Spaces:
Sleeping
Sleeping
Commit
Β·
b5c6814
1
Parent(s):
8fc2d5f
Added backend folder
Browse files- Dockerfile +25 -0
- __pycache__/ai_models.cpython-311.pyc +0 -0
- __pycache__/app.cpython-311.pyc +0 -0
- ai_models.py +745 -0
- app.py +358 -0
- generated_images/.gitkeep +0 -0
- requirements.txt +38 -0
- test_api.py +58 -0
Dockerfile
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11-slim
|
2 |
+
|
3 |
+
# System dependencies
|
4 |
+
RUN apt-get update && apt-get install -y \
|
5 |
+
gcc g++ cmake git curl ffmpeg libgl1 libglib2.0-0 libsm6 libxext6 libxrender-dev \
|
6 |
+
&& rm -rf /var/lib/apt/lists/*
|
7 |
+
|
8 |
+
# Set working directory
|
9 |
+
WORKDIR /app
|
10 |
+
|
11 |
+
# Copy code
|
12 |
+
COPY . .
|
13 |
+
|
14 |
+
# Install dependencies
|
15 |
+
RUN pip install --upgrade pip
|
16 |
+
RUN pip install -r requirements.txt
|
17 |
+
|
18 |
+
# Expose the port used by FastAPI
|
19 |
+
EXPOSE 7860
|
20 |
+
|
21 |
+
# Set environment variable for Hugging Face Spaces
|
22 |
+
ENV PORT 7860
|
23 |
+
|
24 |
+
# Run FastAPI using uvicorn
|
25 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
__pycache__/ai_models.cpython-311.pyc
ADDED
Binary file (42.3 kB). View file
|
|
__pycache__/app.cpython-311.pyc
ADDED
Binary file (15.7 kB). View file
|
|
ai_models.py
ADDED
@@ -0,0 +1,745 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import (
|
4 |
+
AutoTokenizer, AutoModelForCausalLM,
|
5 |
+
BlipProcessor, BlipForConditionalGeneration,
|
6 |
+
pipeline, BartTokenizer, BartForConditionalGeneration,
|
7 |
+
T5Tokenizer, T5ForConditionalGeneration,
|
8 |
+
GPT2LMHeadModel, GPT2Tokenizer,
|
9 |
+
AutoModelForSeq2SeqLM
|
10 |
+
)
|
11 |
+
from diffusers import StableDiffusionPipeline, DiffusionPipeline, AutoPipelineForText2Image
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import seaborn as sns
|
14 |
+
import numpy as np
|
15 |
+
import pandas as pd
|
16 |
+
from PIL import Image, ImageDraw, ImageFont, ImageEnhance
|
17 |
+
import io
|
18 |
+
import base64
|
19 |
+
import json
|
20 |
+
import re
|
21 |
+
import requests
|
22 |
+
from typing import Dict, List, Optional, Tuple, Any
|
23 |
+
import warnings
|
24 |
+
import time
|
25 |
+
import os
|
26 |
+
from datetime import datetime
|
27 |
+
warnings.filterwarnings('ignore')
|
28 |
+
|
29 |
+
class AdvancedClassroomAI:
|
30 |
+
"""
|
31 |
+
Advanced AI Assistant for Classrooms using high-quality pre-trained models
|
32 |
+
Optimized for CPU inference with better model choices
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(self, device='cpu', save_images=True, display_images=True):
|
36 |
+
self.device = device
|
37 |
+
self.conversation_history = []
|
38 |
+
self.save_images = save_images
|
39 |
+
self.display_images = display_images
|
40 |
+
self.models_ready = False # Initialize as False
|
41 |
+
|
42 |
+
# Create directories for saving images
|
43 |
+
if self.save_images:
|
44 |
+
self.images_dir = "generated_images"
|
45 |
+
os.makedirs(self.images_dir, exist_ok=True)
|
46 |
+
print(f"π Images will be saved to: {self.images_dir}/")
|
47 |
+
|
48 |
+
print(f"π₯ Initializing Advanced Classroom AI on: {self.device.upper()}")
|
49 |
+
print("π Loading state-of-the-art models...")
|
50 |
+
|
51 |
+
if self.device == 'cpu':
|
52 |
+
torch.set_num_threads(2)
|
53 |
+
torch.set_grad_enabled(False)
|
54 |
+
|
55 |
+
# Initialize models with error handling
|
56 |
+
try:
|
57 |
+
self.setup_advanced_models()
|
58 |
+
self.models_ready = True # Only set to True if setup succeeds
|
59 |
+
print("β
All models initialized successfully!")
|
60 |
+
except Exception as e:
|
61 |
+
print(f"β Failed to initialize models: {e}")
|
62 |
+
self.models_ready = False
|
63 |
+
|
64 |
+
def setup_advanced_models(self):
|
65 |
+
"""Setup high-quality models optimized for CPU with better error handling"""
|
66 |
+
|
67 |
+
# Initialize all model references to None first
|
68 |
+
self.text_tokenizer = None
|
69 |
+
self.text_model = None
|
70 |
+
self.chat_tokenizer = None
|
71 |
+
self.chat_model = None
|
72 |
+
self.subject_classifier = None
|
73 |
+
self.qa_pipeline = None
|
74 |
+
self.summarizer = None
|
75 |
+
self.image_pipeline = None
|
76 |
+
self.image_processor = None
|
77 |
+
self.image_caption_model = None
|
78 |
+
|
79 |
+
try:
|
80 |
+
print("π Loading advanced text generation model...")
|
81 |
+
self.text_tokenizer = T5Tokenizer.from_pretrained('google/flan-t5-base')
|
82 |
+
self.text_model = T5ForConditionalGeneration.from_pretrained(
|
83 |
+
'google/flan-t5-base',
|
84 |
+
torch_dtype=torch.float32,
|
85 |
+
device_map=None
|
86 |
+
)
|
87 |
+
self.text_model.to(self.device)
|
88 |
+
self.text_model.eval()
|
89 |
+
print("β
Text generation model loaded")
|
90 |
+
|
91 |
+
except Exception as e:
|
92 |
+
print(f"β οΈ Text generation model failed: {e}")
|
93 |
+
# Continue with other models
|
94 |
+
|
95 |
+
try:
|
96 |
+
print("π§ Loading conversational AI model...")
|
97 |
+
self.chat_tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-medium')
|
98 |
+
self.chat_model = AutoModelForCausalLM.from_pretrained(
|
99 |
+
'microsoft/DialoGPT-medium',
|
100 |
+
torch_dtype=torch.float32,
|
101 |
+
device_map=None
|
102 |
+
)
|
103 |
+
self.chat_model.to(self.device)
|
104 |
+
self.chat_model.eval()
|
105 |
+
|
106 |
+
if self.chat_tokenizer.pad_token is None:
|
107 |
+
self.chat_tokenizer.pad_token = self.chat_tokenizer.eos_token
|
108 |
+
print("β
Conversational AI model loaded")
|
109 |
+
|
110 |
+
except Exception as e:
|
111 |
+
print(f"β οΈ Conversational AI model failed: {e}")
|
112 |
+
|
113 |
+
try:
|
114 |
+
print("π Loading subject classification model...")
|
115 |
+
self.subject_classifier = pipeline(
|
116 |
+
"zero-shot-classification",
|
117 |
+
model="microsoft/deberta-v3-base",
|
118 |
+
device=-1,
|
119 |
+
torch_dtype=torch.float32
|
120 |
+
)
|
121 |
+
print("β
Subject classifier loaded")
|
122 |
+
|
123 |
+
except Exception as e:
|
124 |
+
print(f"β οΈ Subject classifier failed: {e}")
|
125 |
+
|
126 |
+
try:
|
127 |
+
print("β Loading question-answering model...")
