Spaces:
Sleeping
Sleeping
File size: 9,782 Bytes
925ba47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import sys
sys.path.insert(0, "./SMT")
from smt_trainer import SMT_Trainer
from smt_model.modeling_smt import SMTModelForCausalLM
import torch
import gradio as gr
import numpy as np
import pandas as pd
import cv2
from math import sqrt
CA_layers = list()
colors = [ (128, 0, 0),
(128, 64, 0),
(128, 128, 0),
( 0, 128, 0),
( 0, 128, 128),
( 0, 64, 128),
( 0, 0, 128),
(128, 0, 128),
(128, 0, 0)
]
def contrast(elem):
return elem!=0
def overlay(background:np.ndarray, overlay:np.ndarray, alpha=1):
"""
:param background: BGR image (np.uint8)
:param overlay: BGRA image (np.uint8)
:param alpha: Transparency of overlay over background
returns BGR image of combined images (np.float32)
"""
# add alpha channel to background
background = np.concatenate([background, np.full([*background.shape[:2], 1], 1.0)], axis=-1 )
# normalize overlay alpha channel from 0-255 to 0.-1.
alpha_background = 1.0
alpha_overlay = overlay[:,:,3] / 255.0 * alpha
for channel in range(3):
background[:,:,channel] = alpha_overlay * overlay[:,:,channel] + \
alpha_background * background[:,:,channel] * ( 1 - alpha_overlay )
background[:,:,3] = ( 1 - ( 1 - alpha_overlay ) * ( 1 - alpha_background ) ) * 255
# ignore alpha channel because gradio doesnt care
# also divide by 255 because somehow it needs a float image even though it gives int images
return (background[:,:,:3]/255.0).astype(np.float32)
def generate_CA_images(token_idx, image, multiplier=1):
global CA_layers
CA_final_images = []
# resize to fit input image (value in 0-1)
masks = [ cv2.resize(CA_layers[layer_idx][token_idx],
interpolation=cv2.INTER_NEAREST,
dsize=(image.shape[1], image.shape[0])) for layer_idx in range(0, len(CA_layers)) ]
for i,mask in enumerate(masks):
# apply multiplier
mask *= multiplier
# normalize values above 1
max_pixel = np.max(mask)
if max_pixel > 1:
mask /= max_pixel
# (convert to values in 0-255)
mask = np.round(mask*255.0).astype(np.uint8)
# add singleton dimension as channel
mask = np.expand_dims(mask, axis=-1)
# base color + transparency mask = BGRA
ca = np.concatenate( (np.full(shape=image.shape, fill_value=colors[i]), mask ), axis=-1)
CA_final_images.append(overlay(image, ca))
return CA_final_images
def make_predictions(checkpoint, input_image, input_type:int):
global CA_layers
# take from huggingface
if input_type == 0:
# TODO this doesnt work because the HuggingFace weights aren't updated
model = SMTModelForCausalLM.from_pretrained("antoniorv6/smt-grandstaff")
model.to(device=model.positional_2D.pe.device)
input_image = np.mean(input_image, axis=2, keepdims=True) # 3 channels to one
input_image = np.transpose(input_image, (2,0,1))[None, :] # add batch size as well, [B, C, H, W]
input_image = torch.from_numpy(input_image)#.to(device=model.positional_2D.pe.device)
# take from checkpoint variable
elif input_type == 1:
model = SMT_Trainer.load_from_checkpoint(checkpoint).model
model.to(device=model.pos2D.pe.device)
input_image = np.mean(input_image, axis=2, keepdims=True) # 3 channels to one
input_image = np.transpose(input_image, (2,0,1))[None, :] # add batch size as well, [B, C, H, W]
input_image = torch.from_numpy(input_image).to(device=model.pos2D.pe.device)
input_image = input_image.to(torch.float32)
# width / height
aspect_ratio = input_image.shape[3]/input_image.shape[2]
# 8 attention layers * [channels | seq_len | extracted_features]
# extracted features is FLAT input_image shape divided by 16
predicted_seq, predictions = model.predict(input_image, return_weights=True)
# seq_len | reduced_h * reduced_w
CA_layers = [ ca_layer.mean(dim=1).squeeze() for ca_layer in predictions.cross_attentions ]
seq_len = CA_layers[0].shape[0]
att_w = round(sqrt(CA_layers[0].shape[1] * aspect_ratio))
att_h = round(sqrt(CA_layers[0].shape[1] / aspect_ratio))
# make the attention 2-D
CA_layers = [ att.reshape( seq_len, att_h, att_w ) for att in CA_layers ]
# convert to numpy
CA_layers = [ att.cpu().detach().numpy() for att in CA_layers ]
# ^^^ we store this, then generate the actual images to display ONLY whenever the token slider is moved
overall = np.stack(CA_layers).sum(axis=0)
## normalize
overall_max_value = np.max(overall)
if overall_max_value > 1.0:
overall /= np.max(overall)
CA_layers.append(overall)
return pd.DataFrame([predicted_seq])
def define_input_source( choice:gr.SelectData ):
"""
Defines the interface according to the inputs the user has chosen to work with
"""
