Spaces:
Sleeping
Sleeping
rename to fit
Browse files
app.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.insert(0, "./SMT")
|
3 |
+
|
4 |
+
from smt_trainer import SMT_Trainer
|
5 |
+
from smt_model.modeling_smt import SMTModelForCausalLM
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
import cv2
|
12 |
+
|
13 |
+
from math import sqrt
|
14 |
+
|
15 |
+
CA_layers = list()
|
16 |
+
|
17 |
+
colors = [ (128, 0, 0),
|
18 |
+
(128, 64, 0),
|
19 |
+
(128, 128, 0),
|
20 |
+
( 0, 128, 0),
|
21 |
+
( 0, 128, 128),
|
22 |
+
( 0, 64, 128),
|
23 |
+
( 0, 0, 128),
|
24 |
+
(128, 0, 128),
|
25 |
+
(128, 0, 0)
|
26 |
+
]
|
27 |
+
|
28 |
+
def contrast(elem):
|
29 |
+
return elem!=0
|
30 |
+
|
31 |
+
def overlay(background:np.ndarray, overlay:np.ndarray, alpha=1):
|
32 |
+
"""
|
33 |
+
:param background: BGR image (np.uint8)
|
34 |
+
:param overlay: BGRA image (np.uint8)
|
35 |
+
:param alpha: Transparency of overlay over background
|
36 |
+
|
37 |
+
returns BGR image of combined images (np.float32)
|
38 |
+
"""
|
39 |
+
|
40 |
+
# add alpha channel to background
|
41 |
+
background = np.concatenate([background, np.full([*background.shape[:2], 1], 1.0)], axis=-1 )
|
42 |
+
|
43 |
+
# normalize overlay alpha channel from 0-255 to 0.-1.
|
44 |
+
alpha_background = 1.0
|
45 |
+
alpha_overlay = overlay[:,:,3] / 255.0 * alpha
|
46 |
+
|
47 |
+
for channel in range(3):
|
48 |
+
|
49 |
+
background[:,:,channel] = alpha_overlay * overlay[:,:,channel] + \
|
50 |
+
alpha_background * background[:,:,channel] * ( 1 - alpha_overlay )
|
51 |
+
|
52 |
+
background[:,:,3] = ( 1 - ( 1 - alpha_overlay ) * ( 1 - alpha_background ) ) * 255
|
53 |
+
|
54 |
+
# ignore alpha channel because gradio doesnt care
|
55 |
+
# also divide by 255 because somehow it needs a float image even though it gives int images
|
56 |
+
return (background[:,:,:3]/255.0).astype(np.float32)
|
57 |
+
|
58 |
+
def generate_CA_images(token_idx, image, multiplier=1):
|
59 |
+
|
60 |
+
global CA_layers
|
61 |
+
|
62 |
+
CA_final_images = []
|
63 |
+
|
64 |
+
# resize to fit input image (value in 0-1)
|
65 |
+
masks = [ cv2.resize(CA_layers[layer_idx][token_idx],
|
66 |
+
interpolation=cv2.INTER_NEAREST,
|
67 |
+
dsize=(image.shape[1], image.shape[0])) for layer_idx in range(0, len(CA_layers)) ]
|
68 |
+
|
69 |
+
for i,mask in enumerate(masks):
|
70 |
+
|
71 |
+
# apply multiplier
|
72 |
+
mask *= multiplier
|
73 |
+
|
74 |
+
# normalize values above 1
|
75 |
+
max_pixel = np.max(mask)
|
76 |
+
if max_pixel > 1:
|
77 |
+
mask /= max_pixel
|
78 |
+
|
79 |
+
# (convert to values in 0-255)
|
80 |
+
mask = np.round(mask*255.0).astype(np.uint8)
|
81 |
+
|
82 |
+
# add singleton dimension as channel
|
83 |
+
mask = np.expand_dims(mask, axis=-1)
|
84 |
+
|
85 |
+
# base color + transparency mask = BGRA
|
86 |
+
ca = np.concatenate( (np.full(shape=image.shape, fill_value=colors[i]), mask ), axis=-1)
|
87 |
+
|
88 |
+
CA_final_images.append(overlay(image, ca))
|
89 |
+
|
90 |
+