|
128 |
+
self.qa_pipeline = pipeline(
|
129 |
+
"question-answering",
|
130 |
+
model="deepset/roberta-base-squad2",
|
131 |
+
device=-1,
|
132 |
+
torch_dtype=torch.float32
|
133 |
+
)
|
134 |
+
print("β
QA pipeline loaded")
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
print(f"β οΈ QA pipeline failed: {e}")
|
138 |
+
|
139 |
+
try:
|
140 |
+
print("π Loading text summarization model...")
|
141 |
+
self.summarizer = pipeline(
|
142 |
+
"summarization",
|
143 |
+
model="facebook/bart-base",
|
144 |
+
device=-1,
|
145 |
+
torch_dtype=torch.float32
|
146 |
+
)
|
147 |
+
print("β
Summarizer loaded")
|
148 |
+
|
149 |
+
except Exception as e:
|
150 |
+
print(f"β οΈ Summarizer failed: {e}")
|
151 |
+
|
152 |
+
try:
|
153 |
+
print("π¨ Loading image generation model...")
|
154 |
+
self.image_pipeline = AutoPipelineForText2Image.from_pretrained(
|
155 |
+
"runwayml/stable-diffusion-v1-5",
|
156 |
+
torch_dtype=torch.float32,
|
157 |
+
use_safetensors=True,
|
158 |
+
variant=None
|
159 |
+
)
|
160 |
+
self.image_pipeline = self.image_pipeline.to(self.device)
|
161 |
+
print("β
Image generation model loaded")
|
162 |
+
|
163 |
+
except Exception as e:
|
164 |
+
print(f"β οΈ Image generation model failed: {e}")
|
165 |
+
|
166 |
+
try:
|
167 |
+
print("πΌ Loading image captioning model...")
|
168 |
+
self.image_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
169 |
+
self.image_caption_model = BlipForConditionalGeneration.from_pretrained(
|
170 |
+
"Salesforce/blip-image-captioning-base",
|
171 |
+
torch_dtype=torch.float32
|
172 |
+
)
|
173 |
+
self.image_caption_model.to(self.device)
|
174 |
+
self.image_caption_model.eval()
|
175 |
+
print("β
Image captioning model loaded")
|
176 |
+
|
177 |
+
except Exception as e:
|
178 |
+
print(f"β οΈ Image captioning model failed: {e}")
|
179 |
+
|
180 |
+
# Check if at least core models are available
|
181 |
+
core_models_available = (
|
182 |
+
self.text_tokenizer is not None and
|
183 |
+
self.text_model is not None
|
184 |
+
)
|
185 |
+
|
186 |
+
if not core_models_available:
|
187 |
+
raise Exception("Critical models failed to load")
|
188 |
+
|
189 |
+
print("β
Model setup completed!")
|
190 |
+
|
191 |
+
def analyze_educational_query(self, query: str) -> Dict[str, Any]:
|
192 |
+
"""Advanced query analysis using AI models with fallback"""
|
193 |
+
|
194 |
+
print(f"π Analyzing query: {query}")
|
195 |
+
|
196 |
+
try:
|
197 |
+
# Use AI classification if available
|
198 |
+
if self.subject_classifier is not None:
|
199 |
+
subjects = [
|
200 |
+
'mathematics', 'physics', 'chemistry', 'biology', 'history',
|
201 |
+
'geography', 'literature', 'computer science', 'economics',
|
202 |
+
'psychology', 'philosophy', 'art', 'music', 'environmental science'
|
203 |
+
]
|
204 |
+
|
205 |
+
classification_result = self.subject_classifier(query, subjects)
|
206 |
+
subject = classification_result['labels'][0]
|
207 |
+
confidence = classification_result['scores'][0]
|
208 |
+
else:
|
209 |
+
# Fallback to keyword-based classification
|
210 |
+
subject, confidence = self._fallback_subject_classification(query)
|
211 |
+
|
212 |
+
# Query type analysis
|
213 |
+
query_lower = query.lower()
|
214 |
+
|
215 |
+
if any(word in query_lower for word in ['explain', 'what is', 'define', 'describe', 'tell me about']):
|
216 |
+
query_type = 'explanation'
|
217 |
+
elif any(word in query_lower for word in ['solve', 'calculate', 'find', 'compute']):
|
218 |
+
query_type = 'problem_solving'
|
219 |
+
elif any(word in query_lower for word in ['compare', 'difference', 'versus', 'vs', 'contrast']):
|
220 |
+
query_type = 'comparison'
|
221 |
+
elif any(word in query_lower for word in ['show', 'draw', 'create', 'generate', 'visualize']):
|
222 |
+
query_type = 'visualization'
|
223 |
+
elif any(word in query_lower for word in ['how to', 'steps', 'procedure', 'process']):
|
224 |
+
query_type = 'tutorial'
|
225 |
+
else:
|
226 |
+
query_type = 'general'
|
227 |
+
|
228 |
+
needs_visual = any(word in query_lower for word in [
|
229 |
+
'show', 'draw', 'diagram', 'chart', 'graph', 'visual', 'picture',
|
230 |
+
'image', 'illustrate', 'create image', 'generate picture'
|
231 |
+
])
|
232 |
+
|
233 |
+
analysis = {
|
234 |
+
'subject': subject,
|
235 |
+
'confidence': confidence,
|
236 |
+
'query_type': query_type,
|
237 |
+
'needs_visual': needs_visual,
|
238 |
+
'complexity': self._assess_complexity(query),
|
239 |
+
'educational_level': self._determine_educational_level(query)
|
240 |
+
}
|
241 |
+
|
242 |
+
print(f"β
Analysis completed: {analysis}")
|
243 |
+
return analysis
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
print(f"β οΈ Analysis error: {e}, using fallback analysis")
|
247 |
+
return self._fallback_analysis(query)
|
248 |
+
|
249 |
+
def _fallback_subject_classification(self, query: str) -> Tuple[str, float]:
|
250 |
+
"""Fallback subject classification using keywords"""
|
251 |
+
query_lower = query.lower()
|
252 |
+
|
253 |
+
subject_keywords = {
|
254 |
+
'mathematics': ['math', 'equation', 'number', 'calculate', 'algebra', 'geometry', 'calculus'],
|
255 |
+
'physics': ['force', 'energy', 'motion', 'wave', 'particle', 'gravity', 'physics'],
|
256 |
+
'chemistry': ['chemical', 'molecule', 'atom', 'reaction', 'compound', 'element'],
|
257 |
+
'biology': ['cell', 'organism', 'dna', 'genetics', 'evolution', 'biology'],
|
258 |
+
'history': ['historical', 'past', 'ancient', 'war', 'civilization', 'century'],
|
259 |
+
'geography': ['country', 'continent', 'climate', 'map', 'location', 'geography'],
|
260 |
+
'literature': ['poem', 'story', 'novel', 'author', 'literature', 'writing'],
|
261 |
+
'computer science': ['code', 'program', 'algorithm', 'computer', 'software', 'data']
|
262 |
+
}
|
263 |
+
|
264 |
+
scores = {}
|
265 |
+
for subject, keywords in subject_keywords.items():
|
266 |
+
score = sum(1 for keyword in keywords if keyword in query_lower)
|
267 |
+
if score > 0:
|
268 |
+
scores[subject] = score / len(keywords)
|
269 |
+
|
270 |
+
if scores:
|
271 |
+
best_subject = max(scores, key=scores.get)
|
272 |
+
return best_subject, scores[best_subject]
|
273 |
+
else:
|
274 |
+
return 'general', 0.5
|
275 |
+
|
276 |
+
def _assess_complexity(self, query: str) -> str:
|
277 |
+
"""Assess query complexity"""
|
278 |
+
query_lower = query.lower()
|
279 |
+
|
280 |
+
advanced_terms = ['theorem', 'hypothesis', 'methodology', 'analysis', 'synthesis', 'evaluation']
|
281 |
+
intermediate_terms = ['process', 'relationship', 'comparison', 'function', 'structure']
|
282 |
+
basic_terms = ['what', 'who', 'when', 'where', 'simple', 'basic']
|
283 |
+
|
284 |
+
if any(term in query_lower for term in advanced_terms):
|
285 |
+
return 'advanced'
|
286 |
+
