VED-AGI-1's picture
Update app.py
9cdcc42 verified
raw
history blame
8.5 kB
import os
import re
from functools import lru_cache
import gradio as gr
import torch
# -------------------
# Writable caches for HF + Gradio (fixes PermissionError in Spaces)
# -------------------
os.environ.setdefault("HF_HOME", "/data/.cache/huggingface")
os.environ.setdefault("TRANSFORMERS_CACHE", "/data/.cache/huggingface/transformers")
os.environ.setdefault("HF_HUB_CACHE", "/data/.cache/huggingface/hub")
os.environ.setdefault("GRADIO_TEMP_DIR", "/data/gradio")
os.environ.setdefault("GRADIO_CACHE_DIR", "/data/gradio")
for p in [
"/data/.cache/huggingface/transformers",
"/data/.cache/huggingface/hub",
"/data/gradio",
]:
try:
os.makedirs(p, exist_ok=True)
except Exception:
pass
# Timezone (Python 3.9+)
try:
from zoneinfo import ZoneInfo
except Exception:
ZoneInfo = None
# Cohere SDK (hosted path)
try:
import cohere
_HAS_COHERE = True
except Exception:
_HAS_COHERE = False
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login, HfApi
# -------------------
# Config
# -------------------
MODEL_ID = os.getenv("MODEL_ID", "CohereLabs/c4ai-command-r7b-12-2024")
HF_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") or os.getenv("HF_TOKEN")
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
USE_HOSTED_COHERE = bool(COHERE_API_KEY and _HAS_COHERE)
# -------------------
# Helpers
# -------------------
def pick_dtype_and_map():
if torch.cuda.is_available():
return torch.float16, "auto"
if torch.backends.mps.is_available():
return torch.float16, {"": "mps"}
return torch.float32, "cpu"
def is_identity_query(message, history):
patterns = [
r"\bwho\s+are\s+you\b", r"\bwhat\s+are\s+you\b",
r"\bwhat\s+is\s+your\s+name\b", r"\bwho\s+is\s+this\b",
r"\bidentify\s+yourself\b", r"\btell\s+me\s+about\s+yourself\b",
r"\bdescribe\s+yourself\b", r"\band\s+you\s*\?\b",
r"\byour\s+name\b", r"\bwho\s+am\s+i\s+chatting\s+with\b"
]
def match(t):
return any(re.search(p, (t or "").strip().lower()) for p in patterns)
if match(message):
return True
if history:
last_user = history[-1][0] if isinstance(history[-1], (list, tuple)) else None
if match(last_user):
return True
return False
def _history_to_prompt(message, history):
"""Build a simple text prompt for the stable cohere.chat API."""
parts = []
for u, a in (history or []):
if u:
parts.append(f"User: {u}")
if a:
parts.append(f"Assistant: {a}")
parts.append(f"User: {message}")
parts.append("Assistant:")
return "\n".join(parts)
# -------------------
# Cohere Hosted
# -------------------
_co_client = None
if USE_HOSTED_COHERE:
_co_client = cohere.Client(api_key=COHERE_API_KEY)
def cohere_chat(message, history):
try:
prompt = _history_to_prompt(message, history)
resp = _co_client.chat(
model="command-r7b-12-2024",
message=prompt,
temperature=0.3,
max_tokens=350,
)
if hasattr(resp, "text") and resp.text:
return resp.text.strip()
if hasattr(resp, "reply") and resp.reply:
return resp.reply.strip()
if hasattr(resp, "generations") and resp.generations:
return resp.generations[0].text.strip()
return "Sorry, I couldn't parse the response from Cohere."
except Exception as e:
return f"Error calling Cohere API: {e}"
# -------------------
# Local HF Model
# -------------------
@lru_cache(maxsize=1)
def load_local_model():
if not HF_TOKEN:
raise RuntimeError("HUGGINGFACE_HUB_TOKEN is not set.")
