Spaces:
Sleeping
Sleeping
File size: 31,829 Bytes
b5c6814 6865d24 b5c6814 6865d24 b5c6814 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 |
import torch
import torch.nn as nn
from transformers import (
AutoTokenizer, AutoModelForCausalLM,
BlipProcessor, BlipForConditionalGeneration,
pipeline, BartTokenizer, BartForConditionalGeneration,
T5Tokenizer, T5ForConditionalGeneration,
GPT2LMHeadModel, GPT2Tokenizer,
AutoModelForSeq2SeqLM
)
from diffusers import StableDiffusionPipeline, DiffusionPipeline, AutoPipelineForText2Image
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
from PIL import Image, ImageDraw, ImageFont, ImageEnhance
import io
import base64
import json
import re
import requests
from typing import Dict, List, Optional, Tuple, Any
import warnings
import time
import os
from datetime import datetime
import tempfile
warnings.filterwarnings('ignore')
class AdvancedClassroomAI:
"""
Advanced AI Assistant for Classrooms using high-quality pre-trained models
Optimized for CPU inference with better model choices
"""
def __init__(self, device='cpu', save_images=True, display_images=True):
self.device = device
self.conversation_history = []
self.save_images = save_images
self.display_images = display_images
self.models_ready = False # Initialize as False
# Create directories for saving images
if self.save_images:
self.images_dir = os.path.join(tempfile.gettempdir(), "generated_images")
os.makedirs(self.images_dir, exist_ok=True)
print(f"π Images will be saved to: {self.images_dir}/")
print(f"π₯ Initializing Advanced Classroom AI on: {self.device.upper()}")
print("π Loading state-of-the-art models...")
if self.device == 'cpu':
torch.set_num_threads(2)
torch.set_grad_enabled(False)
# Initialize models with error handling
try:
self.setup_advanced_models()
self.models_ready = True # Only set to True if setup succeeds
print("β
All models initialized successfully!")
except Exception as e:
print(f"β Failed to initialize models: {e}")
self.models_ready = False
def setup_advanced_models(self):
"""Setup high-quality models optimized for CPU with better error handling"""
# Initialize all model references to None first
self.text_tokenizer = None
self.text_model = None
self.chat_tokenizer = None
self.chat_model = None
self.subject_classifier = None
self.qa_pipeline = None
self.summarizer = None
self.image_pipeline = None
self.image_processor = None
self.image_caption_model = None
try:
print("π Loading advanced text generation model...")
self.text_tokenizer = T5Tokenizer.from_pretrained('google/flan-t5-base')
self.text_model = T5ForConditionalGeneration.from_pretrained(
'google/flan-t5-base',
torch_dtype=torch.float32,
device_map=None
)
self.text_model.to(self.device)
self.text_model.eval()
print("β
Text generation model loaded")
except Exception as e:
print(f"β οΈ Text generation model failed: {e}")
# Continue with other models
try:
print("π§ Loading conversational AI model...")
self.chat_tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-medium')
self.chat_model = AutoModelForCausalLM.from_pretrained(
'microsoft/DialoGPT-medium',
torch_dtype=torch.float32,
device_map=None
)
self.chat_model.to(self.device)
self.chat_model.eval()
if self.chat_tokenizer.pad_token is None:
self.chat_tokenizer.pad_token = self.chat_tokenizer.eos_token
print("β
Conversational AI model loaded")
except Exception as e:
print(f"β οΈ Conversational AI model failed: {e}")
try:
print("π Loading subject classification model...")
self.subject_classifier = pipeline(
"zero-shot-classification",
model="microsoft/deberta-v3-base",
device=-1,
torch_dtype=torch.float32
)
print("β
Subject classifier loaded")
except Exception as e:
print(f"β οΈ Subject classifier failed: {e}")
try:
print("β Loading question-answering model...")