elif any(term in query_lower for term in intermediate_terms):
|
287 |
+
return 'intermediate'
|
288 |
+
else:
|
289 |
+
return 'basic'
|
290 |
+
|
291 |
+
def _determine_educational_level(self, query: str) -> str:
|
292 |
+
"""Determine appropriate educational level"""
|
293 |
+
query_lower = query.lower()
|
294 |
+
|
295 |
+
if any(term in query_lower for term in ['university', 'college', 'advanced', 'research']):
|
296 |
+
return 'university'
|
297 |
+
elif any(term in query_lower for term in ['high school', 'secondary', 'algebra', 'calculus']):
|
298 |
+
return 'high_school'
|
299 |
+
elif any(term in query_lower for term in ['middle school', 'junior', 'basic']):
|
300 |
+
return 'middle_school'
|
301 |
+
else:
|
302 |
+
return 'general'
|
303 |
+
|
304 |
+
def _fallback_analysis(self, query: str) -> Dict[str, Any]:
|
305 |
+
"""Fallback analysis when AI models fail"""
|
306 |
+
subject, confidence = self._fallback_subject_classification(query)
|
307 |
+
|
308 |
+
return {
|
309 |
+
'subject': subject,
|
310 |
+
'confidence': confidence,
|
311 |
+
'query_type': 'explanation',
|
312 |
+
'needs_visual': 'visual' in query.lower() or 'show' in query.lower(),
|
313 |
+
'complexity': self._assess_complexity(query),
|
314 |
+
'educational_level': self._determine_educational_level(query)
|
315 |
+
}
|
316 |
+
|
317 |
+
def generate_educational_response(self, query: str, analysis: Dict[str, Any]) -> str:
|
318 |
+
"""Generate educational response with fallback options"""
|
319 |
+
|
320 |
+
try:
|
321 |
+
# Try to use AI models if available
|
322 |
+
if self.text_tokenizer is not None and self.text_model is not None:
|
323 |
+
return self._generate_ai_response(query, analysis)
|
324 |
+
else:
|
325 |
+
print("β οΈ AI models not available, using fallback response")
|
326 |
+
return self._generate_fallback_response(query, analysis)
|
327 |
+
|
328 |
+
except Exception as e:
|
329 |
+
print(f"β Response generation error: {e}")
|
330 |
+
return self._generate_fallback_response(query, analysis)
|
331 |
+
|
332 |
+
def _generate_ai_response(self, query: str, analysis: Dict[str, Any]) -> str:
|
333 |
+
"""Generate response using AI models"""
|
334 |
+
|
335 |
+
if analysis['query_type'] == 'explanation':
|
336 |
+
prompt = f"Explain in detail for {analysis['educational_level']} students: {query}"
|
337 |
+
elif analysis['query_type'] == 'problem_solving':
|
338 |
+
prompt = f"Solve this {analysis['subject']} problem step by step: {query}"
|
339 |
+
elif analysis['query_type'] == 'comparison':
|
340 |
+
prompt = f"Compare and contrast the following for students: {query}"
|
341 |
+
elif analysis['query_type'] == 'tutorial':
|
342 |
+
prompt = f"Provide a step-by-step tutorial for: {query}"
|
343 |
+
else:
|
344 |
+
prompt = f"Provide a comprehensive educational answer about: {query}"
|
345 |
+
|
346 |
+
tokenized = self.text_tokenizer(
|
347 |
+
prompt,
|
348 |
+
return_tensors='pt',
|
349 |
+
max_length=512,
|
350 |
+
truncation=True,
|
351 |
+
padding=True,
|
352 |
+
return_attention_mask=True # Explicitly request attention mask
|
353 |
+
)
|
354 |
+
|
355 |
+
inputs = tokenized['input_ids'].to(self.device)
|
356 |
+
attention_mask = tokenized['attention_mask'].to(self.device)
|
357 |
+
|
358 |
+
with torch.no_grad():
|
359 |
+
outputs = self.text_model.generate(
|
360 |
+
inputs,
|
361 |
+
attention_mask=attention_mask, # Pass attention mask
|
362 |
+
max_length=300,
|
363 |
+
min_length=50,
|
364 |
+
num_beams=4,
|
365 |
+
temperature=0.7,
|
366 |
+
do_sample=True,
|
367 |
+
top_p=0.9,
|
368 |
+
repetition_penalty=2.0,
|
369 |
+
early_stopping=True,
|
370 |
+
pad_token_id=self.text_tokenizer.eos_token_id
|
371 |
+
)
|
372 |
+
|
373 |
+
response = self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
374 |
+
# Remove repetitive phrases and clean up
|
375 |
+
response = response.replace(prompt, "").strip()
|
376 |
+
response = self._remove_repetition(response)
|
377 |
+
|
378 |
+
if len(response) < 100:
|
379 |
+
response = self._enhance_with_conversational_model(query, response)
|
380 |
+
|
381 |
+
return response
|
382 |
+
|
383 |
+
def _remove_repetition(self, text: str) -> str:
|
384 |
+
"""Remove repetitive phrases from generated text"""
|
385 |
+
sentences = text.split('. ')
|
386 |
+
unique_sentences = []
|
387 |
+
seen = set()
|
388 |
+
|
389 |
+
for sentence in sentences:
|
390 |
+
sentence = sentence.strip()
|
391 |
+
if sentence and sentence not in seen and len(sentence) > 10:
|
392 |
+
seen.add(sentence)
|
393 |
+
unique_sentences.append(sentence)
|
394 |
+
|
395 |
+
return '. '.join(unique_sentences)
|
396 |
+
|
397 |
+
def _enhance_with_conversational_model(self, query: str, base_response: str) -> str:
|
398 |
+
"""Enhance response using conversational model"""
|
399 |
+
try:
|
400 |
+
if self.chat_tokenizer is None or self.chat_model is None:
|
401 |
+
return base_response
|
402 |
+
|
403 |
+
context = f"User: {query}\nAssistant: {base_response}\nUser: Can you elaborate more?\nAssistant:"
|
404 |
+
|
405 |
+
tokenized = self.chat_tokenizer(
|
406 |
+
context,
|
407 |
+
return_tensors='pt',
|
408 |
+
max_length=400,
|
409 |
+
truncation=True,
|
410 |
+
padding=True,
|
411 |
+
return_attention_mask=True
|
412 |
+
)
|
413 |
+
|
414 |
+
inputs = tokenized['input_ids'].to(self.device)
|
415 |
+
attention_mask = tokenized['attention_mask'].to(self.device)
|
416 |
+
|
417 |
+
with torch.no_grad():
|
418 |
+
outputs = self.chat_model.generate(
|
419 |
+
inputs,
|
420 |
+
attention_mask=attention_mask, # Pass attention mask
|
421 |
+
max_length=inputs.shape[1] + 100,
|
422 |
+
num_beams=3,
|
423 |
+
temperature=0.8,
|
424 |
+
do_sample=True,
|
425 |
+
top_p=0.9,
|
426 |
+
pad_token_id=self.chat_tokenizer.eos_token_id,
|
427 |
+
eos_token_id=self.chat_tokenizer.eos_token_id
|
428 |
+
)
|
429 |
+
|
430 |
+
enhanced = self.chat_tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
|
431 |
+
|
432 |
+
return f"{base_response}\n\n{enhanced.strip()}"
|
433 |
+
|
434 |
+
except Exception as e:
|
435 |
+
print(f"β οΈ Enhancement failed: {e}")
|
436 |
+
return base_response
|
437 |
+
|
438 |
+
def _generate_fallback_response(self, query: str, analysis: Dict[str, Any]) -> str:
|
439 |
+
"""Generate fallback response when AI models fail"""
|
440 |
+
|
441 |
+
subject = analysis['subject']
|
442 |
+
query_type = analysis['query_type']
|
443 |
+
complexity = analysis['complexity']
|
444 |
+
level = analysis['educational_level']
|
445 |
+
|
446 |
+
if query_type == 'explanation':
|
447 |
+
return f"Let me explain {subject} concepts related to your question about '{query}'. This appears to be a {complexity}-level question suitable for {level} students. I'll break this down step by step to help you understand the key concepts and principles involved."
