Spaces:
Sleeping
Sleeping
File size: 8,504 Bytes
4f4afd4 40db972 9cdcc42 2bdb6e6 40db972 2bdb6e6 40db972 209eb3a 40db972 2bdb6e6 40db972 2bdb6e6 40db972 2bdb6e6 40db972 2bdb6e6 40db972 2bdb6e6 40db972 2bdb6e6 40db972 2bdb6e6 40db972 2bdb6e6 40db972 2bdb6e6 40db972 b3902ee 209eb3a b3902ee 40db972 2bdb6e6 40db972 b3902ee 2bdb6e6 b3902ee 2bdb6e6 b3902ee 40db972 2bdb6e6 40db972 b3902ee 40db972 2bdb6e6 40db972 2bdb6e6 40db972 2bdb6e6 40db972 209eb3a 40db972 2bdb6e6 209eb3a 2bdb6e6 40db972 209eb3a 40db972 209eb3a 2bdb6e6 209eb3a 40db972 2bdb6e6 40db972 cbf7b6e 209eb3a cbf7b6e 209eb3a 2bdb6e6 cbf7b6e 40db972 b3902ee 40db972 b23412f 40db972 cbf7b6e 5e87cca 2bdb6e6 64972fd cbf7b6e 11a5624 e9ea6c6 11a5624 1c47f55 2bdb6e6 9cdcc42 68f033a 149cfa7 b192119 9cdcc42 68f033a 11a5624 6c7162d 0b1c3ed 443d105 e9ea6c6 209eb3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import os
import re
from functools import lru_cache
import gradio as gr
import torch
# -------------------
# Writable caches for HF + Gradio (fixes PermissionError in Spaces)
# -------------------
os.environ.setdefault("HF_HOME", "/data/.cache/huggingface")
os.environ.setdefault("TRANSFORMERS_CACHE", "/data/.cache/huggingface/transformers")
os.environ.setdefault("HF_HUB_CACHE", "/data/.cache/huggingface/hub")
os.environ.setdefault("GRADIO_TEMP_DIR", "/data/gradio")
os.environ.setdefault("GRADIO_CACHE_DIR", "/data/gradio")
for p in [
"/data/.cache/huggingface/transformers",
"/data/.cache/huggingface/hub",
"/data/gradio",
]:
try:
os.makedirs(p, exist_ok=True)
except Exception:
pass
# Timezone (Python 3.9+)
try:
from zoneinfo import ZoneInfo
except Exception:
ZoneInfo = None
# Cohere SDK (hosted path)
try:
import cohere
_HAS_COHERE = True
except Exception:
_HAS_COHERE = False
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login, HfApi
# -------------------
# Config
# -------------------
MODEL_ID = os.getenv("MODEL_ID", "CohereLabs/c4ai-command-r7b-12-2024")
HF_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") or os.getenv("HF_TOKEN")
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
USE_HOSTED_COHERE = bool(COHERE_API_KEY and _HAS_COHERE)
# -------------------
# Helpers
# -------------------
def pick_dtype_and_map():
if torch.cuda.is_available():
return torch.float16, "auto"
if torch.backends.mps.is_available():
return torch.float16, {"": "mps"}
return torch.float32, "cpu"
def is_identity_query(message, history):
patterns = [
r"\bwho\s+are\s+you\b", r"\bwhat\s+are\s+you\b",
r"\bwhat\s+is\s+your\s+name\b", r"\bwho\s+is\s+this\b",
r"\bidentify\s+yourself\b", r"\btell\s+me\s+about\s+yourself\b",
r"\bdescribe\s+yourself\b", r"\band\s+you\s*\?\b",
r"\byour\s+name\b", r"\bwho\s+am\s+i\s+chatting\s+with\b"
]
def match(t):
return any(re.search(p, (t or "").strip().lower()) for p in patterns)
if match(message):
return True
if history:
last_user = history[-1][0] if isinstance(history[-1], (list, tuple)) else None
if match(last_user):
return True
return False
def _history_to_prompt(message, history):
"""Build a simple text prompt for the stable cohere.chat API."""
parts = []
for u, a in (history or []):
if u:
parts.append(f"User: {u}")
if a:
parts.append(f"Assistant: {a}")
parts.append(f"User: {message}")
parts.append("Assistant:")
return "\n".join(parts)
# -------------------
# Cohere Hosted
# -------------------
_co_client = None
if USE_HOSTED_COHERE:
_co_client = cohere.Client(api_key=COHERE_API_KEY)
def cohere_chat(message, history):
try:
prompt = _history_to_prompt(message, history)
resp = _co_client.chat(
model="command-r7b-12-2024",
message=prompt,
temperature=0.3,
max_tokens=350,
)
if hasattr(resp, "text") and resp.text:
return resp.text.strip()
if hasattr(resp, "reply") and resp.reply:
return resp.reply.strip()
if hasattr(resp, "generations") and resp.generations:
return resp.generations[0].text.strip()
return "Sorry, I couldn't parse the response from Cohere."