self.qa_pipeline = pipeline(
"question-answering",
model="deepset/roberta-base-squad2",
device=-1,
torch_dtype=torch.float32
)
print("β
QA pipeline loaded")
except Exception as e:
print(f"β οΈ QA pipeline failed: {e}")
try:
print("π Loading text summarization model...")
self.summarizer = pipeline(
"summarization",
model="facebook/bart-base",
device=-1,
torch_dtype=torch.float32
)
print("β
Summarizer loaded")
except Exception as e:
print(f"β οΈ Summarizer failed: {e}")
try:
print("π¨ Loading image generation model...")
self.image_pipeline = AutoPipelineForText2Image.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch.float32,
use_safetensors=True,
variant=None
)
self.image_pipeline = self.image_pipeline.to(self.device)
print("β
Image generation model loaded")
except Exception as e:
print(f"β οΈ Image generation model failed: {e}")
try:
print("πΌ Loading image captioning model...")
self.image_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
self.image_caption_model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-base",
torch_dtype=torch.float32
)
self.image_caption_model.to(self.device)
self.image_caption_model.eval()
print("β
Image captioning model loaded")
except Exception as e:
print(f"β οΈ Image captioning model failed: {e}")
# Check if at least core models are available
core_models_available = (
self.text_tokenizer is not None and
self.text_model is not None
)
if not core_models_available:
raise Exception("Critical models failed to load")
print("β
Model setup completed!")
def analyze_educational_query(self, query: str) -> Dict[str, Any]:
"""Advanced query analysis using AI models with fallback"""
print(f"π Analyzing query: {query}")
try:
# Use AI classification if available
if self.subject_classifier is not None:
subjects = [
'mathematics', 'physics', 'chemistry', 'biology', 'history',
'geography', 'literature', 'computer science', 'economics',
'psychology', 'philosophy', 'art', 'music', 'environmental science'
]
classification_result = self.subject_classifier(query, subjects)
subject = classification_result['labels'][0]
confidence = classification_result['scores'][0]
else:
# Fallback to keyword-based classification
subject, confidence = self._fallback_subject_classification(query)
# Query type analysis
query_lower = query.lower()
if any(word in query_lower for word in ['explain', 'what is', 'define', 'describe', 'tell me about']):
query_type = 'explanation'
elif any(word in query_lower for word in ['solve', 'calculate', 'find', 'compute']):
query_type = 'problem_solving'
elif any(word in query_lower for word in ['compare', 'difference', 'versus', 'vs', 'contrast']):
query_type = 'comparison'
elif any(word in query_lower for word in ['show', 'draw', 'create', 'generate', 'visualize']):
query_type = 'visualization'
elif any(word in query_lower for word in ['how to', 'steps', 'procedure', 'process']):
query_type = 'tutorial'
else:
query_type = 'general'
needs_visual = any(word in query_lower for word in [
'show', 'draw', 'diagram', 'chart', 'graph', 'visual', 'picture',
'image', 'illustrate', 'create image', 'generate picture'
])
analysis = {
'subject': subject,
'confidence': confidence,
'query_type': query_type,
'needs_visual': needs_visual,
'complexity': self._assess_complexity(query),
'educational_level': self._determine_educational_level(query)
}
print(f"β
Analysis completed: {analysis}")
return analysis
except Exception as e:
print(f"β οΈ Analysis error: {e}, using fallback analysis")
return self._fallback_analysis(query)
def _fallback_subject_classification(self, query: str) -> Tuple[str, float]:
"""Fallback subject classification using keywords"""
query_lower = query.lower()
subject_keywords = {
'mathematics': ['math', 'equation', 'number', 'calculate', 'algebra', 'geometry', 'calculus'],
'physics': ['force', 'energy', 'motion', 'wave', 'particle', 'gravity', 'physics'],