|
448 |
+
|
449 |
+
elif query_type == 'problem_solving':
|
450 |
+
return f"To solve this {subject} problem, I'll walk you through the solution step by step. For a {complexity}-level problem like this, we need to identify the key information, choose the appropriate method, and work through the solution systematically."
|
451 |
+
|
452 |
+
elif query_type == 'comparison':
|
453 |
+
return f"I'll help you compare and contrast the different aspects of your {subject} question. This type of analysis requires us to examine similarities, differences, and relationships between the concepts you're asking about."
|
454 |
+
|
455 |
+
elif query_type == 'tutorial':
|
456 |
+
return f"I'll provide you with a step-by-step tutorial for this {subject} topic. This {complexity}-level guide will help {level} students understand the process and methodology involved."
|
457 |
+
|
458 |
+
else:
|
459 |
+
return f"I understand you're asking about {subject}. This is a {complexity}-level question that I'll help you understand. Let me provide you with a comprehensive explanation that covers the key concepts and helps you grasp the fundamental principles involved."
|
460 |
+
|
461 |
+
def generate_educational_visual(self, query: str, analysis: Dict[str, Any]) -> Optional[Image.Image]:
|
462 |
+
"""Generate educational visuals with fallback"""
|
463 |
+
|
464 |
+
if not analysis['needs_visual']:
|
465 |
+
return None
|
466 |
+
|
467 |
+
try:
|
468 |
+
if self.image_pipeline is not None:
|
469 |
+
print("π¨ Generating educational visual with AI...")
|
470 |
+
return self._generate_ai_visual(query, analysis)
|
471 |
+
else:
|
472 |
+
print("π¨ Generating fallback visual...")
|
473 |
+
return self._generate_fallback_visual(query, analysis)
|
474 |
+
|
475 |
+
except Exception as e:
|
476 |
+
print(f"β Visual generation error: {e}")
|
477 |
+
return self._generate_fallback_visual(query, analysis)
|
478 |
+
|
479 |
+
def _generate_ai_visual(self, query: str, analysis: Dict[str, Any]) -> Optional[Image.Image]:
|
480 |
+
"""Generate visual using AI models"""
|
481 |
+
|
482 |
+
visual_prompt = self._construct_visual_prompt(query, analysis)
|
483 |
+
print(f"πΌοΈ Visual prompt: {visual_prompt}")
|
484 |
+
|
485 |
+
with torch.no_grad():
|
486 |
+
image = self.image_pipeline(
|
487 |
+
prompt=visual_prompt,
|
488 |
+
num_inference_steps=20,
|
489 |
+
guidance_scale=7.5,
|
490 |
+
height=512,
|
491 |
+
width=512,
|
492 |
+
generator=torch.Generator(device=self.device).manual_seed(42)
|
493 |
+
).images[0]
|
494 |
+
|
495 |
+
enhanced_image = self._enhance_educational_image(image, query)
|
496 |
+
|
497 |
+
# Save and display the image
|
498 |
+
image_path = self._save_image(enhanced_image, query, analysis)
|
499 |
+
self._display_image(enhanced_image, image_path)
|
500 |
+
|
501 |
+
print("β
Educational visual generated successfully!")
|
502 |
+
return enhanced_image
|
503 |
+
|
504 |
+
def _construct_visual_prompt(self, query: str, analysis: Dict[str, Any]) -> str:
|
505 |
+
"""Construct optimized prompt for educational visual generation"""
|
506 |
+
|
507 |
+
subject = analysis['subject']
|
508 |
+
query_lower = query.lower()
|
509 |
+
|
510 |
+
base_prompt = "educational illustration, clean design, professional diagram, textbook style, clear and simple"
|
511 |
+
|
512 |
+
subject_prompts = {
|
513 |
+
'mathematics': "mathematical diagram, geometric shapes, clean whiteboard, equations, graphs",
|
514 |
+
'physics': "physics diagram, scientific illustration, forces and motion, clean background",
|
515 |
+
'chemistry': "molecular structure, chemical bonds, scientific diagram, laboratory style",
|
516 |
+
'biology': "biological illustration, anatomical diagram, cell structure, scientific poster",
|
517 |
+
'history': "historical illustration, timeline, educational infographic, documentary style",
|
518 |
+
'geography': "map, geographical features, educational poster, atlas style",
|
519 |
+
'computer science': "flowchart, algorithm diagram, programming concept, technical illustration"
|
520 |
+
}
|
521 |
+
|
522 |
+
subject_enhancement = subject_prompts.get(subject, "educational diagram, informative illustration")
|
523 |
+
|
524 |
+
key_concepts = self._extract_key_concepts(query)
|
525 |
+
|
526 |
+
visual_prompt = f"{key_concepts}, {subject_enhancement}, {base_prompt}, high quality, detailed"
|
527 |
+
|
528 |
+
return visual_prompt
|
529 |
+
|
530 |
+
def _extract_key_concepts(self, query: str) -> str:
|
531 |
+
"""Extract key visual concepts from query"""
|
532 |
+
stop_words = {'what', 'is', 'how', 'does', 'the', 'a', 'an', 'of', 'to', 'and', 'or', 'but', 'in', 'on', 'at', 'for', 'with', 'by'}
|
533 |
+
|
534 |
+
words = query.lower().split()
|
535 |
+
key_words = [word for word in words if word not in stop_words and len(word) > 2]
|
536 |
+
|
537 |
+
return " ".join(key_words[:5])
|
538 |
+
|
539 |
+
def _enhance_educational_image(self, image: Image.Image, query: str) -> Image.Image:
|
540 |
+
"""Enhance generated image for educational use"""
|
541 |
+
try:
|
542 |
+
if image.mode != 'RGB':
|
543 |
+
image = image.convert('RGB')
|
544 |
+
|
545 |
+
enhancer = ImageEnhance.Contrast(image)
|
546 |
+
image = enhancer.enhance(1.2)
|
547 |
+
|
548 |
+
enhancer = ImageEnhance.Sharpness(image)
|
549 |
+
image = enhancer.enhance(1.1)
|
550 |
+
|
551 |
+
width, height = image.size
|
552 |
+
border_width = 10
|
553 |
+
|
554 |
+
bordered_image = Image.new('RGB', (width + 2*border_width, height + 2*border_width), 'white')
|
555 |
+
bordered_image.paste(image, (border_width, border_width))
|
556 |
+
|
557 |
+
return bordered_image
|
558 |
+
|
559 |
+