login(token=HF_TOKEN, add_to_git_credential=False)
dtype, device_map = pick_dtype_and_map()
tok = AutoTokenizer.from_pretrained(
MODEL_ID,
token=HF_TOKEN,
use_fast=True,
model_max_length=4096,
padding_side="left",
trust_remote_code=True,
)
mdl = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
token=HF_TOKEN,
device_map=device_map,
low_cpu_mem_usage=True,
torch_dtype=dtype,
trust_remote_code=True,
)
if mdl.config.eos_token_id is None and tok.eos_token_id is not None:
mdl.config.eos_token_id = tok.eos_token_id
return mdl, tok
def build_inputs(tokenizer, message, history):
msgs = []
for u, a in (history or []):
msgs.append({"role": "user", "content": u})
msgs.append({"role": "assistant", "content": a})
msgs.append({"role": "user", "content": message})
return tokenizer.apply_chat_template(
msgs, tokenize=True, add_generation_prompt=True, return_tensors="pt"
)
def local_generate(model, tokenizer, input_ids, max_new_tokens=350):
input_ids = input_ids.to(model.device)
with torch.no_grad():
out = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=0.3,
top_p=0.9,
repetition_penalty=1.15,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
gen_only = out[0, input_ids.shape[-1]:]
return tokenizer.decode(gen_only, skip_special_tokens=True).strip()
# -------------------
# Chat Function
# -------------------
def chat_fn(message, history, user_tz):
try:
if is_identity_query(message, history):
return "I am ClarityOps, your strategic decision making AI partner."
if USE_HOSTED_COHERE:
return cohere_chat(message, history)
model, tokenizer = load_local_model()
inputs = build_inputs(tokenizer, message, history)
return local_generate(model, tokenizer, inputs, max_new_tokens=350)
except Exception as e:
return f"Error: {e}"
# -------------------
# Theme & CSS
# -------------------
theme = gr.themes.Soft(
primary_hue="teal",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_lg,
)
custom_css = """
:root {
--brand-bg: #e6f7f8; /* soft medical teal */
--brand-accent: #0d9488; /* teal-600 */
--brand-text: #0f172a;
--brand-text-light: #ffffff;
}
/* Page background */
.gradio-container {
background: var(--brand-bg);
}
/* Title */
h1 {
color: var(--brand-text);
font-weight: 700;
font-size: 28px !important;
}
/* Try to hide the default Chatbot label via CSS for multiple Gradio builds */
.chatbot header,
.chatbot .label,
.chatbot .label-wrap,
.chatbot .top,
.chatbot .header,
.chatbot > .wrap > header {
display: none !important;
}
/* Both bot and user bubbles teal with white text */
.message.user, .message.bot {
background: var(--brand-accent) !important;
color: var(--brand-text-light) !important;
border-radius: 12px !important;
padding: 8px 12px !important;
}
/* Inputs a bit softer */
textarea, input, .gr-input {
border-radius: 12px !important;
}
"""
# -------------------
# UI
# -------------------
with gr.Blocks(theme=theme, css=custom_css) as demo:
# Hidden box to carry timezone (still useful for future features)
tz_box = gr.Textbox(visible=False)
demo.load(lambda tz: tz, inputs=[tz_box], outputs=[tz_box],
js="() => Intl.DateTimeFormat().resolvedOptions().timeZone")
# Extra JS hard-removal of the Chatbot label to cover all DOM variants
hide_label_sink = gr.HTML(visible=False)
demo.load(
fn=lambda: "",
inputs=None,
outputs=hide_label_sink,
js="""
() => {
const sel = [
'.chatbot header',
'.chatbot .label',
'.chatbot .label-wrap',
'.chatbot .top',
'.chatbot .header',
'.chatbot > .wrap > header'
];
sel.forEach(s => document.querySelectorAll(s).forEach(el => el.style.display = 'none'));
return "";
}
"""
)
# Updated title
gr.Markdown("# ClarityOps Augmented Decision AI")
gr.ChatInterface(
fn=chat_fn,
type="messages",
additional_inputs=[tz_box],
chatbot=gr.Chatbot(label="", show_label=False, type="messages"), # aligned type + no label
examples=[
["What are the symptoms of hypertension?", ""],
["What are common drug interactions with aspirin?", ""],
["What are the warning signs of diabetes?", ""],
],
cache_examples=False, # prevent permission error in Spaces
)
if __name__ == "__main__":
demo.launch()