'chemistry': ['chemical', 'molecule', 'atom', 'reaction', 'compound', 'element'],
'biology': ['cell', 'organism', 'dna', 'genetics', 'evolution', 'biology'],
'history': ['historical', 'past', 'ancient', 'war', 'civilization', 'century'],
'geography': ['country', 'continent', 'climate', 'map', 'location', 'geography'],
'literature': ['poem', 'story', 'novel', 'author', 'literature', 'writing'],
'computer science': ['code', 'program', 'algorithm', 'computer', 'software', 'data']
}
scores = {}
for subject, keywords in subject_keywords.items():
score = sum(1 for keyword in keywords if keyword in query_lower)
if score > 0:
scores[subject] = score / len(keywords)
if scores:
best_subject = max(scores, key=scores.get)
return best_subject, scores[best_subject]
else:
return 'general', 0.5
def _assess_complexity(self, query: str) -> str:
"""Assess query complexity"""
query_lower = query.lower()
advanced_terms = ['theorem', 'hypothesis', 'methodology', 'analysis', 'synthesis', 'evaluation']
intermediate_terms = ['process', 'relationship', 'comparison', 'function', 'structure']
basic_terms = ['what', 'who', 'when', 'where', 'simple', 'basic']
if any(term in query_lower for term in advanced_terms):
return 'advanced'
elif any(term in query_lower for term in intermediate_terms):
return 'intermediate'
else:
return 'basic'
def _determine_educational_level(self, query: str) -> str:
"""Determine appropriate educational level"""
query_lower = query.lower()
if any(term in query_lower for term in ['university', 'college', 'advanced', 'research']):
return 'university'
elif any(term in query_lower for term in ['high school', 'secondary', 'algebra', 'calculus']):
return 'high_school'
elif any(term in query_lower for term in ['middle school', 'junior', 'basic']):
return 'middle_school'
else:
return 'general'
def _fallback_analysis(self, query: str) -> Dict[str, Any]:
"""Fallback analysis when AI models fail"""
subject, confidence = self._fallback_subject_classification(query)
return {
'subject': subject,
'confidence': confidence,
'query_type': 'explanation',
'needs_visual': 'visual' in query.lower() or 'show' in query.lower(),
'complexity': self._assess_complexity(query),
'educational_level': self._determine_educational_level(query)
}
def generate_educational_response(self, query: str, analysis: Dict[str, Any]) -> str:
"""Generate educational response with fallback options"""
try:
# Try to use AI models if available
if self.text_tokenizer is not None and self.text_model is not None:
return self._generate_ai_response(query, analysis)
else:
print("β οΈ AI models not available, using fallback response")
return self._generate_fallback_response(query, analysis)
except Exception as e:
print(f"β Response generation error: {e}")
return self._generate_fallback_response(query, analysis)
def _generate_ai_response(self, query: str, analysis: Dict[str, Any]) -> str:
"""Generate response using AI models"""
if analysis['query_type'] == 'explanation':
prompt = f"Explain in detail for {analysis['educational_level']} students: {query}"
elif analysis['query_type'] == 'problem_solving':
prompt = f"Solve this {analysis['subject']} problem step by step: {query}"
elif analysis['query_type'] == 'comparison':
prompt = f"Compare and contrast the following for students: {query}"
elif analysis['query_type'] == 'tutorial':
prompt = f"Provide a step-by-step tutorial for: {query}"
else:
prompt = f"Provide a comprehensive educational answer about: {query}"
tokenized = self.text_tokenizer(
prompt,
return_tensors='pt',
max_length=512,
truncation=True,
padding=True,
return_attention_mask=True # Explicitly request attention mask
)
inputs = tokenized['input_ids'].to(self.device)
attention_mask = tokenized['attention_mask'].to(self.device)
with torch.no_grad():
outputs = self.text_model.generate(
inputs,
attention_mask=attention_mask, # Pass attention mask
max_length=300,
min_length=50,
num_beams=4,
