Shuwei Hou
init
67d6834
import argparse
import io
from typing import Any, Dict, List, Tuple, Union
import moviepy.editor as mp
import numpy as np
import streamlit as st
import torch
import torchaudio
import torchaudio.transforms as T
from scipy.io import wavfile
from streamlit_mic_recorder import mic_recorder
from transformers import (
AutomaticSpeechRecognitionPipeline,
AutoModelForSpeechSeq2Seq,
AutoProcessor,
pipeline,
)
def parse_arguments() -> argparse.Namespace:
"""Parse command-line arguments."""
parser = argparse.ArgumentParser(
description="Streamlit app for speech transcription."
)
parser.add_argument(
"--model_id", type=str, required=True, help="Path to the model directory"
)
return parser.parse_args()
# Load model and processor from the specified path
@st.cache_resource # type: ignore
def load_model_and_processor(
model_id: str,
) -> Tuple[AutoModelForSpeechSeq2Seq, AutoProcessor]:
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
model.generation_config.median_filter_width = 3
processor = AutoProcessor.from_pretrained(model_id)
return model, processor
# Setup the pipeline
@st.cache_resource # type: ignore
def setup_pipeline(
_model: AutoModelForSpeechSeq2Seq, _processor: AutoProcessor
) -> AutomaticSpeechRecognitionPipeline:
return pipeline(
"automatic-speech-recognition",
model=_model,
tokenizer=_processor.tokenizer,
feature_extractor=_processor.feature_extractor,
chunk_length_s=30,
batch_size=1,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
def wav_to_black_mp4(wav_path: str, output_path: str, fps: int = 25) -> None:
"""Convert WAV file to a black-screen MP4 with the same audio."""
waveform, sample_rate = torchaudio.load(wav_path)
duration: float = waveform.shape[1] / sample_rate
audio = mp.AudioFileClip(wav_path)
black_clip = mp.ColorClip((256, 250), color=(0, 0, 0), duration=duration)
final_clip = black_clip.set_audio(audio)
final_clip.write_videofile(output_path, fps=fps)
def timestamps_to_vtt(timestamps: List[Dict[str, Union[str, Any]]]) -> str:
"""Convert timestamps to VTT format."""
vtt_content: str = "WEBVTT\n\n"
for word in timestamps:
start_time, end_time = word["timestamp"]
start_time_str = f"{int(start_time // 3600)}:{int(start_time // 60 % 60):02d}:{start_time % 60:06.3f}"
end_time_str = f"{int(end_time // 3600)}:{int(end_time // 60 % 60):02d}:{end_time % 60:06.3f}"
vtt_content += f"{start_time_str} --> {end_time_str}\n{word['text']}\n\n"
return vtt_content
def process_audio_bytes(audio_bytes: bytes) -> torch.Tensor:
"""Process audio bytes to the required format."""
audio_stream = io.BytesIO(audio_bytes)
sr, y = wavfile.read(audio_stream)
y = y.astype(np.float32)
y_mean = np.mean(y)
y_std = np.std(y)
y_normalized = (y - y_mean) / y_std
transform = T.Resample(sr, 16000)
waveform = transform(torch.unsqueeze(torch.tensor(y_normalized / 8), 0))
torchaudio.save("sample.wav", waveform, sample_rate=16000)
return waveform
def transcribe(audio_bytes: bytes) -> Dict[str, Any]:
"""Transcribe the given audio bytes."""
waveform = process_audio_bytes(audio_bytes)
transcription = pipe(waveform[0, :].numpy(), return_timestamps="word")
return transcription
args = parse_arguments()
model_id = args.model_id
# Set up device and data type for processing
device: str = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype: torch.dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model, processor = load_model_and_processor(model_id)
pipe = setup_pipeline(model, processor)
# Streamlit app interface
st.title("CrisperWhisper++ 🦻")
st.subheader("Caution when using. Make sure you can handle the crispness. ⚠️")
st.write("🎙️ Record an audio to transcribe or 📁 upload an audio file.")
# Audio recorder component
audio = mic_recorder(
start_prompt="Start recording",
stop_prompt="Stop recording",
just_once=False,
use_container_width=False,
format="wav",
callback=None,
args=(),
kwargs={},
key=None,
)
audio_bytes: Union[bytes, None] = audio["bytes"] if audio else None
# Audio file upload handling
audio_file = st.file_uploader("Or upload an audio file", type=["wav", "mp3", "ogg"])
if audio_file is not None:
audio_bytes = audio_file.getvalue()
if audio_bytes:
try:
transcription = transcribe(audio_bytes)
vtt = timestamps_to_vtt(transcription["chunks"])
with open("subtitles.vtt", "w") as file:
file.write(vtt)
wav_to_black_mp4("sample.wav", "video.mp4")
st.video("video.mp4", subtitles="subtitles.vtt")
st.subheader("Transcription:")
st.markdown(
f"""
<div style="background-color: #f0f0f0; padding: 10px; border-radius: 5px;">
<p style="font-size: 16px; color: #333;">{transcription['text']}</p>
</div>
""",
unsafe_allow_html=True,
)
except Exception as e:
st.error(f"An error occurred during transcription: {e}")
# Footer
st.markdown(
"""
<hr>
<footer>
<p style="text-align: center;">© 2024 nyra health GmbH</p>
</footer>
""",
unsafe_allow_html=True,
)