Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys | |
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) | |
#import subprocess | |
#subprocess.run('pip install flash-attn==2.7.4.post1 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
# wan2.2-main/gradio_ti2v.py | |
import gradio as gr | |
import torch | |
from huggingface_hub import snapshot_download | |
from PIL import Image | |
import random | |
import numpy as np | |
import spaces | |
import wan | |
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES | |
from wan.utils.utils import cache_video | |
# --- 1. Global Setup and Model Loading --- | |
print("Starting Gradio App for Wan 2.2 TI2V-5B...") | |
# Download model snapshots from Hugging Face Hub | |
repo_id = "Wan-AI/Wan2.2-TI2V-5B" | |
print(f"Downloading/loading checkpoints for {repo_id}...") | |
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False) | |
print(f"Using checkpoints from {ckpt_dir}") | |
# Load the model configuration | |
TASK_NAME = 'ti2v-5B' | |
cfg = WAN_CONFIGS[TASK_NAME] | |
FIXED_FPS = 24 | |
MIN_FRAMES_MODEL = 8 | |
MAX_FRAMES_MODEL = 121 | |
# Instantiate the pipeline in the global scope | |
print("Initializing WanTI2V pipeline...") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
device_id = 0 if torch.cuda.is_available() else -1 | |
pipeline = wan.WanTI2V( | |
config=cfg, | |
checkpoint_dir=ckpt_dir, | |
device_id=device_id, | |
rank=0, | |
t5_fsdp=False, | |
dit_fsdp=False, | |
use_sp=False, | |
t5_cpu=False, | |
init_on_cpu=True, | |
convert_model_dtype=True, | |
) | |
print("Pipeline initialized and ready.") | |
# --- Helper Functions --- | |
def select_best_size_for_image(image, available_sizes): | |
"""Select the size option with aspect ratio closest to the input image.""" | |
if image is None: | |
return available_sizes[0] # Return first option if no image | |
img_width, img_height = image.size | |
img_aspect_ratio = img_height / img_width | |
best_size = available_sizes[0] | |
best_diff = float('inf') | |
for size_str in available_sizes: | |
# Parse size string like "704*1280" | |
height, width = map(int, size_str.split('*')) | |
size_aspect_ratio = height / width | |
diff = abs(img_aspect_ratio - size_aspect_ratio) | |
if diff < best_diff: | |
best_diff = diff | |
best_size = size_str | |
return best_size | |
def handle_image_upload(image): | |
"""Handle image upload and return the best matching size.""" | |
if image is None: | |
return gr.update() | |
pil_image = Image.fromarray(image).convert("RGB") | |
available_sizes = list(SUPPORTED_SIZES[TASK_NAME]) | |
best_size = select_best_size_for_image(pil_image, available_sizes) | |
return gr.update(value=best_size) | |
def get_duration(image, prompt, size, duration_seconds, sampling_steps, guide_scale, shift, seed): | |
"""Calculate dynamic GPU duration based on parameters.""" | |
if sampling_steps > 35 and duration_seconds > 2: | |
return 95 | |
elif sampling_steps > 35 or duration_seconds > 2: | |
return 85 | |
else: | |
return 70 | |
# --- 2. Gradio Inference Function --- | |
def generate_video( | |
image, | |
prompt, | |
size, | |
duration_seconds, | |
sampling_steps, | |
guide_scale, | |
shift, | |
seed, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
"""The main function to generate video, called by the Gradio interface.""" | |
if seed == -1: | |
seed = random.randint(0, sys.maxsize) | |
input_image = None | |
if image is not None: | |
input_image = Image.fromarray(image).convert("RGB") | |
# Resize image to match selected size | |
target_height, target_width = map(int, size.split('*')) | |
input_image = input_image.resize((target_width, target_height)) | |
# Calculate number of frames based on duration | |
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) | |
video_tensor = pipeline.generate( | |
input_prompt=prompt, | |
img=input_image, # Pass None for T2V, Image for I2V | |
size=SIZE_CONFIGS[size], | |
max_area=MAX_AREA_CONFIGS[size], | |
frame_num=num_frames, # Use calculated frames instead of cfg.frame_num | |
shift=shift, | |
sample_solver='unipc', | |
sampling_steps=int(sampling_steps), | |
guide_scale=guide_scale, | |
seed=seed, | |
offload_model=True | |
) | |
# Save the video to a temporary file | |
video_path = cache_video( | |
tensor=video_tensor[None], # Add a batch dimension | |
save_file=None, # cache_video will create a temp file | |
fps=cfg.sample_fps, | |
normalize=True, | |
value_range=(-1, 1) | |
) | |
return video_path | |
# --- 3. Gradio Interface --- | |
css = ".gradio-container {max-width: 1100px !important; margin: 0 auto} #output_video {height: 500px;} #input_image {height: 500px;}" | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Wan 2.2 Text/Image-to-Video Demo (ti2v-5B)") | |
gr.Markdown("Generate a video from a text prompt. Optionally, provide an initial image to guide the generation (Image-to-Video).") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
image_input = gr.Image(type="numpy", label="Input Image (Optional)", elem_id="input_image") | |
prompt_input = gr.Textbox(label="Prompt", value="A beautiful waterfall in a lush jungle, cinematic.", lines=3) | |
duration_input = gr.Slider( | |
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1), | |
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1), | |
step=0.1, | |
value=2.0, | |
label="Duration (seconds)", | |
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps." | |
) | |
size_input = gr.Dropdown(label="Output Resolution", choices=list(SUPPORTED_SIZES[TASK_NAME]), value="704*1280") | |
with gr.Column(scale=2): | |
video_output = gr.Video(label="Generated Video", elem_id="output_video") | |
with gr.Accordion("Advanced Settings", open=False): | |
steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=70, value=35, step=1) | |
scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1) | |
shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1) | |
seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0) | |
run_button = gr.Button("Generate Video", variant="primary") | |
# Add image upload handler | |
image_input.upload( | |
fn=handle_image_upload, | |
inputs=[image_input], | |
outputs=[size_input] | |
) | |
image_input.clear( | |
fn=handle_image_upload, | |
inputs=[image_input], | |
outputs=[size_input] | |
) | |
example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG") | |
gr.Examples( | |
examples=[ | |
[None, "A cinematic shot of a boat sailing on a calm sea at sunset.", "1280*704", 2.0], | |
[example_image_path, "The cat slowly blinks its eyes.", "704*1280", 1.5], | |
[None, "Drone footage flying over a futuristic city with flying cars.", "1280*704", 3.0], | |
], | |
inputs=[image_input, prompt_input, size_input, duration_input], | |
outputs=video_output, | |
fn=generate_video, | |
cache_examples=False, | |
) | |
run_button.click( | |
fn=generate_video, | |
inputs=[image_input, prompt_input, size_input, duration_input, steps_input, scale_input, shift_input, seed_input], | |
outputs=video_output | |
) | |
if __name__ == "__main__": | |
demo.launch() |