temperature=0.7,
do_sample=True,
top_p=0.9,
repetition_penalty=2.0,
early_stopping=True,
pad_token_id=self.text_tokenizer.eos_token_id
)
response = self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove repetitive phrases and clean up
response = response.replace(prompt, "").strip()
response = self._remove_repetition(response)
if len(response) < 100:
response = self._enhance_with_conversational_model(query, response)
return response
def _remove_repetition(self, text: str) -> str:
"""Remove repetitive phrases from generated text"""
sentences = text.split('. ')
unique_sentences = []
seen = set()
for sentence in sentences:
sentence = sentence.strip()
if sentence and sentence not in seen and len(sentence) > 10:
seen.add(sentence)
unique_sentences.append(sentence)
return '. '.join(unique_sentences)
def _enhance_with_conversational_model(self, query: str, base_response: str) -> str:
"""Enhance response using conversational model"""
try:
if self.chat_tokenizer is None or self.chat_model is None:
return base_response
context = f"User: {query}\nAssistant: {base_response}\nUser: Can you elaborate more?\nAssistant:"
tokenized = self.chat_tokenizer(
context,
return_tensors='pt',
max_length=400,
truncation=True,
padding=True,
return_attention_mask=True
)
inputs = tokenized['input_ids'].to(self.device)
attention_mask = tokenized['attention_mask'].to(self.device)
with torch.no_grad():
outputs = self.chat_model.generate(
inputs,
attention_mask=attention_mask, # Pass attention mask
max_length=inputs.shape[1] + 100,
num_beams=3,
temperature=0.8,
do_sample=True,
top_p=0.9,
pad_token_id=self.chat_tokenizer.eos_token_id,
eos_token_id=self.chat_tokenizer.eos_token_id
)
enhanced = self.chat_tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
return f"{base_response}\n\n{enhanced.strip()}"
except Exception as e:
print(f"β οΈ Enhancement failed: {e}")
return base_response
def _generate_fallback_response(self, query: str, analysis: Dict[str, Any]) -> str:
"""Generate fallback response when AI models fail"""
subject = analysis['subject']
query_type = analysis['query_type']
complexity = analysis['complexity']
level = analysis['educational_level']
if query_type == 'explanation':
return f"Let me explain {subject} concepts related to your question about '{query}'. This appears to be a {complexity}-level question suitable for {level} students. I'll break this down step by step to help you understand the key concepts and principles involved."
elif query_type == 'problem_solving':
return f"To solve this {subject} problem, I'll walk you through the solution step by step. For a {complexity}-level problem like this, we need to identify the key information, choose the appropriate method, and work through the solution systematically."
elif query_type == 'comparison':
return f"I'll help you compare and contrast the different aspects of your {subject} question. This type of analysis requires us to examine similarities, differences, and relationships between the concepts you're asking about."
elif query_type == 'tutorial':
return f"I'll provide you with a step-by-step tutorial for this {subject} topic. This {complexity}-level guide will help {level} students understand the process and methodology involved."
else:
return f"I understand you're asking about {subject}. This is a {complexity}-level question that I'll help you understand. Let me provide you with a comprehensive explanation that covers the key concepts and helps you grasp the fundamental principles involved."
def generate_educational_visual(self, query: str, analysis: Dict[str, Any]) -> Optional[Image.Image]:
"""Generate educational visuals with fallback"""
if not analysis['needs_visual']:
return None
try:
if self.image_pipeline is not None:
print("π¨ Generating educational visual with AI...")
return self._generate_ai_visual(query, analysis)
else:
print("π¨ Generating fallback visual...")
