File size: 7,699 Bytes
309fd4d
b9186cf
 
 
80df978
 
bec3822
ba7cb71
 
 
 
 
 
 
46b3f7e
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600d72c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608a3d4
600d72c
608a3d4
600d72c
608a3d4
ba7cb71
 
600d72c
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600d72c
 
 
 
 
 
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5bd21
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600d72c
 
 
 
 
 
 
 
 
 
 
 
ba7cb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46b3f7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import sys
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))

#import subprocess
#subprocess.run('pip install flash-attn==2.7.4.post1 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# wan2.2-main/gradio_ti2v.py
import gradio as gr
import torch
from huggingface_hub import snapshot_download
from PIL import Image
import random
import numpy as np
import spaces

import wan
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from wan.utils.utils import cache_video

# --- 1. Global Setup and Model Loading ---

print("Starting Gradio App for Wan 2.2 TI2V-5B...")

# Download model snapshots from Hugging Face Hub
repo_id = "Wan-AI/Wan2.2-TI2V-5B"
print(f"Downloading/loading checkpoints for {repo_id}...")
ckpt_dir = snapshot_download(repo_id, local_dir_use_symlinks=False)
print(f"Using checkpoints from {ckpt_dir}")

# Load the model configuration
TASK_NAME = 'ti2v-5B'
cfg = WAN_CONFIGS[TASK_NAME]
FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 121 

# Instantiate the pipeline in the global scope
print("Initializing WanTI2V pipeline...")
device = "cuda" if torch.cuda.is_available() else "cpu"
device_id = 0 if torch.cuda.is_available() else -1
pipeline = wan.WanTI2V(
    config=cfg,
    checkpoint_dir=ckpt_dir,
    device_id=device_id,
    rank=0,
    t5_fsdp=False,
    dit_fsdp=False,
    use_sp=False,
    t5_cpu=False,
    init_on_cpu=True,
    convert_model_dtype=True,
)
print("Pipeline initialized and ready.")

# --- Helper Functions ---
def select_best_size_for_image(image, available_sizes):
    """Select the size option with aspect ratio closest to the input image."""
    if image is None:
        return available_sizes[0]  # Return first option if no image
    
    img_width, img_height = image.size
    img_aspect_ratio = img_height / img_width
    
    best_size = available_sizes[0]
    best_diff = float('inf')
    
    for size_str in available_sizes:
        # Parse size string like "704*1280" 
        height, width = map(int, size_str.split('*'))
        size_aspect_ratio = height / width
        diff = abs(img_aspect_ratio - size_aspect_ratio)
        
        if diff < best_diff:
            best_diff = diff
            best_size = size_str
    
    return best_size

def handle_image_upload(image):
    """Handle image upload and return the best matching size."""
    if image is None:
        return gr.update()
    
    pil_image = Image.fromarray(image).convert("RGB")
    available_sizes = list(SUPPORTED_SIZES[TASK_NAME])
    best_size = select_best_size_for_image(pil_image, available_sizes)
    
    return gr.update(value=best_size)

def get_duration(image, prompt, size, duration_seconds, sampling_steps, guide_scale, shift, seed):
    """Calculate dynamic GPU duration based on parameters."""
    if sampling_steps > 35 and duration_seconds > 2:
        return 95
    elif sampling_steps > 35 or duration_seconds > 2:
        return 85
    else:
        return 70

# --- 2. Gradio Inference Function ---
@spaces.GPU(duration=get_duration)
def generate_video(
    image,
    prompt,
    size,
    duration_seconds,
    sampling_steps,
    guide_scale,
    shift,
    seed,
    progress=gr.Progress(track_tqdm=True)
):
    """The main function to generate video, called by the Gradio interface."""
    if seed == -1:
        seed = random.randint(0, sys.maxsize)

    input_image = None
    if image is not None:
        input_image = Image.fromarray(image).convert("RGB")
        # Resize image to match selected size
        target_height, target_width = map(int, size.split('*'))
        input_image = input_image.resize((target_width, target_height))
    
    # Calculate number of frames based on duration
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)

    video_tensor = pipeline.generate(
        input_prompt=prompt,
        img=input_image,  # Pass None for T2V, Image for I2V
        size=SIZE_CONFIGS[size],
        max_area=MAX_AREA_CONFIGS[size],
        frame_num=num_frames,  # Use calculated frames instead of cfg.frame_num
        shift=shift,
        sample_solver='unipc',
        sampling_steps=int(sampling_steps),
        guide_scale=guide_scale,
        seed=seed,
        offload_model=True
    )

    # Save the video to a temporary file
    video_path = cache_video(
        tensor=video_tensor[None],  # Add a batch dimension
        save_file=None,  # cache_video will create a temp file
        fps=cfg.sample_fps,
        normalize=True,
        value_range=(-1, 1)
    )

    return video_path


# --- 3. Gradio Interface ---
css = ".gradio-container {max-width: 1100px !important; margin: 0 auto} #output_video {height: 500px;} #input_image {height: 500px;}"

with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    gr.Markdown("# Wan 2.2 Text/Image-to-Video Demo (ti2v-5B)")
    gr.Markdown("Generate a video from a text prompt. Optionally, provide an initial image to guide the generation (Image-to-Video).")

    with gr.Row():
        with gr.Column(scale=2):
            image_input = gr.Image(type="numpy", label="Input Image (Optional)", elem_id="input_image")
            prompt_input = gr.Textbox(label="Prompt", value="A beautiful waterfall in a lush jungle, cinematic.", lines=3)
            duration_input = gr.Slider(
                minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1), 
                maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1), 
                step=0.1, 
                value=2.0, 
                label="Duration (seconds)", 
                info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
            )
            size_input = gr.Dropdown(label="Output Resolution", choices=list(SUPPORTED_SIZES[TASK_NAME]), value="704*1280")
        with gr.Column(scale=2):
            video_output = gr.Video(label="Generated Video", elem_id="output_video")
            

            with gr.Accordion("Advanced Settings", open=False):
                steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=70, value=35, step=1)
                scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
                shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
                seed_input = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)

            run_button = gr.Button("Generate Video", variant="primary")
            
    # Add image upload handler
    image_input.upload(
        fn=handle_image_upload,
        inputs=[image_input],
        outputs=[size_input]
    )
    
    image_input.clear(
        fn=handle_image_upload,
        inputs=[image_input],
        outputs=[size_input]
    )

    example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
    gr.Examples(
        examples=[
            [None, "A cinematic shot of a boat sailing on a calm sea at sunset.", "1280*704", 2.0],
            [example_image_path, "The cat slowly blinks its eyes.", "704*1280", 1.5],
            [None, "Drone footage flying over a futuristic city with flying cars.", "1280*704", 3.0],
        ],
        inputs=[image_input, prompt_input, size_input, duration_input],
        outputs=video_output,
        fn=generate_video,
        cache_examples=False,
    )

    run_button.click(
        fn=generate_video,
        inputs=[image_input, prompt_input, size_input, duration_input, steps_input, scale_input, shift_input, seed_input],
        outputs=video_output
    )

if __name__ == "__main__":
    demo.launch()