return CA_final_images
|
91 |
+
|
92 |
+
def make_predictions(checkpoint, input_image, input_type:int):
|
93 |
+
|
94 |
+
global CA_layers
|
95 |
+
|
96 |
+
# take from huggingface
|
97 |
+
if input_type == 0:
|
98 |
+
# TODO this doesnt work because the HuggingFace weights aren't updated
|
99 |
+
model = SMTModelForCausalLM.from_pretrained("antoniorv6/smt-grandstaff")
|
100 |
+
model.to(device=model.positional_2D.pe.device)
|
101 |
+
input_image = np.mean(input_image, axis=2, keepdims=True) # 3 channels to one
|
102 |
+
input_image = np.transpose(input_image, (2,0,1))[None, :] # add batch size as well, [B, C, H, W]
|
103 |
+
input_image = torch.from_numpy(input_image)#.to(device=model.positional_2D.pe.device)
|
104 |
+
|
105 |
+
|
106 |
+
# take from checkpoint variable
|
107 |
+
elif input_type == 1:
|
108 |
+
model = SMT_Trainer.load_from_checkpoint(checkpoint).model
|
109 |
+
model.to(device=model.pos2D.pe.device)
|
110 |
+
input_image = np.mean(input_image, axis=2, keepdims=True) # 3 channels to one
|
111 |
+
input_image = np.transpose(input_image, (2,0,1))[None, :] # add batch size as well, [B, C, H, W]
|
112 |
+
input_image = torch.from_numpy(input_image).to(device=model.pos2D.pe.device)
|
113 |
+
|
114 |
+
input_image = input_image.to(torch.float32)
|
115 |
+
|
116 |
+
# width / height
|
117 |
+
aspect_ratio = input_image.shape[3]/input_image.shape[2]
|
118 |
+
|
119 |
+
# 8 attention layers * [channels | seq_len | extracted_features]
|
120 |
+
# extracted features is FLAT input_image shape divided by 16
|
121 |
+
predicted_seq, predictions = model.predict(input_image, return_weights=True)
|
122 |
+
|
123 |
+
# seq_len | reduced_h * reduced_w
|
124 |
+
CA_layers = [ ca_layer.mean(dim=1).squeeze() for ca_layer in predictions.cross_attentions ]
|
125 |
+
|
126 |
+
seq_len = CA_layers[0].shape[0]
|
127 |
+
att_w = round(sqrt(CA_layers[0].shape[1] * aspect_ratio))
|
128 |
+
att_h = round(sqrt(CA_layers[0].shape[1] / aspect_ratio))
|
129 |
+
|
130 |
+
# make the attention 2-D
|
131 |
+
CA_layers = [ att.reshape( seq_len, att_h, att_w ) for att in CA_layers ]
|
132 |
+
|
133 |
+
# convert to numpy
|
134 |
+
CA_layers = [ att.cpu().detach().numpy() for att in CA_layers ]
|
135 |
+
# ^^^ we store this, then generate the actual images to display ONLY whenever the token slider is moved
|
136 |
+
|
137 |
+
overall = np.stack(CA_layers).sum(axis=0)
|
138 |
+
|
139 |
+
## normalize
|
140 |
+
overall_max_value = np.max(overall)
|
141 |
+
if overall_max_value > 1.0:
|
142 |
+
overall /= np.max(overall)
|
143 |
+
|
144 |
+
CA_layers.append(overall)
|
145 |
+
|
146 |
+
return pd.DataFrame([predicted_seq])
|
147 |
+
|
148 |
+
def define_input_source( choice:gr.SelectData ):
|
149 |
+
"""
|
150 |
+
Defines the interface according to the inputs the user has chosen to work with
|
151 |
+
"""
|
152 |
+
|
153 |
+
if choice.index == 0: # pretrained weights
|
154 |
+
return gr.update(visible=False), 0 # file input invisible, input type state update
|