except Exception as e:
|
560 |
+
print(f"β οΈ Image enhancement failed: {e}")
|
561 |
+
return image
|
562 |
+
|
563 |
+
def _generate_fallback_visual(self, query: str, analysis: Dict[str, Any]) -> Optional[Image.Image]:
|
564 |
+
"""Generate simple fallback visual when AI generation fails"""
|
565 |
+
try:
|
566 |
+
img = Image.new('RGB', (512, 512), 'white')
|
567 |
+
draw = ImageDraw.Draw(img)
|
568 |
+
|
569 |
+
title = f"{analysis['subject'].title()} Concept"
|
570 |
+
|
571 |
+
try:
|
572 |
+
font = ImageFont.truetype("arial.ttf", 24)
|
573 |
+
small_font = ImageFont.truetype("arial.ttf", 16)
|
574 |
+
except:
|
575 |
+
font = ImageFont.load_default()
|
576 |
+
small_font = ImageFont.load_default()
|
577 |
+
|
578 |
+
bbox = draw.textbbox((0, 0), title, font=font)
|
579 |
+
text_width = bbox[2] - bbox[0]
|
580 |
+
text_x = (512 - text_width) // 2
|
581 |
+
|
582 |
+
draw.text((text_x, 50), title, fill='black', font=font)
|
583 |
+
|
584 |
+
query_lines = self._wrap_text(query, 50)
|
585 |
+
y_position = 150
|
586 |
+
|
587 |
+
for line in query_lines:
|
588 |
+
bbox = draw.textbbox((0, 0), line, font=small_font)
|
589 |
+
line_width = bbox[2] - bbox[0]
|
590 |
+
line_x = (512 - line_width) // 2
|
591 |
+
draw.text((line_x, y_position), line, fill='navy', font=small_font)
|
592 |
+
y_position += 30
|
593 |
+
|
594 |
+
draw.rectangle([50, 100, 462, 102], fill='blue')
|
595 |
+
draw.rectangle([50, 410, 462, 412], fill='blue')
|
596 |
+
|
597 |
+
# Save the fallback image
|
598 |
+
image_path = self._save_image(img, query, analysis, is_fallback=True)
|
599 |
+
self._display_image(img, image_path)
|
600 |
+
|
601 |
+
return img
|
602 |
+
|
603 |
+
except Exception as e:
|
604 |
+
print(f"β Fallback visual generation failed: {e}")
|
605 |
+
return None
|
606 |
+
|
607 |
+
def _save_image(self, image: Image.Image, query: str, analysis: Dict[str, Any], is_fallback: bool = False) -> str:
|
608 |
+
"""Save the generated image to disk"""
|
609 |
+
if not self.save_images or not image:
|
610 |
+
return ""
|
611 |
+
|
612 |
+
try:
|
613 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
614 |
+
subject = analysis['subject'].replace(' ', '_')
|
615 |
+
query_short = ''.join(c for c in query[:30] if c.isalnum() or c in (' ', '-', '_')).rstrip()
|
616 |
+
query_short = query_short.replace(' ', '_')
|
617 |
+
|
618 |
+
fallback_suffix = "_fallback" if is_fallback else ""
|
619 |
+
filename = f"{timestamp}_{subject}_{query_short}{fallback_suffix}.png"
|
620 |
+
|
621 |
+
if len(filename) > 200:
|
622 |
+
filename = f"{timestamp}_{subject}{fallback_suffix}.png"
|
623 |
+
|
624 |
+
image_path = os.path.join(self.images_dir, filename)
|
625 |
+
|
626 |
+
image.save(image_path, "PNG", quality=95)
|
627 |
+
print(f"πΎ Image saved: {image_path}")
|
628 |
+
|
629 |
+
return image_path
|
630 |
+
|
631 |
+
except Exception as e:
|
632 |
+
print(f"β Failed to save image: {e}")
|
633 |
+
return ""
|
634 |
+
|
635 |
+
def _display_image(self, image: Image.Image, image_path: str):
|
636 |
+
"""Display the generated image - skipped in API mode"""
|
637 |
+
if not self.display_images:
|
638 |
+
return
|
639 |
+
|
640 |
+
try:
|
641 |
+
plt.figure(figsize=(10, 8))
|
642 |
+
plt.imshow(image)
|
643 |
+
plt.axis('off')
|
644 |
+
plt.title('Generated Educational Visual', fontsize=14, fontweight='bold')
|
645 |
+
|
646 |
+
if image_path:
|
647 |
+
plt.figtext(0.5, 0.02, f'Saved as: {os.path.basename(image_path)}',
|
648 |
+
ha='center', fontsize=10, style='italic')
|
649 |
+
|
650 |
+
plt.tight_layout()
|
651 |
+
plt.show()
|
652 |
+
|
653 |
+
print("πΌοΈ Image displayed successfully!")
|
654 |
+
|
655 |
+
except Exception as e:
|
656 |
+
print(f"β οΈ Could not display image: {e}")
|
657 |
+
print(f"π Image saved to: {image_path}")
|
658 |
+
|
659 |
+
def _wrap_text(self, text: str, max_length: int) -> List[str]:
|
660 |
+
"""Wrap text to specified length"""
|
661 |
+
words = text.split()
|
662 |
+
lines = []
|
663 |
+
current_line = []
|
664 |
+
current_length = 0
|
665 |
+
|
666 |
+
for word in words:
|
667 |
+
if current_length + len(word) + 1 <= max_length:
|
668 |
+
current_line.append(word)
|
669 |
+
current_length += len(word) + 1
|
670 |
+
else:
|
671 |
+
if current_line:
|
672 |
+
lines.append(' '.join(current_line))
|
673 |
+
current_line = [word]
|
674 |
+
current_length = len(word)
|
675 |
+
|
676 |
+
if current_line:
|
677 |
+
lines.append(' '.join(current_line))
|
678 |
+
|
679 |
+
return lines
|
680 |
+
|
681 |
+
def process_educational_query(self, query: str) -> Dict[str, Any]:
|
682 |
+
"""Main method to process educational queries with comprehensive error handling"""
|
683 |
+
|
684 |
+
print(f"\nπ Processing Educational Query: {query}")
|
685 |
+
print("=" * 80)
|
686 |
+
|
687 |
+
start_time = time.time()
|
688 |
+
|
689 |
+
try:
|
690 |
+
# Analyze the query
|
691 |
+
analysis = self.analyze_educational_query(query)
|
692 |
+
|
693 |
+
print(f"π Analysis Results:")
|
694 |
+
print(f" Subject: {analysis['subject']} (confidence: {analysis['confidence']:.2f})")
|
695 |
+
print(f" Type: {analysis['query_type']}")
|
696 |
+
print(f" Complexity: {analysis['complexity']}")
|
697 |
+
print(f" Level: {analysis['educational_level']}")
|
698 |
+
print(f" Needs Visual: {analysis['needs_visual']}")
|
699 |
+
|
700 |
+
# Generate text response
|
701 |
+
print("\nπ Generating educational response...")
|
702 |
+
text_response = self.generate_educational_response(query, analysis)
|
703 |
+
|
704 |
+
# Generate visual if needed
|
705 |
+
visual_image = None
|
706 |
+
if analysis['needs_visual']:
|
707 |
+
print("\nπ¨ Generating educational visual...")