if choice.index == 0: # pretrained weights
return gr.update(visible=False), 0 # file input invisible, input type state update
elif choice.index == 1: # your own weights
return gr.update(visible=True), 1 # file input visible, input type state update
def define_interface():
# main components
file_input = gr.File(label="Model Checkpoint File", visible=False, interactive=True)
image_input = gr.Image(label="Input Image")
tabs = gr.Tabs()
# knob components
token_slider = gr.Slider(minimum=0, maximum=0, step=1,
label="Pick a token",
info="Select a predicted token to visualize the attention it pays in the input sample",
visible=False)
intensifier_slider = gr.Slider(minimum=1, maximum=100, step=1,
label="Intensify attention",
info="Use this slider to intensify the attention values to better see differences",
value = 10,
visible=False)
token_table = gr.DataFrame(interactive=False, value=pd.DataFrame(["The predicted sequence will appear here"]))
def intensifier_visibility():
"""
Makes intensifier slider visible whenever token slider is changed
"""
return gr.update(visible=True)
with gr.Blocks() as page:
###
token_slider.release( fn=intensifier_visibility, outputs=intensifier_slider )
###
gr.Markdown("# SMT Demonstrator")
with gr.Row():
with gr.Column():
'''
model_interface = gr.Interface(make_predictions,
inputs=[file_input, image_input, input_type],
outputs=[token_table],
flagging_mode='never')
'''
# input area
with gr.Blocks():
select_src_weights = gr.Dropdown(["Test pretrained weights (default)", "Test your own weights"],
label="Pick which weights to test out",
interactive=True)
# State variable -- Weights source picked by user
input_type = gr.Number(value=0, visible=False)
select_src_weights.select( define_input_source, outputs=[file_input, input_type] )
file_input.render()
image_input.render()
with gr.Row():
def submit_logic(file, image, type):
return make_predictions(file, image, type), gr.update(visible=True), gr.update(visible=True)
clear_btn = gr.ClearButton( components=[file_input, image_input] )
submit_btn = gr.Button( value="Submit", variant="primary")
submit_btn.click( fn=submit_logic,
inputs=[file_input, image_input, input_type],
outputs=[token_table, token_slider, intensifier_slider] )
with gr.Column(scale=2):
token_slider.render()
# State variable -- Tab the user left off on
tab_selected = gr.Number(value="8", visible=False) # on Overall Attention tab by default
# genera las imagenes cada vez que se mueve el slider
@gr.render( inputs =[token_table, token_slider, image_input, intensifier_slider, tab_selected],
triggers=[token_slider.release, intensifier_slider.release, token_table.change])
def render_images_display(prediction, slider, image, intensifier, tab_no):
if prediction.shape[0] > 0:
images = generate_CA_images(slider, image, intensifier)
gr.Markdown(value="## Contents of the Cross-Attention layers")
with gr.Tabs(selected=f"{tab_no}") as tabs:
with gr.Tab(f"Overall", id="8") as tab_overall:
tab_overall.select( (lambda : gr.Number(8)), outputs=[tab_selected] )
gr.Image(value=images[8])
with gr.Tab(f"Layer 1", id=f"0") as tab_1:
tab_1.select( (lambda : gr.Number(0)), outputs=[tab_selected] )
gr.Image(value=images[0])
with gr.Tab(f"Layer 2", id=f"1") as tab_2:
tab_2.select( (lambda : gr.Number(1)), outputs=[tab_selected] )
gr.Image(value=images[1])
with gr.Tab(f"Layer 3", id=f"2") as tab_3:
tab_3.select( (lambda : gr.Number(2)), outputs=[tab_selected] )
gr.Image(value=images[2])
with gr.Tab(f"Layer 4", id=f"3") as tab_4:
tab_4.select( (lambda : gr.Number(3)), outputs=[tab_selected] )
gr.Image(value=images[3])
with gr.Tab(f"Layer 5", id=f"4") as tab_5:
tab_5.select( (lambda : gr.Number(4)), outputs=[tab_selected] )
gr.Image(value=images[4])
with gr.Tab(f"Layer 6", id=f"5") as tab_6:
tab_6.select( (lambda : gr.Number(5)), outputs=[tab_selected] )
gr.Image(value=images[5])
with gr.Tab(f"Layer 7", id=f"6") as tab_7:
tab_7.select( (lambda : gr.Number(6)), outputs=[tab_selected] )
gr.Image(value=images[6])
with gr.Tab(f"Layer 8", id=f"7") as tab_8:
tab_8.select( (lambda : gr.Number(7)), outputs=[tab_selected] )
gr.Image(value=images[7])
intensifier_slider.render()
with gr.Column():
gr.Markdown("## Predicted Sequence")
def render_prediction_display(tokens):
return gr.Slider(maximum=tokens.shape[0], visible=True), gr.update(visible=True)
token_table.render()
token_table.change(render_prediction_display, inputs=[token_table], outputs=[token_slider, token_table])
return page
if __name__=="__main__":
page = define_interface()
page.launch(share=False)
|