155 |
+
|
156 |
+
elif choice.index == 1: # your own weights
|
157 |
+
return gr.update(visible=True), 1 # file input visible, input type state update
|
158 |
+
|
159 |
+
def define_interface():
|
160 |
+
|
161 |
+
# main components
|
162 |
+
file_input = gr.File(label="Model Checkpoint File", visible=False, interactive=True)
|
163 |
+
image_input = gr.Image(label="Input Image")
|
164 |
+
tabs = gr.Tabs()
|
165 |
+
|
166 |
+
# knob components
|
167 |
+
token_slider = gr.Slider(minimum=0, maximum=0, step=1,
|
168 |
+
label="Pick a token",
|
169 |
+
info="Select a predicted token to visualize the attention it pays in the input sample",
|
170 |
+
visible=False)
|
171 |
+
|
172 |
+
intensifier_slider = gr.Slider(minimum=1, maximum=100, step=1,
|
173 |
+
label="Intensify attention",
|
174 |
+
info="Use this slider to intensify the attention values to better see differences",
|
175 |
+
value = 10,
|
176 |
+
visible=False)
|
177 |
+
|
178 |
+
token_table = gr.DataFrame(interactive=False, value=pd.DataFrame(["The predicted sequence will appear here"]))
|
179 |
+
|
180 |
+
def intensifier_visibility():
|
181 |
+
"""
|
182 |
+
Makes intensifier slider visible whenever token slider is changed
|
183 |
+
"""
|
184 |
+
return gr.update(visible=True)
|
185 |
+
|
186 |
+
with gr.Blocks() as page:
|
187 |
+
|
188 |
+
###
|
189 |
+
token_slider.release( fn=intensifier_visibility, outputs=intensifier_slider )
|
190 |
+
###
|
191 |
+
|
192 |
+
gr.Markdown("# SMT Demonstrator")
|
193 |
+
|
194 |
+
with gr.Row():
|
195 |
+
|
196 |
+
with gr.Column():
|
197 |
+
|
198 |
+
'''
|
199 |
+
model_interface = gr.Interface(make_predictions,
|
200 |
+
inputs=[file_input, image_input, input_type],
|
201 |
+
outputs=[token_table],
|
202 |
+
flagging_mode='never')
|
203 |
+
'''
|
204 |
+
|
205 |
+
# input area
|
206 |
+
with gr.Blocks():
|
207 |
+
select_src_weights = gr.Dropdown(["Test pretrained weights (default)", "Test your own weights"],
|
208 |
+
label="Pick which weights to test out",
|
209 |
+
interactive=True)
|
210 |
+
|
211 |
+
# State variable -- Weights source picked by user
|
212 |
+
input_type = gr.Number(value=0, visible=False)
|
213 |
+
|
214 |
+
select_src_weights.select( define_input_source, outputs=[file_input, input_type] )
|
215 |
+
|
216 |
+
file_input.render()
|
217 |
+
image_input.render()
|
218 |
+
|
219 |
+
with gr.Row():
|
220 |
+
|
221 |
+
def submit_logic(file, image, type):
|
222 |
+
|
223 |
+
return make_predictions(file, image, type), gr.update(visible=True), gr.update(visible=True)
|
224 |
+
|
225 |
+
clear_btn = gr.ClearButton( components=[file_input, image_input] )
|
226 |
+
|
227 |
+
submit_btn = gr.Button( value="Submit", variant="primary")
|
228 |
+
submit_btn.click( fn=submit_logic,
|
229 |
+
inputs=[file_input, image_input, input_type],
|
230 |
+
outputs=[token_table, token_slider, intensifier_slider] )
|
231 |
+
|
232 |
+
with gr.Column(scale=2):
|
233 |
+
|
234 |
+
token_slider.render()
|
235 |
+
|
236 |
+