|
708 |
+
visual_image = self.generate_educational_visual(query, analysis)
|
709 |
+
|
710 |
+
processing_time = time.time() - start_time
|
711 |
+
|
712 |
+
# Add to conversation history
|
713 |
+
self.conversation_history.append({
|
714 |
+
'query': query,
|
715 |
+
'response': text_response,
|
716 |
+
'analysis': analysis,
|
717 |
+
'timestamp': time.time(),
|
718 |
+
'processing_time': processing_time,
|
719 |
+
'has_visual': visual_image is not None
|
720 |
+
})
|
721 |
+
|
722 |
+
print(f"\nβ
Processing completed in {processing_time:.2f} seconds")
|
723 |
+
print("=" * 80)
|
724 |
+
|
725 |
+
return {
|
726 |
+
'text_response': text_response,
|
727 |
+
'visual_image': visual_image,
|
728 |
+
'analysis': analysis,
|
729 |
+
'processing_time': processing_time,
|
730 |
+
'success': True
|
731 |
+
}
|
732 |
+
|
733 |
+
except Exception as e:
|
734 |
+
print(f"β Error processing query: {e}")
|
735 |
+
processing_time = time.time() - start_time
|
736 |
+
|
737 |
+
# Return error response
|
738 |
+
return {
|
739 |
+
'text_response': f"I encountered an error processing your question about '{query}'. Please try rephrasing your question or try again later.",
|
740 |
+
'visual_image': None,
|
741 |
+
'analysis': {'subject': 'unknown', 'error': str(e)},
|
742 |
+
'processing_time': processing_time,
|
743 |
+
'success': False,
|
744 |
+
'error': str(e)
|
745 |
+
}
|
app.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, File, UploadFile, BackgroundTasks
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from fastapi.responses import FileResponse
|
4 |
+
from fastapi.staticfiles import StaticFiles
|
5 |
+
from pydantic import BaseModel
|
6 |
+
from typing import Optional, List, Dict, Any
|
7 |
+
import asyncio
|
8 |
+
import uvicorn
|
9 |
+
import os
|
10 |
+
import json
|
11 |
+
import base64
|
12 |
+
from datetime import datetime
|
13 |
+
import threading
|
14 |
+
import time
|
15 |
+
from ai_models import AdvancedClassroomAI
|
16 |
+
|
17 |
+
# Initialize FastAPI app
|
18 |
+
app = FastAPI(
|
19 |
+
title="Advanced Classroom AI API",
|
20 |
+
description="AI-powered educational assistant with text, voice, and visual capabilities",
|
21 |
+
version="1.0.0"
|
22 |
+
)
|
23 |
+
|
24 |
+
# CORS middleware to allow frontend connections
|
25 |
+
app.add_middleware(
|
26 |
+
CORSMiddleware,
|
27 |
+
allow_origins=["*"], # More permissive for development
|
28 |
+
allow_credentials=True,
|
29 |
+
allow_methods=["*"],
|
30 |
+
allow_headers=["*"],
|
31 |
+
)
|
32 |
+
|
33 |
+
# Global AI instance and status tracking
|
34 |
+
ai_assistant = None
|
35 |
+
initialization_status = "starting"
|
36 |
+
initialization_start_time = None
|
37 |
+
initialization_error = None
|
38 |
+
|
39 |
+
# Initialize AI models in background
|
40 |
+
def initialize_ai():
|
41 |
+
global ai_assistant, initialization_status, initialization_start_time, initialization_error
|
42 |
+
|
43 |
+
initialization_start_time = time.time()
|
44 |
+
initialization_status = "initializing"
|
45 |
+
|
46 |
+
try:
|
47 |
+
print("π Initializing AI models...")
|
48 |
+
print("π This may take a few minutes on first run...")
|
49 |
+
|
50 |
+
ai_assistant = AdvancedClassroomAI(
|
51 |
+
device='cpu',
|
52 |
+
save_images=True,
|
53 |
+
display_images=False # Don't display in API mode
|
54 |
+
)
|
55 |
+
|
56 |
+
# Verify models are actually ready
|
57 |
+
if hasattr(ai_assistant, 'models_ready') and ai_assistant.models_ready:
|
58 |
+
initialization_status = "ready"
|
59 |
+
elapsed_time = time.time() - initialization_start_time
|
60 |
+
print(f"β
AI models initialized successfully in {elapsed_time:.2f} seconds!")
|
61 |
+
else:
|
62 |
+
initialization_status = "error"
|
63 |
+
initialization_error = "Models loaded but not ready"
|
64 |
+
print("β AI models loaded but not ready")
|
65 |
+
|
66 |
+
except Exception as e:
|
67 |
+
initialization_status = "error"
|
68 |
+
initialization_error = str(e)
|
69 |
+
print(f"β Failed to initialize AI models: {e}")
|
70 |
+
ai_assistant = None
|
71 |
+
|
72 |
+
# Start AI initialization in background thread
|
73 |
+
print("π Starting AI model initialization in background...")
|
74 |
+
threading.Thread(target=initialize_ai, daemon=True).start()
|
75 |
+
|
76 |
+
# Serve generated images
|
77 |
+
os.makedirs("generated_images", exist_ok=True)
|
78 |
+
app.mount("/images", StaticFiles(directory="generated_images"), name="images")
|
79 |
+
|
80 |
+
# Pydantic models for API
|
81 |
+
class ChatRequest(BaseModel):
|
82 |
+
message: str
|
83 |
+
subject: str = "General"
|
84 |
+
message_type: str = "text" # text, voice, visual
|
85 |
+
conversation_history: Optional[List[Dict[str, Any]]] = []
|
86 |
+
|
87 |
+
class ChatResponse(BaseModel):
|
88 |
+
response: str
|
89 |
+
analysis: Dict[str, Any]
|
90 |
+
image_url: Optional[str] = None
|
91 |
+
processing_time: float
|
92 |
+
success: bool
|
93 |
+
error: Optional[str] = None
|
94 |
+
|
95 |
+
class HealthResponse(BaseModel):
|
96 |
+
status: str
|
97 |
+
ai_models_ready: bool
|
98 |
+
timestamp: str
|
99 |
+
initialization_status: Optional[str] = None
|
100 |
+
models_loaded: Optional[bool] = None
|
101 |
+
error_message: Optional[str] = None
|
102 |
+
initialization_time: Optional[float] = None
|
103 |
+
|
104 |
+
# Health check endpoint with detailed status
|
105 |
+
@app.get("/health", response_model=HealthResponse)
|
106 |
+
async def health_check():
|
107 |
+
global ai_assistant, initialization_status, initialization_start_time, initialization_error
|
108 |
+
|
109 |
+
# Calculate initialization time
|
110 |
+
init_time = None
|
111 |
+
if initialization_start_time:
|
112 |
+
init_time = time.time() - initialization_start_time
|
113 |
+
|
114 |
+
# Determine if models are ready
|
115 |
+
models_ready = (
|
116 |
+
ai_assistant is not None and
|
117 |
+
hasattr(ai_assistant, 'models_ready') and
|
118 |
+
ai_assistant.models_ready and
|
119 |
+
initialization_status == "ready"
|
120 |
+
)
|
121 |
+
|
122 |
+
response = HealthResponse(
|
123 |
+
status="healthy" if models_ready else "initializing",
|
124 |
+
ai_models_ready=models_ready,
|
125 |
+
timestamp=datetime.now().isoformat(),
|
126 |
+
initialization_status=initialization_status,
|
127 |
+
models_loaded=ai_assistant is not None,
|
128 |
+
error_message=initialization_error,
|
129 |
+
initialization_time=init_time
|
130 |
+
)
|
131 |
+
|
132 |
+
print(f"Health check: {response.dict()}")
|
133 |
+
return response
|
134 |
+
|
135 |
+
# Main chat endpoint
|
136 |
+
@app.post("/chat", response_model=ChatResponse)
|
137 |
+
async def chat(request: ChatRequest):
|
138 |
+
global ai_assistant, initialization_status
|
139 |
+
|
140 |
+
try:
|
141 |
+
# Check if AI is ready with detailed status
|
142 |
+
if ai_assistant is None:
|
143 |
+
return ChatResponse(
|
144 |
+
response="AI models are still loading. Please try again in a moment.",
|
145 |
+
analysis={"subject": request.subject, "status": "loading", "initialization_status": initialization_status},
|
146 |
+
processing_time=0,
|
147 |
+
success=False,
|
148 |
+
error="AI models not ready"
|
149 |
+
)
|
150 |
+
|
151 |
+
if not hasattr(ai_assistant, 'models_ready') or not ai_assistant.models_ready:
|
152 |
+
return ChatResponse(
|
153 |
+
response="AI models are still initializing. Please wait a moment and try again.",
|
154 |
+
analysis={"subject": request.subject, "status": "initializing", "initialization_status": initialization_status},
|
155 |
+
processing_time=0,
|
156 |
+
success=False,
|
157 |
+
error="AI models not ready"
|
158 |
+
)
|
159 |
+
|
160 |
+
# Process the query using your AI models
|
161 |
+
print(f"Processing query: {request.message[:100]}...")
