Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,699 Bytes
309fd4d b9186cf 80df978 bec3822 ba7cb71 46b3f7e ba7cb71 600d72c 608a3d4 600d72c 608a3d4 600d72c 608a3d4 ba7cb71 600d72c ba7cb71 600d72c ba7cb71 8b5bd21 ba7cb71 600d72c ba7cb71 46b3f7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import sys
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
#import subprocess
#subprocess.run('pip install flash-attn==2.7.4.post1 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# wan2.2-main/gradio_ti2v.py
import gradio as gr
import torch
from huggingface_hub import snapshot_download
from PIL import Image
import random
import numpy as np
import spaces
import wan
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from wan.utils.utils import cache_video
# --- 1. Global Setup and Model Loading ---
print("Starting Gradio App for Wan 2.2 TI2V-5B...")
# Download model snapshots from Hugging Face Hub
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
print(f"Downloading/loading checkpoints for {repo_id}...")
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
print(f"Using checkpoints from {ckpt_dir}")
# Load the model configuration
TASK_NAME = 'ti2v-5B'
cfg = WAN_CONFIGS[TASK_NAME]
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 121
# Instantiate the pipeline in the global scope
print("Initializing WanTI2V pipeline...")
device = "cuda" if torch.cuda.is_available() else "cpu"
device_id = 0 if torch.cuda.is_available() else -1
pipeline = wan.WanTI2V(
config=cfg,
checkpoint_dir=ckpt_dir,
device_id=device_id,
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_sp=False,
t5_cpu=False,
init_on_cpu=True,
convert_model_dtype=True,
)
print("Pipeline initialized and ready.")
# --- Helper Functions ---
def select_best_size_for_image(image, available_sizes):
"""Select the size option with aspect ratio closest to the input image."""
if image is None:
return available_sizes[0] # Return first option if no image
img_width, img_height = image.size
img_aspect_ratio = img_height / img_width
best_size = available_sizes[0]
best_diff = float('inf')
for size_str in available_sizes:
# Parse size string like "704*1280"
height, width = map(int, size_str.split('*'))
size_aspect_ratio = height / width
diff = abs(img_aspect_ratio - size_aspect_ratio)
if diff < best_diff:
best_diff = diff
best_size = size_str
return best_size
def handle_image_upload(image):
"""Handle image upload and return the best matching size."""
if image is None:
return gr.update()
pil_image = Image.fromarray(image).convert("RGB")
available_sizes = list(SUPPORTED_SIZES[TASK_NAME])
best_size = select_best_size_for_image(pil_image, available_sizes)
return gr.update(value=best_size)
def get_duration(image, prompt, size, duration_seconds, sampling_steps, guide_scale, shift, seed):
"""Calculate dynamic GPU duration based on parameters."""
if sampling_steps > 35 and duration_seconds > 2:
return 95
elif sampling_steps > 35 or duration_seconds > 2:
return 85
else:
return 70
# --- 2. Gradio Inference Function ---
@spaces.GPU(duration=get_duration)
def generate_video(
image,
prompt,
size,
duration_seconds,
sampling_steps,
guide_scale,
shift,
seed,
progress=gr.Progress(track_tqdm=True)
):
"""The main function to generate video, called by the Gradio interface."""
if seed == -1:
seed = random.randint(0, sys.maxsize)
input_image = None
if image is not None:
input_image = Image.fromarray(image).convert("RGB")
# Resize image to match selected size
target_height, target_width = map(int, size.split('*'))
input_image = input_image.resize((target_width, target_height))
# Calculate number of frames based on duration
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
video_tensor = pipeline.generate(
input_prompt=prompt,
img=input_image, # Pass None for T2V, Image for I2V
size=SIZE_CONFIGS[size],
max_area=MAX_AREA_CONFIGS[size],
frame_num=num_frames, # Use calculated frames instead of cfg.frame_num
shift=shift,
sample_solver='unipc',
sampling_steps=int(sampling_steps),
guide_scale=guide_scale,
seed=seed,
offload_model=True
)
# Save the video to a temporary file
video_path = cache_video(
tensor=video_tensor[None], # Add a batch dimension
save_file=None, # cache_video will create a temp file
fps=cfg.sample_fps,
normalize=True,
value_range=(-1, 1)
)
return video_path
# --- 3. Gradio Interface ---
css = ".gradio-container {max-width: 1100px !important; margin: 0 auto} #output_video {height: 500px;} #input_image {height: 500px;}"
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown("# Wan 2.2 Text/Image-to-Video Demo (ti2v-5B)")
gr.Markdown("Generate a video from a text prompt. Optionally, provide an initial image to guide the generation (Image-to-Video).")
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(type="numpy", label="Input Image (Optional)", elem_id="input_image")
prompt_input = gr.Textbox(label="Prompt", value="A beautiful waterfall in a lush jungle, cinematic.", lines=3)
duration_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1),
step=0.1,
value=2.0,
label="Duration (seconds)",
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
size_input = gr.Dropdown(label="Output Resolution", choices=list(SUPPORTED_SIZES[TASK_NAME]), value="704*1280")
with gr.Column(scale=2):
video_output = gr.Video(label="Generated Video", elem_id="output_video")
with gr.Accordion("Advanced Settings", open=False):
steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=70, value=35, step=1)
scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
run_button = gr.Button("Generate Video", variant="primary")
# Add image upload handler
image_input.upload(
fn=handle_image_upload,
inputs=[image_input],
outputs=[size_input]
)
image_input.clear(
fn=handle_image_upload,
inputs=[image_input],
outputs=[size_input]
)
example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
gr.Examples(
examples=[
[None, "A cinematic shot of a boat sailing on a calm sea at sunset.", "1280*704", 2.0],
[example_image_path, "The cat slowly blinks its eyes.", "704*1280", 1.5],
[None, "Drone footage flying over a futuristic city with flying cars.", "1280*704", 3.0],
],
inputs=[image_input, prompt_input, size_input, duration_input],
outputs=video_output,
fn=generate_video,
cache_examples=False,
)
run_button.click(
fn=generate_video,
inputs=[image_input, prompt_input, size_input, duration_input, steps_input, scale_input, shift_input, seed_input],
outputs=video_output
)
if __name__ == "__main__":
demo.launch() |