# State variable -- Tab the user left off on
|
237 |
+
tab_selected = gr.Number(value="8", visible=False) # on Overall Attention tab by default
|
238 |
+
|
239 |
+
# genera las imagenes cada vez que se mueve el slider
|
240 |
+
@gr.render( inputs =[token_table, token_slider, image_input, intensifier_slider, tab_selected],
|
241 |
+
triggers=[token_slider.release, intensifier_slider.release, token_table.change])
|
242 |
+
def render_images_display(prediction, slider, image, intensifier, tab_no):
|
243 |
+
|
244 |
+
if prediction.shape[0] > 0:
|
245 |
+
|
246 |
+
images = generate_CA_images(slider, image, intensifier)
|
247 |
+
|
248 |
+
gr.Markdown(value="## Contents of the Cross-Attention layers")
|
249 |
+
|
250 |
+
with gr.Tabs(selected=f"{tab_no}") as tabs:
|
251 |
+
|
252 |
+
with gr.Tab(f"Overall", id="8") as tab_overall:
|
253 |
+
tab_overall.select( (lambda : gr.Number(8)), outputs=[tab_selected] )
|
254 |
+
gr.Image(value=images[8])
|
255 |
+
|
256 |
+
with gr.Tab(f"Layer 1", id=f"0") as tab_1:
|
257 |
+
tab_1.select( (lambda : gr.Number(0)), outputs=[tab_selected] )
|
258 |
+
gr.Image(value=images[0])
|
259 |
+
|
260 |
+
with gr.Tab(f"Layer 2", id=f"1") as tab_2:
|
261 |
+
tab_2.select( (lambda : gr.Number(1)), outputs=[tab_selected] )
|
262 |
+
gr.Image(value=images[1])
|
263 |
+
|
264 |
+
with gr.Tab(f"Layer 3", id=f"2") as tab_3:
|
265 |
+
tab_3.select( (lambda : gr.Number(2)), outputs=[tab_selected] )
|
266 |
+
gr.Image(value=images[2])
|
267 |
+
|
268 |
+
with gr.Tab(f"Layer 4", id=f"3") as tab_4:
|
269 |
+
tab_4.select( (lambda : gr.Number(3)), outputs=[tab_selected] )
|
270 |
+
gr.Image(value=images[3])
|
271 |
+
|
272 |
+
with gr.Tab(f"Layer 5", id=f"4") as tab_5:
|
273 |
+
tab_5.select( (lambda : gr.Number(4)), outputs=[tab_selected] )
|
274 |
+
gr.Image(value=images[4])
|
275 |
+
|
276 |
+
with gr.Tab(f"Layer 6", id=f"5") as tab_6:
|
277 |
+
tab_6.select( (lambda : gr.Number(5)), outputs=[tab_selected] )
|
278 |
+
gr.Image(value=images[5])
|
279 |
+
|
280 |
+
with gr.Tab(f"Layer 7", id=f"6") as tab_7:
|
281 |
+
tab_7.select( (lambda : gr.Number(6)), outputs=[tab_selected] )
|
282 |
+
gr.Image(value=images[6])
|
283 |
+
|
284 |
+
with gr.Tab(f"Layer 8", id=f"7") as tab_8:
|
285 |
+
tab_8.select( (lambda : gr.Number(7)), outputs=[tab_selected] )
|
286 |
+
gr.Image(value=images[7])
|
287 |
+
|
288 |
+
intensifier_slider.render()
|
289 |
+
|
290 |
+
with gr.Column():
|
291 |
+
|
292 |
+
|
293 |
+
gr.Markdown("## Predicted Sequence")
|
294 |
+
|
295 |
+
def render_prediction_display(tokens):
|
296 |
+
return gr.Slider(maximum=tokens.shape[0], visible=True), gr.update(visible=True)
|
297 |
+
|
298 |
+
token_table.render()
|
299 |
+
token_table.change(render_prediction_display, inputs=[token_table], outputs=[token_slider, token_table])
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
return page
|
304 |
+
|
305 |
+
if __name__=="__main__":
|
306 |
+
page = define_interface()
|
307 |
+
page.launch(share=False)
|
308 |
+
|