|
162 |
+
|
163 |
+
start_time = time.time()
|
164 |
+
result = ai_assistant.process_educational_query(request.message)
|
165 |
+
processing_time = time.time() - start_time
|
166 |
+
|
167 |
+
print(f"Query processed in {processing_time:.2f} seconds")
|
168 |
+
|
169 |
+
# Handle image URL if visual was generated
|
170 |
+
image_url = None
|
171 |
+
if result.get('visual_image'):
|
172 |
+
# Get the most recent image from the directory
|
173 |
+
images_dir = "generated_images"
|
174 |
+
if os.path.exists(images_dir):
|
175 |
+
image_files = [f for f in os.listdir(images_dir) if f.endswith('.png')]
|
176 |
+
if image_files:
|
177 |
+
# Get the most recent image
|
178 |
+
image_files.sort(key=lambda x: os.path.getctime(os.path.join(images_dir, x)), reverse=True)
|
179 |
+
image_url = f"/images/{image_files[0]}"
|
180 |
+
|
181 |
+
return ChatResponse(
|
182 |
+
response=result['text_response'],
|
183 |
+
analysis=result['analysis'],
|
184 |
+
image_url=image_url,
|
185 |
+
processing_time=processing_time,
|
186 |
+
success=result['success']
|
187 |
+
)
|
188 |
+
|
189 |
+
except Exception as e:
|
190 |
+
print(f"β Error in chat endpoint: {e}")
|
191 |
+
return ChatResponse(
|
192 |
+
response=f"I encountered an error processing your request: {str(e)}",
|
193 |
+
analysis={"subject": request.subject, "error": str(e)},
|
194 |
+
processing_time=0,
|
195 |
+
success=False,
|
196 |
+
error=str(e)
|
197 |
+
)
|
198 |
+
|
199 |
+
# Voice processing endpoint
|
200 |
+
@app.post("/voice", response_model=ChatResponse)
|
201 |
+
async def process_voice(
|
202 |
+
audio: UploadFile = File(...),
|
203 |
+
subject: str = "General"
|
204 |
+
):
|
205 |
+
try:
|
206 |
+
if ai_assistant is None or not ai_assistant.models_ready:
|
207 |
+
return ChatResponse(
|
208 |
+
response="AI models are not ready for voice processing.",
|
209 |
+
analysis={"subject": subject, "status": "not_ready"},
|
210 |
+
processing_time=0,
|
211 |
+
success=False,
|
212 |
+
error="AI models not ready"
|
213 |
+
)
|
214 |
+
|
215 |
+
# For now, return a placeholder response
|
216 |
+
# In a full implementation, you would:
|
217 |
+
# 1. Save the audio file
|
218 |
+
# 2. Use speech-to-text to convert audio to text
|
219 |
+
# 3. Process the text with your AI models
|
220 |
+
|
221 |
+
return ChatResponse(
|
222 |
+
response="Voice processing is not fully implemented yet. Please use text input.",
|
223 |
+
analysis={"subject": subject, "message_type": "voice"},
|
224 |
+
processing_time=0,
|
225 |
+
success=False,
|
226 |
+
error="Voice processing not implemented"
|
227 |
+
)
|
228 |
+
|
229 |
+
except Exception as e:
|
230 |
+
return ChatResponse(
|
231 |
+
response="Error processing voice input.",
|
232 |
+
analysis={"subject": subject, "error": str(e)},
|
233 |
+
processing_time=0,
|
234 |
+
success=False,
|
235 |
+
error=str(e)
|
236 |
+
)
|
237 |
+
|
238 |
+
# Subject-specific endpoints
|
239 |
+
@app.get("/subjects")
|
240 |
+
async def get_subjects():
|
241 |
+
return {
|
242 |
+
"subjects": [
|
243 |
+
"Mathematics",
|
244 |
+
"Physics",
|
245 |
+
"Biology",
|
246 |
+
"Chemistry",
|
247 |
+
"History",
|
248 |
+
"Geography",
|
249 |
+
"Literature",
|
250 |
+
"Computer Science",
|
251 |
+
"Economics",
|
252 |
+
"General"
|
253 |
+
]
|
254 |
+
}
|
255 |
+
|
256 |
+
# Get conversation analytics
|
257 |
+
@app.get("/analytics")
|
258 |
+
async def get_analytics():
|
259 |
+
try:
|
260 |
+
if ai_assistant is None:
|
261 |
+
return {"error": "AI assistant not initialized"}
|
262 |
+
|
263 |
+
history = getattr(ai_assistant, 'conversation_history', [])
|
264 |
+
|
265 |
+
# Calculate some basic analytics
|
266 |
+
total_queries = len(history)
|
267 |
+
subjects = {}
|
268 |
+
query_types = {}
|
269 |
+
|
270 |
+
for conversation in history:
|
271 |
+
subject = conversation.get('analysis', {}).get('subject', 'unknown')
|
272 |
+
query_type = conversation.get('analysis', {}).get('query_type', 'unknown')
|
273 |
+
|
274 |
+
subjects[subject] = subjects.get(subject, 0) + 1
|
275 |
+
query_types[query_type] = query_types.get(query_type, 0) + 1
|
276 |
+
|
277 |
+
return {
|
278 |
+
"total_queries": total_queries,
|
279 |
+
"subjects": subjects,
|
280 |
+
"query_types": query_types,
|
281 |
+
"average_processing_time": sum(c.get('processing_time', 0) for c in history) / max(total_queries, 1)
|
282 |
+
}
|
283 |
+
|
284 |
+
except Exception as e:
|
285 |
+
return {"error": str(e)}
|
286 |
+
|
287 |
+
# Clear conversation history
|
288 |
+
@app.post("/clear-history")
|
289 |
+
async def clear_history():
|
290 |
+
try:
|
291 |
+
if ai_assistant is not None:
|
292 |
+
if hasattr(ai_assistant, 'conversation_history'):
|
293 |
+
ai_assistant.conversation_history = []
|
294 |
+
return {"message": "Conversation history cleared successfully"}
|
295 |
+
return {"error": "AI assistant not initialized"}
|
296 |
+
except Exception as e:
|
297 |
+
return {"error": str(e)}
|
298 |
+
|
299 |
+
# Get available images
|
300 |
+
@app.get("/images/list")
|
301 |
+
async def list_images():
|
302 |
+
try:
|
303 |
+
images_dir = "generated_images"
|
304 |
+
if not os.path.exists(images_dir):
|
305 |
+
return {"images": []}
|
306 |
+
|
307 |
+
image_files = [f for f in os.listdir(images_dir) if f.endswith(('.png', '.jpg', '.jpeg'))]
|
308 |
+