except Exception as e:
return f"Error calling Cohere API: {e}"
# -------------------
# Local HF Model
# -------------------
@lru_cache(maxsize=1)
def load_local_model():
if not HF_TOKEN:
raise RuntimeError("HUGGINGFACE_HUB_TOKEN is not set.")
login(token=HF_TOKEN, add_to_git_credential=False)
dtype, device_map = pick_dtype_and_map()
tok = AutoTokenizer.from_pretrained(
MODEL_ID,
token=HF_TOKEN,
use_fast=True,
model_max_length=4096,
padding_side="left",
trust_remote_code=True,
)
mdl = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
token=HF_TOKEN,
device_map=device_map,
low_cpu_mem_usage=True,
torch_dtype=dtype,
trust_remote_code=True,
)
if mdl.config.eos_token_id is None and tok.eos_token_id is not None:
mdl.config.eos_token_id = tok.eos_token_id
return mdl, tok
def build_inputs(tokenizer, message, history):
msgs = []
for u, a in (history or []):
msgs.append({"role": "user", "content": u})
msgs.append({"role": "assistant", "content": a})
msgs.append({"role": "user", "content": message})
return tokenizer.apply_chat_template(
msgs, tokenize=True, add_generation_prompt=True, return_tensors="pt"
)
def local_generate(model, tokenizer, input_ids, max_new_tokens=350):
input_ids = input_ids.to(model.device)
with torch.no_grad():
out = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=0.3,
top_p=0.9,
repetition_penalty=1.15,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
gen_only = out[0, input_ids.shape[-1]:]
return tokenizer.decode(gen_only, skip_special_tokens=True).strip()
# -------------------
# Chat Function
# -------------------
def chat_fn(message, history, user_tz):
try:
if is_identity_query(message, history):
return "I am ClarityOps, your strategic decision making AI partner."
if USE_HOSTED_COHERE:
return cohere_chat(message, history)
model, tokenizer = load_local_model()
inputs = build_inputs(tokenizer, message, history)
return local_generate(model, tokenizer, inputs, max_new_tokens=350)
except Exception as e:
return f"Error: {e}"
# -------------------
# Theme & CSS
# -------------------
theme = gr.themes.Soft(
primary_hue="teal",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_lg,
)
custom_css = """
:root {
--brand-bg: #e6f7f8; /* soft medical teal */
--brand-accent: #0d9488; /* teal-600 */
--brand-text: #0f172a;
--brand-text-light: #ffffff;
}
/* Page background */
.gradio-container {
background: var(--brand-bg);
}
/* Title */
h1 {
color: var(--brand-text);
font-weight: 700;
font-size: 28px !important;
}
/* Try to hide the default Chatbot label via CSS for multiple Gradio builds */
.chatbot header,
.chatbot .label,
.chatbot .label-wrap,
.chatbot .top,
.chatbot .header,
.chatbot > .wrap > header {
display: none !important;
}
/* Both bot and user bubbles teal with white text */
.message.user, .message.bot {
background: var(--brand-accent) !important;
color: var(--brand-text-light) !important;
border-radius: 12px !important;
padding: 8px 12px !important;
}
/* Inputs a bit softer */
textarea, input, .gr-input {
border-radius: 12px !important;
}
"""
# -------------------
# UI
# -------------------
with gr.Blocks(theme=theme, css=custom_css) as demo:
# Hidden box to carry timezone (still useful for future features)
tz_box = gr.Textbox(visible=False)
demo.load(lambda tz: tz, inputs=[tz_box], outputs=[tz_box],
js="() => Intl.DateTimeFormat().resolvedOptions().timeZone")
# Extra JS hard-removal of the Chatbot label to cover all DOM variants
hide_label_sink = gr.HTML(visible=False)
demo.load(
fn=lambda: "",
inputs=None,
outputs=hide_label_sink,
js="""
() => {
const sel = [
'.chatbot header',
'.chatbot .label',
'.chatbot .label-wrap',
'.chatbot .top',
'.chatbot .header',
'.chatbot > .wrap > header'
];
sel.forEach(s => document.querySelectorAll(s).forEach(el => el.style.display = 'none'));
return "";
}
"""
)
# Updated title
gr.Markdown("# ClarityOps Augmented Decision AI")
gr.ChatInterface(
fn=chat_fn,
type="messages",
additional_inputs=[tz_box],
chatbot=gr.Chatbot(label="", show_label=False, type="messages"), # aligned type + no label
examples=[
["What are the symptoms of hypertension?", ""],
["What are common drug interactions with aspirin?", ""],
["What are the warning signs of diabetes?", ""],
],
cache_examples=False, # prevent permission error in Spaces
)
if __name__ == "__main__":
demo.launch()
|