return self._generate_fallback_visual(query, analysis)
except Exception as e:
print(f"β Visual generation error: {e}")
return self._generate_fallback_visual(query, analysis)
def _generate_ai_visual(self, query: str, analysis: Dict[str, Any]) -> Optional[Image.Image]:
"""Generate visual using AI models"""
visual_prompt = self._construct_visual_prompt(query, analysis)
print(f"πΌοΈ Visual prompt: {visual_prompt}")
with torch.no_grad():
image = self.image_pipeline(
prompt=visual_prompt,
num_inference_steps=20,
guidance_scale=7.5,
height=512,
width=512,
generator=torch.Generator(device=self.device).manual_seed(42)
).images[0]
enhanced_image = self._enhance_educational_image(image, query)
# Save and display the image
image_path = self._save_image(enhanced_image, query, analysis)
self._display_image(enhanced_image, image_path)
print("β
Educational visual generated successfully!")
return enhanced_image
def _construct_visual_prompt(self, query: str, analysis: Dict[str, Any]) -> str:
"""Construct optimized prompt for educational visual generation"""
subject = analysis['subject']
query_lower = query.lower()
base_prompt = "educational illustration, clean design, professional diagram, textbook style, clear and simple"
subject_prompts = {
'mathematics': "mathematical diagram, geometric shapes, clean whiteboard, equations, graphs",
'physics': "physics diagram, scientific illustration, forces and motion, clean background",
'chemistry': "molecular structure, chemical bonds, scientific diagram, laboratory style",
'biology': "biological illustration, anatomical diagram, cell structure, scientific poster",
'history': "historical illustration, timeline, educational infographic, documentary style",
'geography': "map, geographical features, educational poster, atlas style",
'computer science': "flowchart, algorithm diagram, programming concept, technical illustration"
}
subject_enhancement = subject_prompts.get(subject, "educational diagram, informative illustration")
key_concepts = self._extract_key_concepts(query)
visual_prompt = f"{key_concepts}, {subject_enhancement}, {base_prompt}, high quality, detailed"
return visual_prompt
def _extract_key_concepts(self, query: str) -> str:
"""Extract key visual concepts from query"""
stop_words = {'what', 'is', 'how', 'does', 'the', 'a', 'an', 'of', 'to', 'and', 'or', 'but', 'in', 'on', 'at', 'for', 'with', 'by'}
words = query.lower().split()
key_words = [word for word in words if word not in stop_words and len(word) > 2]
return " ".join(key_words[:5])
def _enhance_educational_image(self, image: Image.Image, query: str) -> Image.Image:
"""Enhance generated image for educational use"""
try:
if image.mode != 'RGB':
image = image.convert('RGB')
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.2)
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1.1)
width, height = image.size
border_width = 10
bordered_image = Image.new('RGB', (width + 2*border_width, height + 2*border_width), 'white')
bordered_image.paste(image, (border_width, border_width))
return bordered_image
except Exception as e:
print(f"β οΈ Image enhancement failed: {e}")
return image
def _generate_fallback_visual(self, query: str, analysis: Dict[str, Any]) -> Optional[Image.Image]:
"""Generate simple fallback visual when AI generation fails"""
try:
img = Image.new('RGB', (512, 512), 'white')
draw = ImageDraw.Draw(img)
title = f"{analysis['subject'].title()} Concept"
try:
font = ImageFont.truetype("arial.ttf", 24)
small_font = ImageFont.truetype("arial.ttf", 16)
except:
font = ImageFont.load_default()
small_font = ImageFont.load_default()
bbox = draw.textbbox((0, 0), title, font=font)
text_width = bbox[2] - bbox[0]
text_x = (512 - text_width) // 2
draw.text((text_x, 50), title, fill='black', font=font)
query_lines = self._wrap_text(query, 50)
y_position = 150
for line in query_lines:
bbox = draw.textbbox((0, 0), line, font=small_font)
line_width = bbox[2] - bbox[0]
line_x = (512 - line_width) // 2
draw.text((line_x, y_position), line, fill='navy', font=small_font)
y_position += 30
draw.rectangle([50, 100, 462, 102], fill='blue')