image_files.sort(key=lambda x: os.path.getctime(os.path.join(images_dir, x)), reverse=True)
|
309 |
+
|
310 |
+
return {
|
311 |
+
"images": [{"filename": f, "url": f"/images/{f}"} for f in image_files]
|
312 |
+
}
|
313 |
+
except Exception as e:
|
314 |
+
return {"error": str(e)}
|
315 |
+
|
316 |
+
# Root endpoint with detailed status
|
317 |
+
@app.get("/")
|
318 |
+
async def root():
|
319 |
+
global ai_assistant, initialization_status, initialization_start_time, initialization_error
|
320 |
+
|
321 |
+
# Calculate initialization time
|
322 |
+
init_time = None
|
323 |
+
if initialization_start_time:
|
324 |
+
init_time = time.time() - initialization_start_time
|
325 |
+
|
326 |
+
models_ready = (
|
327 |
+
ai_assistant is not None and
|
328 |
+
hasattr(ai_assistant, 'models_ready') and
|
329 |
+
ai_assistant.models_ready and
|
330 |
+
initialization_status == "ready"
|
331 |
+
)
|
332 |
+
|
333 |
+
return {
|
334 |
+
"message": "Advanced Classroom AI API",
|
335 |
+
"status": "running",
|
336 |
+
"ai_ready": models_ready,
|
337 |
+
"initialization_status": initialization_status,
|
338 |
+
"initialization_time": init_time,
|
339 |
+
"error_message": initialization_error,
|
340 |
+
"models_loaded": ai_assistant is not None,
|
341 |
+
"endpoints": {
|
342 |
+
"chat": "/chat",
|
343 |
+
"voice": "/voice",
|
344 |
+
"health": "/health",
|
345 |
+
"subjects": "/subjects",
|
346 |
+
"analytics": "/analytics",
|
347 |
+
"images": "/images/list"
|
348 |
+
}
|
349 |
+
}
|
350 |
+
|
351 |
+
if __name__ == "__main__":
|
352 |
+
print("π Starting Advanced Classroom AI API...")
|
353 |
+
port = int(os.environ.get("PORT", 8000)) # Use dynamic port from Render if available
|
354 |
+
uvicorn.run(
|
355 |
+
"app:app",
|
356 |
+
host="0.0.0.0",
|
357 |
+
port=port
|
358 |
+
)
|
generated_images/.gitkeep
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--prefer-binary
|
2 |
+
--extra-index-url https://download.pytorch.org/whl/cpu
|
3 |
+
|
4 |
+
# FastAPI and server dependencies
|
5 |
+
fastapi==0.104.1
|
6 |
+
uvicorn[standard]==0.24.0
|
7 |
+
python-multipart==0.0.6
|
8 |
+
python-dotenv==1.0.0
|
9 |
+
|
10 |
+
# Torch stack (fully aligned + CPU-safe)
|
11 |
+
torch==2.7.1+cpu
|
12 |
+
torchvision==0.22.1+cpu
|
13 |
+
torchaudio==2.7.1+cpu
|
14 |
+
|
15 |
+
# AI and ML dependencies
|
16 |
+
transformers==4.37.2
|
17 |
+
tokenizers==0.15.1
|
18 |
+
diffusers==0.25.0
|
19 |
+
accelerate==0.24.1
|
20 |
+
safetensors >= 0.4.1
|
21 |
+
huggingface_hub==0.20.3 # β
Compatible with both transformers & tokenizers
|
22 |
+
sentencepiece==0.1.99
|
23 |
+
protobuf==3.20.3
|
24 |
+
|
25 |
+
# Image processing
|
26 |
+
Pillow==9.5.0 # β
Prebuilt wheels exist
|
27 |
+
opencv-python==4.8.1.78
|
28 |
+
|
29 |
+
# Data processing and visualization
|
30 |
+
numpy==1.24.3
|
31 |
+
pandas==2.0.3
|
32 |
+
matplotlib==3.7.2
|
33 |
+
seaborn==0.12.2
|
34 |
+
|
35 |
+
# Other dependencies
|
36 |
+
requests==2.31.0
|
37 |
+
pydantic==1.10.12 # β
No maturin/Rust
|
38 |
+
typing-extensions==4.11.0 # β
Required by torch>=2.7
|
test_api.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
|
4 |
+
# Test the API endpoints
|
5 |
+
def test_api():
|
6 |
+
base_url = "http://localhost:8000"
|
7 |
+
|
8 |
+
print("π§ͺ Testing API endpoints...")
|
9 |
+
|
10 |
+
# Test root endpoint
|
11 |
+
try:
|
12 |
+
response = requests.get(f"{base_url}/")
|
13 |
+
print(f"β
Root endpoint: {response.status_code}")
|
14 |
+
print(f" Response: {response.json()}")
|
15 |
+
except Exception as e:
|
16 |
+
print(f"β Root endpoint failed: {e}")
|
17 |
+
|
18 |
+
# Test health endpoint
|
19 |
+
try:
|
20 |
+
response = requests.get(f"{base_url}/health")
|
21 |
+
print(f"β
Health endpoint: {response.status_code}")
|
22 |
+
health_data = response.json()
|
23 |
+
print(f" AI Models Ready: {health_data.get('ai_models_ready')}")
|
24 |
+
print(f" Initialization Status: {health_data.get('initialization_status')}")
|
25 |
+
except Exception as e:
|
26 |
+
print(f"β Health endpoint failed: {e}")
|
27 |
+
|
28 |
+
# Test debug endpoint
|
29 |
+
try:
|
30 |
+
response = requests.get(f"{base_url}/debug")
|
31 |
+
print(f"β
Debug endpoint: {response.status_code}")
|
32 |
+
debug_data = response.json()
|
33 |
+
print(f" AI Assistant Exists: {debug_data.get('ai_assistant_exists')}")
|
34 |
+
print(f" Models Ready: {debug_data.get('models_ready')}")
|
35 |
+
print(f" Initialization Status: {debug_data.get('initialization_status')}")
|
36 |
+
except Exception as e:
|
37 |
+
print(f"β Debug endpoint failed: {e}")
|
38 |
+
|
39 |
+
# Test chat endpoint
|
40 |
+
try:
|
41 |
+
chat_data = {
|
42 |
+
"message": "Hello, can you help me with math?",
|
43 |
+
"subject": "Mathematics",
|
44 |
+
"message_type": "text"
|
45 |
+
}
|
46 |
+
response = requests.post(f"{base_url}/chat", json=chat_data)
|
47 |
+
print(f"β
Chat endpoint: {response.status_code}")
|
48 |
+
if response.status_code == 200:
|
49 |
+
chat_response = response.json()
|
50 |
+
print(f" Success: {chat_response.get('success')}")
|
51 |
+
print(f" Response: {chat_response.get('response')[:100]}...")
|
52 |
+
else:
|
53 |
+
print(f" Error: {response.text}")
|
54 |
+
except Exception as e:
|
55 |
+
print(f"β Chat endpoint failed: {e}")
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
test_api()
|