|
vector_store = SupabaseVectorStore( |
|
embedding=embeddings, |
|
client=supabase, |
|
table_name="gaia_dataset", |
|
query_name="match_documents", |
|
) |
|
create_retriever_tool = create_retriever_tool( |
|
retriever=vector_store.as_retriever(), |
|
name="Question Search", |
|
description="A tool to retrieve similar questions from a vector store.", |
|
) |
|
|
|
|
|
|
|
with open("system_prompt.txt", "r", encoding="utf-8") as f: |
|
system_prompt = f.read() |
|
|
|
|
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
tools = [ |
|
multiply_tool, |
|
add_tool, |
|
substract_tool, |
|
divide_tool, |
|
modulus_tool, |
|
power_tool, |
|
square_root, |
|
wiki_search_tool, |
|
web_search_tool, |
|
arvix_search_tool, |
|
execute_code_multilang_tool, |
|
|
|
] |
|
|
|
|
|
def build_graph(provider: str = "huggingface"): |
|
"""Build the graph""" |
|
|
|
if provider == "google": |
|
|
|
chat = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) |
|
elif provider == "groq": |
|
|
|
chat = ChatGroq(model="qwen-qwq-32b", temperature=0) |
|
elif provider == "openai": |
|
|
|
model_openai = "gpt-4o" |
|
chat = ChatOpenAI( |
|
model=model_openai, |
|
temperature=0, |
|
api_key=OPENAI_API_KEY |
|
) |
|
elif provider == "huggingface": |
|
|
|
|
|
|
|
|
|
|
|
repo_id = "WizardLMTeam/WizardCoder-15B-V1.0" |
|
chat = ChatHuggingFace( |
|
|
|
|
|
|
|
|
|
llm=HuggingFaceEndpoint( |
|
repo_id=repo_id, |
|
temperature=0.1 |
|
) |
|
) |
|
else: |
|
raise ValueError("Invalid provider. Choose 'google', 'groq', 'openai' or 'huggingface'.") |
|
|
|
chat_with_tools = chat.bind_tools(tools) |
|
|
|
|
|
def assistant(state: MessagesState): |
|
"""Assistant node""" |
|
return {"messages": [chat_with_tools.invoke(state["messages"])]} |
|
|
|
def retriever(state: MessagesState): |
|
query = state["messages"][-1].content |
|
similar_doc = vector_store.similarity_search(query, k=1)[0] |
|
|
|
content = similar_doc.page_content |
|
if "Final answer :" in content: |
|
answer = content.split("Final answer :")[-1].strip() |
|
else: |
|
answer = content.strip() |
|
|
|
return {"messages": [AIMessage(content=answer)]} |
|
|
|
""" |
|
Graph with retriever and tools |
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("retriever", retriever) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
builder.add_edge(START, "retriever") |
|
builder.add_edge("retriever", "assistant") |
|
builder.add_conditional_edges( |
|
"assistant", |
|
tools_condition, |
|
) |
|
#builder.add_edge("tools", "assistant") |
|
""" |
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("retriever", retriever) |
|
|
|
builder.set_entry_point("retriever") |
|
builder.set_finish_point("retriever") |
|
|
|
return builder.compile() |
|
|
|
|
|
""" |
|
Graph with tools conditions |
|
|
|
builder = StateGraph(MessagesState) |
|
# Define nodes: these do the work |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
# Define edges: these determine how the control flow moves |
|
builder.add_edge(START, "assistant") |
|
builder.add_conditional_edges( |
|
"assistant", |
|
# If the latest message requires a tool, route to tools |
|
# Otherwise, provide a direct response |
|
tools_condition, |
|
) |
|
builder.add_edge("tools", "assistant") |
|
# Compile graph |
|
return builder.compile() |
|
""" |
|
|