draw.rectangle([50, 410, 462, 412], fill='blue')
# Save the fallback image
image_path = self._save_image(img, query, analysis, is_fallback=True)
self._display_image(img, image_path)
return img
except Exception as e:
print(f"β Fallback visual generation failed: {e}")
return None
def _save_image(self, image: Image.Image, query: str, analysis: Dict[str, Any], is_fallback: bool = False) -> str:
"""Save the generated image to disk"""
if not self.save_images or not image:
return ""
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
subject = analysis['subject'].replace(' ', '_')
query_short = ''.join(c for c in query[:30] if c.isalnum() or c in (' ', '-', '_')).rstrip()
query_short = query_short.replace(' ', '_')
fallback_suffix = "_fallback" if is_fallback else ""
filename = f"{timestamp}_{subject}_{query_short}{fallback_suffix}.png"
if len(filename) > 200:
filename = f"{timestamp}_{subject}{fallback_suffix}.png"
image_path = os.path.join(self.images_dir, filename)
image.save(image_path, "PNG", quality=95)
print(f"πΎ Image saved: {image_path}")
return image_path
except Exception as e:
print(f"β Failed to save image: {e}")
return ""
def _display_image(self, image: Image.Image, image_path: str):
"""Display the generated image - skipped in API mode"""
if not self.display_images:
return
try:
plt.figure(figsize=(10, 8))
plt.imshow(image)
plt.axis('off')
plt.title('Generated Educational Visual', fontsize=14, fontweight='bold')
if image_path:
plt.figtext(0.5, 0.02, f'Saved as: {os.path.basename(image_path)}',
ha='center', fontsize=10, style='italic')
plt.tight_layout()
plt.show()
print("πΌοΈ Image displayed successfully!")
except Exception as e:
print(f"β οΈ Could not display image: {e}")
print(f"π Image saved to: {image_path}")
def _wrap_text(self, text: str, max_length: int) -> List[str]:
"""Wrap text to specified length"""
words = text.split()
lines = []
current_line = []
current_length = 0
for word in words:
if current_length + len(word) + 1 <= max_length:
current_line.append(word)
current_length += len(word) + 1
else:
if current_line:
lines.append(' '.join(current_line))
current_line = [word]
current_length = len(word)
if current_line:
lines.append(' '.join(current_line))
return lines
def process_educational_query(self, query: str) -> Dict[str, Any]:
"""Main method to process educational queries with comprehensive error handling"""
print(f"\nπ Processing Educational Query: {query}")
print("=" * 80)
start_time = time.time()
try:
# Analyze the query
analysis = self.analyze_educational_query(query)
print(f"π Analysis Results:")
print(f" Subject: {analysis['subject']} (confidence: {analysis['confidence']:.2f})")
print(f" Type: {analysis['query_type']}")
print(f" Complexity: {analysis['complexity']}")
print(f" Level: {analysis['educational_level']}")
print(f" Needs Visual: {analysis['needs_visual']}")
# Generate text response
print("\nπ Generating educational response...")
text_response = self.generate_educational_response(query, analysis)
# Generate visual if needed
visual_image = None
if analysis['needs_visual']:
print("\nπ¨ Generating educational visual...")
visual_image = self.generate_educational_visual(query, analysis)
processing_time = time.time() - start_time
# Add to conversation history
self.conversation_history.append({
'query': query,
'response': text_response,
'analysis': analysis,
'timestamp': time.time(),
'processing_time': processing_time,
'has_visual': visual_image is not None
})
print(f"\nβ
Processing completed in {processing_time:.2f} seconds")
print("=" * 80)
return {
'text_response': text_response,
'visual_image': visual_image,
'analysis': analysis,
'processing_time': processing_time,
'success': True
}
except Exception as e:
print(f"β Error processing query: {e}")
processing_time = time.time() - start_time
# Return error response
return {
'text_response': f"I encountered an error processing your question about '{query}'. Please try rephrasing your question or try again later.",
'visual_image': None,
'analysis': {'subject': 'unknown', 'error': str(e)},
'processing_time': processing_time,
'success': False,
'error': str(e)
} |